用户名: 密码: 验证码:
日本七鳃鳗口腔腺Grimin基因的生物学活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Grimin为源自于日本七鳃鳗口腔腺的GRIM—l9样抗肿瘤基因重组蛋白。GRIM-19是新近发现的一种”细胞死亡激活因子”,由于GRIM-19能特异性抑铝STAT3(Signal transduceran activat or of transcription,信号转导与转录活化因子)分子发挥作用来阻断肿瘤细胞的信号传递途径,促进肿瘤细胞凋亡或者逆转恶性表现型,而日本七鳃鳗Grimin与GRIM-19具有相同的功能结构域及较高的序列同源性,这使得Grimin有望成为高效低毒、副作用小的抗肿瘤基因工程新药。
     鉴于此,本论文从日本七鳃鳗中提取GRIM-19的同功能基因,将其命名为Grimin,并对其进行了初步的研究和验证。
     本课题组已先期完成七鳃鳗口腔腺cDNA文库的构建,所构建的库容量为2.1×1O。pfu·ml-1。随机挑选单克隆单向测序后,共得到1281条有效EST序列。对其进行生物信息学分析后,发现了1条能翻译出GRIM-19结构域的EST序列。对此段mRNA进行全长钓取、开放阅读框寻找、测序及b1asting同源性比较后,发现此一功能基因与非洲蟾蜍GRIM-19的同源性为66%,与河豚GRIM-19的同源性为6896。根据其设计引物进行RT—PCR,获得了Grimin的429bp的功能基因。进一步将此功能基因构建入表达载体pET23b,并转化入克隆菌DH5a后进行阳性转化子的筛选鉴定。
     本论文主要将带有组氨酸标签的pET23b—Grimin重组质粒从克隆菌中提取出,然后CaCl2法转化入表达菌E.coliRosetta中进行IPTG诱导表达;经组氨酸亲和层析柱对表达的重组蛋白进行纯化。表达产物为包涵体,进行包涵体透析复性后得到有生物活性的蛋白,将其命名为Grimin蛋白。
     获得了具有生物活性的Grimin蛋白之后,本论文进一步进行了对Grimin的生物学活性的检测。培养人脐静脉内皮细胞ECV304及人白血病细胞HL60,收集细胞,利用MTT比色法,双苯并咪唑(Hoechst33258,H0)染色及流式细胞仪分析等实验证明,Grimin蛋白具有
     抑制肿瘤细胞生长并促进其发生凋亡的生物学活性;而且本课题对Grimin进行了质脂体包被的小规模实验,以使包被Grimin蛋白透过细胞膜质脂双分子层而达到细胞内起作用,本实验是以未加蛋白作用的细胞和未加蛋白仅加脂质体的细胞分别作对照;加入蛋白和脂质体混合物的结果与对照相比;结果显示经过脂质体包裹的蛋白作用的细胞出现明显的细胞凋亡,并且脂质体对细胞没有任何刺激作用,从而证明了可以利用脂质体包被作为药物剂型在抗肿瘤药物中加以应用。
     总之,本论文为了研究GRIM-19诱导肿瘤细胞凋亡方面的作用,成功地通过基因工程手段从日本七鳃鳗口腔腺中获取了新的功能基因以及蛋白,并较为系统地对Grimin的相关生物学活性进行了初步研究。这些实验结果都提示了Grimin作为一种肿瘤细胞死亡催化剂的潜在应用价值。
Grimin roots in the anti-tumor gene recombination protein GRIM-19 of Lampetra japonica buccal gland, where GRIM-19 is a kind of the cell death activation factor which was recently discovered. Because the tumor cell transmission can be blocked by the GRIM-19’s specific suppressor to the rule of the STAT3 which stimulate the tumor cell apoptosis or inverts malignant phenotype, and the Grimin of Lampetra japonica has the same functional domain and the higher sequence homology with GRIM-19. So it hopefully becomes the anti-tumor genetic engineering new medicine with powerful effects, little poison and little negative factor.
     In view of it, we has withdrawn successfully the gene with the same function as GRIM-19 from Lampetra japonica. It has been conducted the preliminary research and the corresponding confirmation,named as Grimin.
     Our team have finished the constructing work of the gene library about Lampetra japonica buccal gland’s cDNA with its 2.1×10~6pfu·ml~(-1) capacity. We have withdrawn the total RNA from the Lampetra japonica in its migration to Heilongjiang basin, using our independently design premier to carry on the RT-PCR expanding, and have obtained the new function gene of 429bp long Grimin. The premier design is basised on the GRIM-19 homology protein sequence of disintegrins published on NCBI, which deduces the DNA sequences and designs two oligonucleotide primers. the result shows, this function gene and the African toad GRIM19 homology is 66%, and the globefish GRIM19 homology is 68%.
     The paper follows the above works , and the histidine labeled pET23b-Grimin has been transformed into expresses in fungus E.coliRosetta to carry on the IPTG primer expression; after the affinity column analysis of histidine to purify the expressed reorganization protein. The active protein is obtained after denaturation and renaturation of its product inclusionbody, and named Grimin.
     obtained the biological activity Grimin protein, we have further carried on the partial biological activity examination to it. Through Raising personal vena umbilicus endothelial cell ECV304 and personal leukemia cell HL60, collecting cell , using the MTT color method, the double benziminazole (Hoechst 33,258, Ho) dyes and flows experiment analysis, the Grimin protein has been proved its biology activeness which can suppress tumor cell grows and promote it apoptosis; Moreover we has carried on the little experiment of the lipide body peridium about Grimin, which enables the Grimin peridium protein penetration cell membrane to function in the cell. The experiment make the separately comparison with the cell added protein and the cell not added the protein only plus lipide cell; the results show the cells with lipide protein wraped appear the obvious perish and lipide body does not enduce any stimulation to cell. Thus it proves that the lipide body peridium may be taken as the anti-tumor medicine dosage to apply.
     In the paper we successfully obtain the new functional gene and protein from Lampetra japonica through the genetic engineering method to study the GRIM-19 induce tumor cell apoptosis, and make some preliminary research to the relative biology activity about Grimin. These experimental results can prompt Grimin the latent application value to be taken as one kind of catalyst inducing tumor cell to death.
引文
1. Angell JE, Lindner DJ, Shapiro PS, Hofmann ER, Kalvakolanu DV. Identification of GRIM-19, a novel cell death-regulatory gene induced by the interferon-beta and retinoic acid combination,using a genetic approach. J Biol Chem 2000;275:33416-33426
    2. Huang G, Lu H, Hao A, Ng DC, Ponniah S, Guo K, Lufei C,Zeng Q, Cao X. GRIM-19, a cell death regