用户名: 密码: 验证码:
SublyticC5b-9诱导IRF-1表达对Thy-1肾炎大鼠GMCs凋亡病变的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分体外研究IRF-1在sublytic C5b-9诱导大鼠GMCs凋亡病变中的作用
     目的:体外探讨亚溶解型C5b-9(sublytic C5b-9)刺激大鼠肾小球系膜细胞(glomerular mesangial cells,GMCs)上调干扰素调节因子1(interferon regulatory factor 1, IRF-1)基因表达、并发凋亡现象以及半胱氨酸天冬氨酸特异性蛋白酶(Caspase)的活化情况,同时确定过表达或沉默IRF-1基因对sublytic C5b-9诱发大鼠GMCs凋亡病变的影响以及沉默IRF-1基因对cleaved Caspase 9、cleaved Caspase 8和cleaved Caspase 3蛋白表达的影响,同时,检查使用Caspase抑制剂对sublytic C5b-9刺激和过表达IRF-1引起的GMCs凋亡现象的影响。方法:先体外培养大鼠GMCs并给予sublytic C5b-9刺激(实验设不同处理对照),用RT-PCR和Western blot分别检查受sublytic C5b-9刺激的GMCs上调IRF-1 mRNA的丰度及蛋白表达的水平,并用流式细胞术(Flow Cytometry, FCM)分析各组GMCs的凋亡情况,同时用Western blot检查sublytic C5b-9刺激的GMCs中Caspase的活化情况。然后,分别将构建的IRF-1过表达质粒和发夹式小干涉RNA(short hairpin RNA, shRNA)质粒转染GMCs,并将GMCs作相应的分组处理,定量分析各组GMCs的凋亡率,同时检查转染IRF-1 shRNA质粒的GMCs和对照组GMCs中cleaved Caspase 9、cleaved Caspase 8和cleaved Caspase 3蛋白的表达情况。此外,使用Caspase 8抑制剂(Z-IETD-FMK)和Caspase 3抑制剂(Z-DEVD-FMK)处理大鼠GMCs,观察其对sublytic C5b-9刺激和过表达IRF-1引起的GMCs凋亡病变的影响。结果:Sublytic C5b-9刺激大鼠GMCs早期可见IRF-1表达上调并伴随GMCs的凋亡以及Caspase的活化,过表达IRF-1可促进sublytic C5b-9刺激引起的GMCs凋亡病变,而用IRF-1 shRNA不仅可以使sublytic C5b-9刺激的GMCs的凋亡率下降,也可以减少sublytic C5b-9刺激的GMCs中上调cleaved Caspase 8和cleaved Caspase 3的表达量,但对cleaved Caspase 9表达的影响并不显著。此外,应用Caspase 8抑制剂(Z-IETD-FMK)和Caspase 3抑制剂(Z-DEVD-FMK)亦可显著减轻由sublytic C5b-9刺激和过表达IRF-1引起的GMCs凋亡数量。结论:Sublytic C5b-9诱导的大鼠GMCs凋亡病变可能与其上调IRF-1表达及激活Caspase有一定的关系。
     第二部分体内探讨沉默IRF-1基因对Thy-1N大鼠GMCs凋亡以及继发增生病变的抑制效应
     目的:探讨用IRF-1 shRNA沉默大鼠肾组织内IRF-1基因对Thy-1肾炎(Thy-1 nephritis, Thy-1N)大鼠GMCs凋亡和继发增生病变的抑制作用。方法:首先,复制大鼠Thy-1N模型,定期采用RT-PCR和Western blot方法检查其肾组织中IRF-1和cleaved Caspase 9、8和3蛋白的表达情况。然后应用肾动脉灌注加电导入方法,将IRF-1 shRNA质粒导入大鼠肾组织,再经尾静脉注射注射抗胸腺细胞血清(anti-thymocyte serum,ATS)复制大鼠Thy-1N模型。同时尾静脉注射Caspase 8抑制剂(Z-IETD-FMK)和Caspase 3抑制剂(Z-DEVD-FMK)后再复制大鼠Thy-1N模型。分别取注射ATS后3h和7d时的大鼠肾组织,应用Western blot检查3h时肾组织中IRF-1蛋白的表达水平及cleaved Caspase 9、8和3蛋白的表达情况。此外,应用末端转移酶介导的dUTP缺口末端标记(terminal deoxynucleotidyl transferase dUTP nick end labeling, TUNEL)技术和电镜检查3h时肾组织的病理学改变。另光镜检查计数7d时肾小球内的细胞总数,并用生化方法测定各组大鼠24h和7d时尿蛋白总量的变化。结果:大鼠Thy-1N病变3h时,肾组织中IRF-1的表达水平明显升高。IRF-1 shRNA处理的Thy-1N大鼠(IRF-1 shRNA+Thy-1N组),其肾组织中IRF-1基因的表达以及Caspase 8和Caspase 3的活化水平显著低于Thy-1N模型组。另IRF-1 shRNA+Thy-1N组大鼠以及经Caspase抑制剂处理的大鼠(Z-IETD-FMK+Thy-1N组和Z-DEVD-FMK+Thy-1N组),3h时肾小球内GMCs凋亡数量显著减少。实验7d时,肾小球细胞的增生程度有所减轻,并且,24h尿蛋白的分泌量也明显减少。结论:沉默大鼠肾组织内IRF-1基因以及使用Caspase抑制剂均能明显减轻Thy-1N大鼠GMCs的凋亡病变及继发增生现象,包括尿蛋白的分泌。
     第三部分体外研究sublytic C5b-9刺激大鼠GMCs启动IRF-1转录的作用及其信号通路
     目的:研究sublytic C5b-9刺激大鼠GMCs启动IRF-1转录的作用,同时,探讨sublytic C5b-9刺激GMCs上调IRF-1表达可能涉及的信号转导通路。方法:以大鼠IRF-1启动子全长1700bp荧光素酶报告基因为模板,用DNA重组技术将大鼠IRF-1基因转录起始位点上游13000bp、600bp、200bp和100bp的启动子片段分别克隆入pGL3-Basic荧光素酶报告基因载体中,分别命名为:pGL3-Basic/IRF-1 promoter 1300bp、pGL3-Basic/IRF-1 promoter 600bp、pGL3-Basic/IRF-1 promoter 200bp和pGL3-Basic/IRF-1 promoter 100bp,酶切分析及序列测定正确后,用GenEscortTMIII转染试剂将上述各质粒以及pGL3-Basic/3×GAS荧光素酶报告基因分别与对照质粒PRL-SV40共转染大鼠GMCs细胞,转染后45h行sublytic C5b-9刺激,测定Sublytic C5b-9刺激组与其他各处理组的相对荧光活性。此外,利用Western blot检查Sublytic C5b-9刺激组与其他各对照组GMCs中一些信号通路相关蛋白,如信号传导蛋白和转录激活物(signal transducers and activators of transcription, STAT)、p-STAT1、p38、p-p38、C-Jun基末端激酶(c-Jun N-terminal kinase, JNK)、p-JNK、细胞外信号调节蛋白激酶(extra cellular signal-regulated protein kinase, ERK)和p-ERK的表达情况,同时分别应用JAK抑制剂(AG490)、p38抑制剂(SB203580)、JNK抑制剂(SP600125)和ERK抑制剂(PD98059)处理大鼠GMCs,然后检查上述抑制剂对sublytic C5b-9诱导大鼠GMCs表达p-STAT1和IRF-1蛋白的影响。结果:荧光素酶报告实验表明,转染pGL3-Basic/IRF-1 promoter 1700bp、pGL3-Basic/IRF-1 promoter 1300bp、pGL3-Basic/IRF-1 promoter 600bp和pGL3-Basic/IRF-1 promoter 200bp荧光素酶报告基因后再行sublytic C5b-9刺激的GMCs中的荧光素酶活性明显高于其他各对照组,转染pGL3-Basic/3×GAS荧光素酶报告基因的GMCs行sublytic C5b-9刺激后其荧光素酶活性升高较为显著,而转染pGL3-Basic/IRF-1 promoter 100bp荧光素酶报告基因的GMCs经sublytic C5b-9刺激后荧光素酶活性较其余对照组无明显差别。另Sublytic C5b-9刺激组GMCs中的p-STAT1、p-p38、p-JNK和p-ERK表达均较其余对照组明显上调。JAK抑制剂(AG490)可抑制sublytic C5b-9刺激GMCs后p-STAT1和IRF-1的表达量,p38抑制剂(SB203580)亦可使sublytic C5b-9刺激GMCs后p-STAT1和IRF-1的表达减少,而JNK抑制剂和ERK抑制剂对sublytic C5b-9刺激GMCs后IRF-1蛋白的表达量影响不显著。结论:Sublytic C5b-9刺激大鼠GMCs后可上调IRF-1基因启动子的活性,其中干扰素活化序列(IFN-gamma activated sequence, GAS)在sublytic C5b-9激活IRF-1基因转录中起着较大的作用,此外,sublytic C5b-9上调GMCs IRF-1基因表达可能与p38MAPK和JAK-STAT信号通路的活化存在一定的关系。
Part I The role of IRF-1 in the rat GMCs apoptosis induced by sublytic C5b-9
     Objective: To investigate the effects of sublytic C5b-9 complexes on the production of interferon regulatory factor 1 (IRF-1), apoptosis of glomerular mesangial cells (GMCs) and Caspase activation. Then to explore the role of IRF-1 on the mechanism of sublytic C5b-9 mediating GMCs apoptosis and production of actived Caspase in vitro. Methods: Firstly, the rat GMCs were cultured and divided into different groups. The mRNA and protein levels of IRF-1 in GMCs with sublytic C5b-9 stimulation were measured by RT-PCR and Western blot. The GMCs apoptosis was evaluated by flow cytometry analysis. Meanwhile, the protein levels of cleaved Caspase 9,cleaved Caspase 8 and cleaved Caspase 3 were measured by Western blot. Moreover, the effects of IRF-1 overexpression by IRF-1 expression plasmid or knockdown by IRF-1 short hairpin RNA (shRNA) on the GMCs apoptosis were determined using the corresponding methods, and the production of actived Caspase induced by sublytic C5b-9 in IRF-1 knockdown GMCs were measured by Western blot. In addition, the number of GMCs apoptosis induced by sublytic C5b-9 or overexpression of IRF-1 were also measured when GMCs were pretreated with Caspase 8 inhibitor (Z-IETD-FMK) and Caspase 3 inhibitor (Z-DEVD-FMK). Results: In vitro, the IRF-1 expression, GMCs apoptosis and Caspase activation induced by sublytic C5b-9 could be increased, and IRF-1 can promote GMCs apoptosis induced by sublytic C5b-9. The number of GMCs apoptosis and the production of cleaved Caspase 8 and cleaved Caspase 3 protein were markedly reduced by IRF-1 knockdown. In addition, the number of GMCs apoptosis induced by sublytic C5b-9 or overexpression of IRF-1 could be markedly reduced by Caspase 8 inhibitor (Z-IETD-FMK) and Caspase 3 inhibitor (Z-DEVD-FMK). Conclusion: GMCs apoptosis mediated by sublytic C5b-9 in vitro is partially dependent on the up-regulation of IRF-1 expression and Caspase activation.
     PartⅡThe inhibitory effect of silencing IRF-1 gene on the GMCs apoptosis and secondary proliferation of the rat with Thy-1 nephritis
     [Abstract] Objective: To explore the inhibitory effects of silencing renal IRF-1 gene using shRNA on the GMCs apoptosis and secondary proliferation of rats with Thy-1 nephritis (Thy-1N). Methods: Firstly, an animal model of rat Thy-1N was induced by injecting anti-thymocyte serum (ATS). Then the expression of IRF-1 and actived Caspase in the renal tissue were observed at fixed time. Furthermore, rats were divided into different groups, and IRF-1 shRNA expressing plasmids, Caspase 8 inhibitor (Z-IETD-FMK) and Caspase 3 inhibitor (Z-DEVD-FMK) were transferred into different rat kidneys by renal artery perfusion followed by electroporation or by tail vein injection, and then Thy-1N was reproduced by injection of ATS. The protein levels of IRF-1 and cleaved Caspase 9, 8 and 3 in the renal tissue of different group rats were assessed by Western blot at 3h after ATS administration. Meanwhile, the renal histopathologic changes were observed by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), electron microscopy (EM) and light microscope (LM). The total content of 24h urinary protein was also detected at 24h and 7d. Results: The expression of IRF-1 in the renal tissue was obviously increased at 3h in Thy-1N rats, and the expression of IRF-1 and cleaved Caspase 8 and 3 in the renal tissue transferred with IRF-1 shRNA followed by induction of Thy-1N was significantly reduced compared with Thy-1N model rats. TUNEL analysis and morphological observation under EM showed that the GMCs apoptosis in IRF-1 shRNA+Thy-1N group, Z-IETD-FMK+Thy-1N group and Z-DEVD-FMK+Thy-1N group were markedly reduced compared with Thy-1N model group. The secretion of 24h urinary protein in IRF-1 shRNA+Thy-1N group, Z-IETD-FMK+Thy-1N group and Z-DEVD-FMK+Thy-1N group were also less than that in Thy-1N model group or DMSO+Thy-1N group at 7d, and morphological observation under LM showed that the total number of glomerular cells in IRF-1 shRNA+Thy-1N group, Z-IETD-FMK+Thy-1N group and Z-DEVD-FMK+Thy-1N group were significantly decreased compared with Thy-1N model group. Conclusion: Silencing renal IRF-1 gene or inhibiting the Caspase activation can diminish the lessions of GMCs apoptosis including secondary proliferation of rats with Thy-1N.
     Part III The role and signal pathway of triggering IRF-1 transcription or expression by sublytic C5b-9
     [Abstract] Objective: To study the function of sublytic C5b-9 in IRF-1 transcription and to explore the probable signal pathway involved in it. Methods: Firstly, the 1300bp, 600bp, 200bp and 100bp fragments of rat IRF-1 promoter were amplified by PCR with pGL3-Basic/IRF-1 promoter 1700bp as a template and were directionally cloned into pGL3-Basic multiple cloning sites to construct the luciferase reporter plasmids, namely, pGL3-Basic/IRF-1 promoter 1300bp, pGL3- Basic/IRF-1 promoter 600bp, pGL3-Basic/IRF-1 promoter 200bp and pGL3-Basic/IRF-1 promoter 100bp. After being screened and comfirmed, the recombinant plasmids and pGL3-Basic/3×GAS were transfected into GMCs with PRL-SV40 respectively. Then the rat GMCs were divided into different groups, and calculate the relative luciferase activity unit (RLU) of each group. Secondly, the rat GMCs were cultured and divided into different groups, and the protein levels of signal transducers and activators of transcription (STAT), p-STAT1, p38, p-p38, c-Jun N-terminal kinase (JNK), p-JNK, extra cellular signal-regulated protein kinase (ERK) and p-ERK in GMCs with sublytic C5b-9 stimulation were measured by Western blot. The protein levels of p-STAT1 and IRF-1 in GMCs stimulated by sublytic C5b-9 in the present or absent of JAK inhibitor (AG490) and the protein levels of IRF-1 in GMCs stimulated by sublytic C5b-9 in the present or absent of p38 inhibitor (SB203580), JNK inhibitor (SP600125) and ERK inhibitor (U0126) were also detected by Western blot. At last, the protein levels of p-STAT1 in GMCs stimulated by sublytic C5b-9 in the present or absent of p38 inhibitor (SB203580) were measured by Western blot. Results: The luciferase analysis verified the IFN-gamma activated sequence (GAS) plays a major role in the induction of IRF-1 by sublytic C5b-9 attack, and the expression of p-STAT1 and IRF-1 can be downregulated using the JAK and p38 inhibitor. Conclusion: Sublytic C5b-9 can upregulation IRF-1 promoter activity in rat GMCs, which is relevant with the activation of p38MAPK and JAK-STAT pathways.
引文
1. Barratt J, Feehally J, Smith AC. Pathogenesis of IgA nephropathy. Semim Nephrol, 2004, 24: 197-217
    2. Alexopoulos E. Treatment of primary IgA nephropathy. Kidney Int, 2004, 65: 341-355
    3. Kaneko Y, Shiozawa S, Hora K, Nakazawa K. Glomerulsclerosis develops in Thy-1 nephritis under persistent accumulation of macrophages. Pathol Int, 2003, 53(8): 507-517
    4. Plank C, Hartner A, Klanke B, Geissler B, Porst M, Amann K, Hilgers KF, Rascher W, D?tsch J. Adrenomedullin reduces mesangial cell number and glomerular inflammation in experimental mesangioproliferative glomeruloneph- ritis. Kidney Int, 2005, 68(3): 1086-1095
    5. Shimizu A, Masuda Y, Kitamura H, Ishizaki M, Ohashi R, Sugisaki Y, Yamanaka N. Complement-mediated killing of mesangial cells in experimental glomerulo- nephritis: cell death by a combination of apoptosis and necrosis. Nephron, 2000,86(2): 152-160
    6. Yamamoto T, Wilson CB. Quantitative and qualitative studies of antibody indu- ced mesangial cell damage in the rat. Kidney Int, 1987, 32(4): 514-525
    7. Ishizaki M. The presence of Thy 1.1 antigen in rat glomerular mesangial cells. Allergy, 1980, 29: 816-819
    8. Paul LC, Rennke HG. Thy 1.1 in glomeruli of rat kidney. Kidney Int, 1984, 25: 771-776
    9. Bessho K, Mizuno S, Matsumoto K. Counteractive effects of HGF on PDGF in- duced mesangial cell proliferation in a rat model of glomerulonephritis. Am J Renal Physiol, 2003, 284: 1171-1180
    10. Couser WG, Pippin JW, Shankland SJ. Complement (C5b-9) induces DNA synthesis in rat mesangial cells in vitro. Kidney Int, 2001, 59: 905-912
    11. Gao LJ, Qiu W, Wang YW, Xu WH, Xu J, Tong JX. Sublytic Complement C5b-
    9 Complexes Induce Thrombospondin-1 Production in Rat Glomerular Mesangial cells via Pi3-k/Akt: Association with Activation of latent Transforming Growth Factor-β1. Clin Exp Immunol, 2006, 144: 326-334
    12.王迎伟,徐静华,汤仁仙。抗胸腺细胞血清性肾炎模型大鼠肾小球中C5b-9的沉积及NO、TNFα含量的分析。中国病理生理杂志,2004,20:54-59
    13. Xu JH, Qiu W, Wang YW, Xu J, Tong JX, Gao LJ, Xu WH, Wu YQ. The gene expression profile and overexpression of apoptosis-related genes (NGFI-B and Gadd45γ) in early phase of Thy-1 nephritis model. Cell Tissue Res, 2006, 326: 159-168
    14. Zwaka TP, Manolov D, Dzdemir C. Complement and dilated cardiomyopathy: a role of sublytic terminal complement complex induced tumor necrosis factor alpha synthesis in cardiac myocytes. Am J Pathol, 2002, 161: 449-457
    15.周镜然,白云,朱锡华。补体攻膜复合物细胞非致死性效应及其信号转导机制。免疫学杂志,2000,16:1-4
    16. Midorido W, Morita Y, Mazano M. CD59 protects rat kidney from complement mediated injury in collaboration with Crry. Kidney Int, 2000, 58: 1569-1579
    17. Arumugam TV, Shiels IA, Woodruff TM. The role of the complement system in ischemia reperfusion injury. Shock, 2004, 21: 401-409
    18. Niculecu F, Rus H. Mechanisms of signal transduction activated by sublytic assembly of terminal complement complexes on nucleated cells. Immunol Res, 2001, 24: 191-195
    19. Niculescu F, Soane L, Badea T, Shin M, Rus H. Tyrosine phosphorylation and activation of Janus kinase 1 and STAT3 by sublytic C5b-9 complement complex in aortic endothelial cells. Immunopharmacology, 1999, 42(1-3): 187-193
    20. Gao L, Zhang Y, Qiu W, Xu W, Feng X, Ren J, Jiang X, Wang H, Zhao D, Wang Y. Effects of PI3-k/Akt short hairpin RNA on proliferation, fibronectin production and synthesis of thrombospondin-1 and transforming growth factor-beta1 in glomerular mesangial cells induced by sublytic C5b-9 complexes. Cell Prolif, 2009, 42(1): 83-93
    21. Qiu W, Che N, Feng X, Xia M, Wang H, Zhao D, Wang Y. Apoptosis of glomerular mesangial cells induced by sublytic C5b-9 complexes in rats with Thy-1 nephritis is dependent on Gadd45 gamma upregulation. Eur J Immunol, 2009, 39(11): 3251-3266
    22. Miyamoto M, Fujita T, Kimura Y, Maruyama M, Harada H, Sudo Y, Miyata T, Taniguchi T. Regulated expression of a gene encoding a nuclear factor, IRF-1, that specifically binds to IFN-βgene regulatory elements. Cell, 1998, 54(6): 903-913
    23. Schaper F, Kirchhoff S, Posern G, K?ster M, Oumard A, Sharf R, Levi BZ, Hauser H. Functional domains of interferon regulatory factor 1 (IRF-1). Biochem J, 1998, 335(Pt1): 147-157
    24. Wang J, Zhang W, Zhang Y, Chen Y, Zou B, Jiang B, Pang R, Gu Q, Qiao L, Lan H, Kung HF, Wong BC. c-Jun N-terminal kinase (JNK1) upregulates XIAP-associated factor 1 (XAF1) through interferon regulatory factor 1 (IRF-1) in gastrointestinal cancer. Carcinogenesis, 2009, 30(2): 222-229
    25.吴志敏,袁克厚。Caspase蛋白酶的结构及其在CNS损伤中的作用。中国临床神经外科杂志,2003,8(2):155-156
    26.王筱冰,张小翠,夏妙红,刘全宏。Caspase的活化机制。现代生物医学进展,2006,6(3):53-55
    27. Chang HY, Yang X. Proteases for Cell Suicide: Function and Regulation of Caspase. Microbiol Mol Biol Rev, 2000, 64: 821-846
    28.尹芳,张端莲,熊彦娥,李红,余方高。糖诱导小鼠囊胚Caspase 3的表达及其意义。中国组织化学与细胞化学杂志,2005,14(5):544-546
    29. Gao J, Senthil M, Ren B, Yan J, Xing Q, Yu J, Zhang L, Yim JH. IRF-1 transcriptionally upregulates PUMA, which mediates the mitochondrial apopto- tic pathway in IRF-1-induced apoptosis in cancer cells. Cell Death Differ, 2010, 17(4): 699-709
    30. Wang Y, Ren Z, Tao D, Tilwalli S, Goswami R, Balabanov R. STAT1/IRF-1 signaling pathway mediates the injurious effect of interferon-gamma on oligodendrocyte progenitor cells. Glia, 2010, 58(2): 195-208
    31. Huang Y, Walstrom A, Zhang L, Zhao Y, Cui M, Ye L, Zheng JC. Type I interferons and interferon regulatory factors regulate TNF-related apoptosis- inducing ligand (TRAIL) in HIV-1-infected macrophages. PLoS One, 2009, 4(4): e5397
    32.王迎伟,何球藻,秦慧莲,汤仁仙,高丰光。人补体C5b-9复合物对大鼠肾系膜细胞一氧化氮生成的影响。中国病理生理杂志,2000,16:262-265
    33.李萍,张海燕,盛志业。LOX-1在ox-LDL诱导人肾小球系膜细胞TGF-β1表达的作用。中国医科大学学报,2007,1:14-16
    34. Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA. Nature, 2004, 431: 343-349
    35. Hayashida T, Schnaper HW. High ambient glucose enhances sensitivity to TGF-beta1 via extracellular signal regulated kinase and protein kinase C delta activities in human mesangial cells. J Am Soc Nephrol, 2004, 15: 2032-2041
    36. Daniel C, Takabatake Y, Mizui M. Antisense oligonucleotides against thrombospondin-1 inhibit activation of TGF-beta in fibrotic renal disease in the rat in vivo. Am J Pathol, 2003, 163: 1185-1192
    37. Wang YW, He QZ, Qin HL. The study on synthesis of nitric oxide mediated by human membranous-bound complement C5b-9 complexes in rat glomerular mesangial cells. US Chin J Microbiol and Immunol, 2002, 4: 61-67
    38.张克非,张亮,吴雄飞,张祥贵,于泓,赵士启。大鼠抗Thy-1系膜增生性肾小球肾炎模型发病机制探讨。四川大学学报,2004,35:188-190
    1. Bessho K, Mizuno S, Matsumoto K. Counteractive effects of HGF on PDGF induced mesangial cell proliferation in a rat model of glomerulonephritis. Am J Physiol Renal, 2003, 284: 1171-1180
    2. Zhang H, Cybulsky AV, Aoudjit L, Zhu J, Li H, Lamarche-Vane N, Takano T . Role of Rho-GTPases in complement-mediated glomerular epithelial cell injury.Am J Physiol Renal Physiol, 2007, 293(1): 148-156
    3. Wang Y, He Q, Qin H, Xu J, Tong J, Gao L, Xu J. The complement C5b-9 complexes induced injury of glomerular mesangial cells in rats with Thy-1 nephritis by increasing nitric oxide synthesis. Life Sci, 2006, 79(2): 182-192
    4. Bijian K, Cybulsky AV . Stress proteins in glomerular epithelial cell injury. Contrib Nephrol, 2005, 148: 8-20
    5. Turrnberg D, Cook HT. Complement and glomerulonephritis, new insight. Curr Opin Nephrol Hy, 2005, 14: 223-228
    6. Zwaka TP, Manolov D, Dzdemir C. Complement and dilated cardiomyopathy: a role of sublytic terminal complement complex induced tumor necrosis factor alpha synthesis in cardiac myocytes. Am J Pathol, 2002, 161: 449-457
    7. Rus HG, Niculescu FI, Shin M. Role of the C5b-9 complement complex in cell and apoptosis. Immunol Rev, 2001, 180: 49-55
    8. Couser WG, Pippin JW, Shankland SJ. Complement (5b-9) induces DNA synthesis in rat mesangial cells in vitro. Kidney Int, 2001, 59: 905-912
    9. Xu JH, Qiu W, Wang YW, Xu J, Tong JX, Gao LJ, Xu WH, Wu YQ. Gene expression profile and overexpression of apoptosis-related genes (NGFI-B and Gadd 45 gamma) in early phase of Thy-1 nephritis model. Cell Tissue Res, 2006, 326(1): 159-168
    10. Yamamoto T, Wilson CB. Quantitative and qualitative studies of antibody indu- ced mesangial cell damage in the rat. Kidney Int, 1987, 32: 514-523
    11.王迎伟,何球藻,秦慧莲,汤人仙,高丰光。补体C5b-9抗血清对抗胸腺细胞血清性肾炎模型大鼠肾组织一氧化氮合成及其病变的影响。中国病理生理杂志,2000,9:805-808
    12. Yamamoto T, Wilson CB. Complement dependence of antibody-induced mesangial cell injury in the rat. J Immunol, 1987, 138: 3758-3765
    13. Newman CM, Bettinger T. Gene therapy progress and prospects: ultrasound for gene transfer. Gene Ther, 2007, 14(6): 465-475
    14.张克非,张亮,吴雄飞,张祥贵,于泓,赵士启。大鼠抗Thy1系膜增生性小球肾炎模型发病机制探讨。四川大学学报(医学版),2004,35(2): 188-190
    15. EW, Tharakan B, Hunter FA, Tinsley JH, Cao X. Apoptotic signaling induces hyperpermeability following hemorrhagic shock. Am J Physiol Heart Circ Physiol, 2007, 292(6): 3179-3189
    16. Barratt J, Feehally J, Smith AC. Pathogenesis of IgA nephropathy. Semim Nephrol, 2004, 24: 197-217
    17. Alexopoulos E. Treatment of primary IgA nephropathy. Kidney Int, 2004, 65: 341-355
    18. Shimizu A, Masuda Y, Kitamura H, Ishizaki M, Ohashi R, Sugisaki Y, Yamanaka N. Complement-mediated killing of mesangial cells in experimental glomerulonephritis: cell death by a combination of apoptosis and necrosis. Nephron, 2000, 86(2): 152-160
    19. Plank C, Hartner A, Klanke B, Geissler B, Porst M, Amann K, Hilgers KF, Rascher W, D?tsch J. Adrenomedullin reduces mesangial cell number and glomerular inflammation in experimental mesangioproliferative glomeruloneph- ritis. Kidney Int, 2005, 68(3): 1086-1095
    20. Tijsterman M, Plasterk RH. Dicers at RISC: the mechanism of RNAi. Cell, 2004, 117: 1-3
    21. Berns K, Hijmans EM, Mullenders J. A largescale RNAi screen in human cells identifies new components of the p53 pathway. Nature, 2004, 428: 431-437
    22. Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science, 2002, 296: 550-553
    23. Caplen NJ. Gene therapy progress and prospects downregulating gene expression: the impact of RNA interference. Gene Ther, 2004, 11: 1241-1248
    24. Dykxhoorn DM, Novina CD, Sharp PA. Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Bio, 2003, 4: 457-467
    25. Yu JY, Ruiter SL, Turner DL. RNA interference by expression of shortinterfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci, 2002, 99: 6047-6052
    26. Ma Y, Chan CY, He ML. RNA interference and antiviral therapy. World J Gastroenterol, 2007, 13(39): 5169-5179
    27. George J, Tsutsumi M. SiRNA-mediated knockdown of CTGF factor preventsnitrosodimethylamine induced hepatic fibrosis in rats. Gene Ther, 2007, 1: 1-14
    28. Isaka Y. Gene therapy targeting kidneydiseases: routes and vehicles. Clin Exp Nephrol. 2006; 10(4):229-35
    29. Modlinger P, Chabrashvili T, Gill PS, Mendonca M, Harrison DG, Griendling KK, Li M, Raggio J, Wellstein A, Chen Y, Welch WJ, Wilcox CS. RNA silencing in vivo reveals role of p22phox in rat angiotensin slow pressor response. Hypertension, 2006, 47(2): 238-244
    30. Shin GT, Kim DR, Lim JE, Yim H, Kim H. Upregulation and function of GADD45gamma in unilateral ureteral obstruction. Kidney Int, 2008, 73(11): 1251-1265
    31. Tsujie M, Isaka Y, Nakamura H, Imai E, Hori M. Electroporation-mediated gene transfer that targets glomeruli. J Am Soc Nephrol, 2001, 12: 949-954
    32. Yazawa K, Isaka Y, Takahara S, Imai E, Ichimaru N, Shi Y, Namba Y, Okuyama A. Direct transfer of hepatocyte growth factor gene into kidney suppresses cyclosporin nephrotoxicity in rats. Nephrol Dial Transplant, 2004, 19: 812-816
    33. Cybulsky AV, Takano T, Papillon J, McTavish AJ. Complement C5b-9 induces receptor tyrosine kinase transactivation in glomerular epithelial cells. Am J Pathol, 1999, 155: 1701-1711
    34. Baud L, Ardaillou R. Tumor necrosis factor in renal injury. Miner Electrolyte Metab, 1995, 21: 336-341
    35. Niculescu T, Weerth S, Soane L, Niculescu F, Rus V, Raine CS, Shin ML, Rus H. Effects of membrane attack complex of complement on apoptosis in experimental autoimmune encephalomyelitis. Ann N Y Acad Sci, 2003, 1010: 530-533
    36. Cragg MS, Howatt WJ, Bloodworth L, Anderson VA, Morgan BP, Glennie MJ. Complement mediated cell death is associated with DNA fragmentation. Cell Death Differ, 2000, 7: 48-58
    1. Miyamoto M, Fujita T, Kimura Y, Maruyama M, Harada H, Sudo Y, Miyata T, Taniguchi T. Regulated expression of a gene encoding a nuclear factor, IRF-1, that specifically binds to IFN-beta gene regulatory elements. Cell, 1988, 54(6): 903-913~
    2. Kamijo R, Harada H, Matsuyama T, Bosland M, Gerecitano J, Shapiro D, Le J, Koh SI, Kimura T , Green SJ. Requirement for transcription factor IRF-1 in NO synthase induction in macrophages. Science, 1994, 263(5153): 1612-1615
    3. Barber SA, Fultz MJ, Salkowski CA, Vogel SN. Differential expression of interferon regulatory factor 1(IRF-1), IRF-2, and interferon consensus sequence binding protein genes in lipopolysaccharide(LPS)-responsive and LPS-hypore- sponsive macrophages. Infect Immun, 1995, 63(2): 601-608
    4. Galon J, Sudarshan C, Ito S, Finbloom D, O'Shea JJ. IL-12 induces IFN regulating factor-l(IRF-l) gene expression in human NK and T cells. J Immunol, 1999, 162(12): 7256-7262
    5. Schaper F, Kirchhoff S, Posern Q Koster M, Oumard A, Sharf R, Levi BZ, Hauser H. Functional domains of interferon regulatory factor 1 (IRF-l). Biochem J, 1998, 335( Pt 1): 147-157
    6. Anne M, Stevens, Li-yuan Yu-Lee. Multiple Prolactin-Responsive Elements Mediate Gl and S Phase Expression of the Interferon Regulatory Factor- 1 Gene. Molecular Endocrinology, 1994, 8: 345-355
    7. Klampfer L. The role of signal transducers and activators of transcription in colon cancer. Front Biosci, 2008, 13:2888-2899
    8. Murray PJ. The JAK-STAT signaling pathway: input and output integration. J Immunol, 2007, 178(5): 2623-2629
    9. Valentino L, Pierre J. JAK/STAT signal transduction: regulators and implication in hematological malignancies. Biochem Pharmacol, 2006, 71(6): 713-721
    10. Lee SH, Nishino M, Mazumdar T, Garcia GE, Galfione M, Lee FL, Lee CL, Liang A, Kim J, Feng L, EissaNT, Lin SH, Yu-Lee LY 16-kDaprolactin down-regulates inducible nitric oxide synthase expression through inhibition of the signal transducer and activator of transcription 1/IFN regulatory factor-1 pathway. Cancer Res, 2005 , 65(17): 7984-7992
    11. Andersen P, Pedersen MW, Woetmann A, Villingsli0J M, Stockhausen MT, Odum N, Poulsen HS. EGFR induces expression of IRF-l via STAT1 and STAT3 activation leading to growth arrest of human cancer cells. Int J Cancer, 2008, 122(2): 342-349
    12. Kanazawa N, Kurosaki M, Sakamoto N, Enomoto N, Itsui Y, Yamashiro T, Tanabe Y, Maekawa S, Nakagawa M, Chen CH, Kakinuma S, Oshima S, Nakamura T, Kato T, Wakita T, Watanabe M. Regulation of hepatitis C virus replication by interferon regulatory factor 1. J Virol, 2004, 78(18): 9713-9720
    13. Dhillon N, Zhu X, Peng F, Yao H, Williams R, Qiu J, Callen S, Ladner AO, Buch S. Molecular mechanism(s) involved in the synergistic induction of CXCL10 by human immunodeficiency virus type 1 Tat and interferon-gamma in macrophages. JNeurovirol, 2008, 4(3): 196-204
    14. Wang G, Qian P, Jackson FR, Qian G, Wu G Sequential activation of JAKs, STATs and xanthine dehydrogenase/oxidase by hypoxia in lung microvascularendothelial cells. Int J Biochem Cell Biol, 2008, 40(3): 461-470
    15. Kumari AL, Ali AM, Das S, Pardhasaradhi BV, Varalakshmi Ch, Khar A. Role of STAT3 and NFkappaB signaling in the serum factor-induced apoptosis in AK-5 cells. Biochem Biophys Res Commun, 2005, 336(3): 860-867
    16. Cao Q, Mak KM, Ren C, Lieber CS. Leptin stimulates tissue inhibitor of metalloproteinase-l in human hepatic stellate cells: respective roles of the JAK/STAT and JAK-mediated H2O2-dependant MAPK pathways. J Biol Chem, 2004, 279(6): 4292-4304
    17. Gao L, Qiu W, Wang Y, Xu W, Xu J, Tong J. Sublytic complement C5b-9 complexes induce thrombospondin-l production in rat glomerular mesangial cells via PI3-k/Akt: association with activation of latent transforming growth factor-betal. Clin Exp Immunol, 2006, 144 (2): 326-334
    18. Gao L, Zhang Y, Qiu W, Xu W, Feng X, Ren J, Jiang X, Wang H, Zhao D, Wang Y Effects of PI3-k/Akt short hairpin RNA on proliferation, fibronectin production and synthesis of thrombospondin-1 and transforming growth factor-betal in glomerular mesangial cells induced by sublytic C5b-9 complexes. Cell Prolif, 2009, 42(1): 83-93
    19. Miyata A, Sugawara H, Iwata S, Shimizu T, Kangawa K. The regulatory mechanism for neuron specific expression of PACAP gene. Nippon Yakurigaku Zasshi, 2004, 123(4): 235-242
    20. Liu B, Wu D. Analysis of the coupling of G12/13 to G protein-coupled receptors using a luciferase reporter assay. Methods Mol Biol, 2004, 237: 145-149
    21. Marques SM, Esteves da Siiva JC. Firefly bio luminescence: a mechanistic approach of luciferase catalyzed reactions. IUBMB Life, 2009, 61(1): 6-17
    22. CrossA, Edwards SW, BucknallRC. Secretion of oncostatinM by neutrophils in rheumatoid arthritis. Arthritis Rheum, 2004, 50(5): 1430-1436
    23.姚咏明,盛志勇.脓毒症信号转导机制的现代认识。中国危重病急救医学,2003,15(1):3-6
    24.毛华,黄纯炽,赵敏芳,宋卫生。p38MAPK信号传导通路调控VEGF诱导肝癌细胞黏附作用。中华消化杂志, 2006, 14(8);778-783
    25. McCubrey JA, Steemman LS, Chappell WH, Abrams SL, Wong EW, Chang F, Lehmann B, Terrian DM, Milella M, Tafuri A, Stivala F, Libra M, Basecke J, Evangelisti C, Martelli AM, Franklin RA. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim BiophysActa, 2007, 1773(8): 1263-1284
    26. Nizamutdinova IT, Kim YM, Chung JI, Shin SC, Jeong YK, Seo HQ Lee JH, Chang KC, Kim HJ. Anthocyanins from black soybean seed coats preferentially inhibit TNF-alpha-mediated induction of VCAM-l over ICAM-l through the regulation of GATAs and IRF-l. J Agric Food Chem, 2009, 57(16): 7324-7330
    27. Truchet S, Chebrout M, Djediat C, Wietzerbin J, Debey P. Presence of permanently activated signal transducers and activators of transcription in nuclear interchromatin granules of unstimulated mouse oocytes and preimplantation embryos. Biol Reprod, 2004, 71(4): 1330-1339
    28.王克明,王彬,贺大林.JAK/stAT通路阻断剂AG490的研究现状。现代泌尿外科杂志,2003,1:57-59
    29. WadaT, Penninger JM. Mitogen-activated protein kinases in apoptosis regulate-on. Oncogene, 2004, 23(16): 2838-2849
    30. Seger R, Krebs E G. The MAPK signaling cascade. FASEB J, 1995, 9(9): 726-735
    31. Brewster JL, De Valoir T, Dwyer NCet al. An osmosensing signal transduction pathway in yeast. Science, 1993, 259(5102): 1760-1763
    32. Han J, Lee JD, Bibbs L, Ulevitch RJ. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science, 1994,265(5173): 808-811
    33. Dmitry V. Bulavin, Yuichiro Higashimoto, Ian J. Popoff, William A. Gaarde, Venkatesha Basrur, Venkatesha Basrur, Olga Potapova, Ettore Appella, Albert J. Fornace, Jr. Initiation of a G2/ M checkpoint after ultraviolet tadiation require p38 kinase. Nature, 2001, 411: 102-107
    34. Wang H, Jiang XM, Xu JH, Xu J, Tong JX, Wang YW. The profile of gene expression and role of nuclear factor kappa B on glomerular injury in rats with Thy-l nephritis. Clin Exp Immunol, 2008, 152(3):559-567
    35. Aoudjit L, Stanciu M, Li H, Lemay S, Takano T. p38 mitogen-activated protein kinase protects glomerular epithelial cells from complement-mediated cell injury. Am J Physiol Renal Physiol, 2003, 285(4): 765-774
    36. Niculescu F, Badea T, Rus H. Sublytic C5b-9 induces proliferation of human aortic smooth muscle cells: role of mitogen activated protein kinase and phosphatidyiinositol 3-kinase. Atherosclerosis, 1999, 142(1): 47-56
    1. Platanias LC. Mechanisms of type-I- and type-II-interferon-mediated signaling.Nat Rev Immunol, 2005, 5: 375-386
    2. Miyamoto M, Fujita T, Kimura Y, Maruyama M, Harada H, Sudo Y, Miyata T, Taniguchi T. Regulated expression of a gene encoding a nuclear factor, IRF-l, that specifically binds to IFN-beta gene regulatory elements. Cell, 1988, 54(6): 903-913
    3. Taniguchi T, Ogasawara K, Takaoka A, Tanaka N. IRF family of transcription factors as regulators of host defense. Annu Rev Immunol, 2001, 19: 623-655
    4. Veals SA, Schindler C, Leonard D, Fu XY, Aebersold R, Darnell JE Jr, Levy DE. Subunit of an alpha-interferon-responsive transcription factor is related to interferon regulatory factor and Myb families of DNA-binding proteins. Mol CellBiol, 1992, 12(8): 3315-3324
    5. Paun A, Pitha PM. The IRF family, revisited. Biochimie, 2007, 89(6-7): 744-753
    6. Itoh S, Harada H, Nakamura Y, White R, Taniguchi T. Assignment of the human interferon regulatory factor- (IRFl)gene to chromosome 5q23-q31. Genomics, 1991, 10(4): 1097-1099
    7. Willman CL, Sever CE, Pallavicini MG, Harada H, Tanaka N, Slovak ML, Yamamoto H, Harada K, Meeker TC, List AF. Deletion of IRF-1, mapping to chromosome 5q31.1, in human leukemia and preleukemic myelodysplasia. Science, 1993, 259(5097): 968-971
    8. Schaper F, Kirchhof S, Posern Q Koster M, Oumard A, Sharf R, Levi BZ, Hauser H. Functional domains of interferon regulatory factor l(IRF-l). Biochem J, 1998, 335 (Ptl): 147-157
    9. Meraro D, Hashmueli S, Koren B, Azriel A, Oumard A, Kirchhoff S, Hauser H, Nagulapalli S, Atchison ML, Levi BZ. Protein-protein and DNA-protein interactions affect the activity of lymphoid-specific FN regulatory factors. J Immunol, 1999, 163(12): 6468-6478
    10. Pion E, Narayan V, Eckert M, Ball KL. Role of the IRF-1 enhancer domain in signalling polyubiquitination and degradation. Cell Signal, 2009, 21(10): 1479-1487
    11. Lin R, Hiscott J. A role for casein kinase II phosphorylation in the regulation of IRF-1 transcriptional activity. Mol Cell Biochem, 1999, 191(1-2): 169-180
    12. Kamijo R, Harada H, Matsuyama T, Bosland M, Gerecitano J, Shapiro D, Le J, Koh SI, Kimura T, Green SJ. Requirement for transcription factor IRF-1 in NO synthase induction in macrophages. Science, 1994,263(5153): 1612-1615
    13. Barber SA, Fultz MJ, Salkowski CA, Vogel SN. Differential expression of interferon regulatory factor 1 (RF-l), IRF-2 and interferon consensus sequence binding protein genes in lipopolysaccharide(LPS)-responsive and LPS-hypores-ponsive macrophages[J]. Infect Immun, 1995, 63(2): 601-608
    14. Galon J, Sudarshan C, Ito S, Finbloom D, O'Shea JJ. IL-12 induces IFN regulating factor-1 (IRF-1) gene expression in human NK and T cells. J Immunol, 1999, 162(12): 7256-7262
    15. Tanaka N, Kawakami T, Taniguchi T. Recognition DNA sequences of interferon regulatory factor 1 (IRF-1) and IRF-2, regulators of cell growth and the interferon system. Mol Cell Bio, 1993, 13(8): 4531-4538
    16. Darnell JE Jr, Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science, 1994,264(5164): 1415-1421
    17. Ji H, Ball TB, Ao Z, Kimani J, Yao X, Plummer FA. Reduced HIV-1 long terminal repeat transcription in subjects with protective interferon regulatory factor-1 genotype: a potential mechanism mediating resistance to infection by HIV-1. Scand J Infect Dis, 2010, 42(5): 389-394
    18. Huang Y, Walstrom A, Zhang L, Zhao Y, Ci M, Ye L, Zheng JC. Type I interferons and interferon regulatory factors regulate TNF-reIated apoptosis-inducing ligand (TRAIL) in HIV-I-infected macrophages. PLoS One. 2009, 4(4): e5397
    19. Yadav A, Fitzgerald P, Sajadi MM, Gilliam B, Lafferty MK, Redfield R, Reid W. Increased expression of suppressor of cytokine signaling-l (SOCS-l): A mechanism for dysregulated T helper-l responses in HIV-1 disease. Virology, 2009,385(1): 126-133
    20. Zekri AR, Moharram RA, Mohamed WS, Bahnassy AA, Alam El-Din HM, Abo-Shadi MM, Zayed NA, El-Magzangy H, Abdel-Aziz AO, Esmat G Disease progression from chronic hepatitis C to cirrhosis and hepatocellular carcinoma is associated with repression of interferon regulatory factor-1. Eur J Gastroenterol Hepatol, 2010, 22(4): 450-456
    21. Ciccaglione AR, Stellacci E, Marcantonio C, Muto V, Equestre M, Marsili G, Rapicetta M, Battistini A. Repression of interferon regulatory factor 1 by hepatitis C virus core protein results in inhibition of antiviral and immunomodulatory genes. J Virol, 2007, 81(1): 202-214
    22. Bouker KB, Skaar TC, Riggins RB, Harburger DS, Fernandez DR, Zwart A, Wang A, Clarke R. Interferon regulatory factor-l (IRF-l) exhibits tumor suppressor activities in breast cancer associated with caspase activation and induction of apoptosis. Care ino gene sis, 2005, 26(9): 1527-1535
    23. Detjen KM, Farwig K, Welzel M, Wiedenmann B, Rosewicz S. Interferon gamma inhibits growth of human pancreatic carcinoma cells via caspase-1 dependent induction of apoptosis. Gut, 2001, 49(2): 251-262
    24. Ruiz-Ruiz C, Ruiz de Almodovar C, Rodriguez A, Ortiz-Ferron G, Redondo JM, Lopez-Rivas A. The up-regulation of human caspase-8 by interferon-gamma in breast tumor cells requires the induction and action of the transcription factor interferon regulatory factor-l. J Biol Chem, 2004, 279(19): 19712-19720
    25. Tamura T, Ueda S, Yoshida M, Matsuzaki M, Mohri H, Okubo T. Interferon-gamma induces Ice gene expression and enhances cellular susceptibility to apoptosis in the U937 leukemia cell line. Biochem Biophys Res Commun, 1996, 229(1): 21-26
    26. Wang Y, Ren Z, Tao D, Tilwalli S, Goswami R, Balabanov R. STAT1/IRF-1 signaling pathway mediates the injurious effect of interferon-Gamma on oligodendrocyte progenitor cells.Glia, 2010, 58(2): 195-208
    27. Chapman RS, Duff EK, Lourenco PC, Tonner E, Flint DJ, Clarke AR, Watson CJ. A novel role for IRF-1 as a suppressor of apoptosis. Oncogene, 2000, 19(54): 6386-6391
    28. Liu J, Cao S, Herman LM, Ma X. Differential regulation of interleukin(IL)-12 p3 5 and p40 gene expression and interferon(IFN)-gamma-primed Il-12 production by IFN regulatory factor 1. J Exp Med, 2003, 198(8): 1265-1276
    29. Elser B, Lohoff M, Kock S, Giaisi M, Kirchhoff S, Krammer PH, Li-Weber M. IFN-gamma represses IL-4 expression via IRF-1 and iRF-2. Immunity, 2002, 17(6): 703-712
    30. Niedbala W, Wei XQ, Campbell C, Thomson D, Koai-Koma M, Liew FY. Nitric oxide preferentially induces type 1 T cell differentiation by selectively up-regulating IL-l2 receptor beta 2 expression via cGMP. Proc Natl Acad Sci U S A, 2002, 99(25): 16186-16191
    31. Remoli ME, Giacomini E, Lutfalla G, Dondi E, Orefici G, Battistini A, Uze G, Pellegrini S, Coccia EM. Selective expression of type I IFN genes in human dendritic cells infected with Mycobacterium tuberculosis. J Immunol, 2002,169(1): 366-374
    32. Unutmaz D, Vilcek J. IRF1: a deus ex machina in TH1 differentiation. Nat Immunol, 2008, 9(1): 9-10
    33. Theofilopoulos AN, Baccala R, Beutler B, Kono DH. Type I interferons (alpha/beta) in immunity and autoimmunity. Annu Rev Immunol, 2005, 23: 307-336
    34. Ogasawara K, Hida S, Azimi N, Tagaya Y, Sato T, Yokochi-Fukuda T, Waldmann TA, Taniguchi T, Taki S. Requirement for IRF-I in the micro environment supporting development of natural killer cells. Nature, 1998, 391(6668): 700-703
    35. Jarosinski KW, Massa PT. Interferon regulatory factor-l is required for interferon-gamma-induced MHC class I genes in astrocytes. J Neuroimmunol, 2002, 122(1-2): 74-84
    36. Zhou F. Molecular mechanisms of IFN-gamma to up-regulate MHC class I antigen processing and presentation. Int Rev Immunol, 2009, 28(3-4): 239-260
    37. Sharma A, Maheshwari RK. Oligonucleotide array analysis of Toll-like receptors and associated signalling genes in Venezuelan equine encephalitis virus-infected mouse brain. J Gen Virol, 2009, 90(Pt 8): 1836-1847
    38. Hickey FB, Brereton CF, Mills KH. Adenylate cycalse toxin of Bordetella pertussis inhibits TLR-induced IRF-1 and iRF-8 activation and IL-12 production and enhances IL-10 through MAPK activation in dendritic cells. J Leukoc Biol, 2008, 84(1): 234-243
    39. Maratheftis CI, Giannouli S, Spachidou MP, Panayotou G, Voulgarelis M. RNA interference of interferon regulatory factor-1 gene expression in THP-1 cell line leads to Toll-like receptor-4 overexpression/activation as well as up-modulation of annexin-II. Neoplasia, 2007, 9(12): 1012-1020
    40. Schmitz F, Heit A, Guggemoos S, Krug A, Mages J, Schiemann M, Adler H, Drexler I, Haas T, Lang R, Wagner H. Interferon-regulatory-factor 1 controls Toll-like receptor 9-mediated IFN-beta production in myeloid dendritic cells. Eur J Immunol, 2007, 37(2): 315-327
    41. Boultwood J, Fidler C, Lewis S, MacCarthy A, Sheridan H, Kelly S, Oscier D, Buckle VJ, Wainscoat JS. Allelic loss of IRF1 in myelodysplasia and acute myeloid leukemia: retention of IRF1 on the 5q- chromosome in some patients with the 5q- syndrome. Blood, 1993, 82(9): 2611-2616
    42. Moriyama Y, Nishiguchi S, Tamori A, Koh N, Yano Y, Kubo S, Hirohashi K,Otani S. Tumor-suppress or effect of interferon regulatory factor-1 in human hepatocellular carcinoma. Clin Cancer Res. 2001, 7(5): 1293-1298
    43. Wang J, Zhang W, Zhang Y, Chen Y, Zou B, Jiang B, Pang R, Gu Q, Qiao L, Lan H, Kung HF, Wong BC. c-Jun N-terminal kinase (JNK1) upregulates XIAP-associated factor 1 (XAF1) through interferon regulatory factor 1 (IRF-1) in gastrointestinal cancer. Care ino gene sis, 2009, 30(2): 222-229
    44. Papageorgiou A, Dinney CP, McConkey DJ. Interferon-alpha induces TRAIL expression and cell death via an IRF-1-dependent mechanism in human bladder cancer cells. Cancer Biol Ther, 2007, 6(6): 872-879
    45. Doherty GM, Boucher L, Sorenson K, Lowney J. Interferon regulatory factor expression in human breast cancer. Ann Surg, 2001, 233(5): 623-629
    46. Kim PK, Armstrong M, Liu Y, Yan P, Bucher B, Zuckerbraun BS, Gambotto A, Billiar TR, Yim JH . IRF-1 expression induces apoptosis and inhibits tumor growth in mouse mammary cancer cells in vitro and in vivo. Oncogene, 2004, 23(5): 1125-1135
    47. Stang MT, Armstrong MJ, Watson GA, Sung KY, Liu Y, Ren B, Yim JH. Interferon regulatory factor-1-induced apoptosis mediated by a ligand-independent fas-associated death domain pathway in breast cancer cells. Oncogene, 2007, 26(44): 6420-6430
    48. Bouker KB, Skaar TC, Riggins RB, Harburger DS, Fernandez DR, Zwart A, Wang A, Clarke R. Interferon regulatory factor-1 (IRF-1) exhibits tumor suppressor activities in breast cancer associated with caspase activation and induction of apoptosis. Care ino gene sis, 2005, 26(9): 1527-1535
    49. Pinheiro RF, Metze K, Silva MR, Chauffaille Mde L. The ambiguous role of interferon regulatory factor-1 (IRF-1) immuno express ion in myelodysplastic syndrome. LeukRes, 2009, 33(10): 1308-1312
    50. Zheng L, Yu C, Zhang Z, Yang C, Cai X. Expression of interferon regulatory factor 1, 3, and 7 in primary Sjogren syndrome. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2009, 107(5): 661-668
    51. Reilly CM, Olgun S, Goodwin D, Gogal RM Jr, Santo A, Romesburg JW, Ahmed SA, Gilkeson GS. Interferon regulatory factor-1 gene deletion decreases glomerulonephritis in MRL/lpr mice. Eur J Immunol, 2006, 36(5): 1296-1308
    52. Paschen W, Gissel C, Althausen S, Doutheil J. Changes in interferon-regulatory factor-1 mRNA levels after transient ischemia in rat brain. Neuroreport, 1998,9(14): 3147-3151
    53. Tsung A, Stang MT, ikeda A, Critchlow ND, Izuishi K, Nakao A, Chan MH, Jeyabalan G, Yim JH, Geller DA. The transcription factor interferon regulatory factor-I mediates liver damage during ischemia-reperfusion injury. Am J Physiol Gastrointest Liver Physiol, 2006, 290(6): 1261-1268
    54. Kim KH, Dhupar R, Ueki S, Cardinal J, Pan P, Cao Z, Cho SW, Murase N, Tsung A, Geller DA. Donor graft interferon regulatory factor-1 gene transfer worsens liver transplant ischemia/reperfusion injury. Surgery, 2009, 146(2): 181-189
    55. Gysemans C, Callewaert H, Moore F, Nelson-Holte M, Overbergh L, Eizirik DL, Mathieu C. Interferon regulatory factor-l is a key transcription factor in murine beta cells under immune attack. Diabetologia, 2009, 52(11): 2374-2384
    56. Yamada H, Mizuno S, Sugawara I. Interferon regulatory factor 1 in mycobacterial infection. Microbiol Immunol, 2002, 46(11): 751-760
    57. Morris KR, Lutz RD, Bai X, McGibney MT, Cook D, Ordway D, Chan ED. Suppression of IFNgamma+mycobacterial lipoarabinomannan-induced NO by IL-4 is due to decreased IRF-l expression. Tuberculosis (Edinb), 2009, 89(4): 294-303

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700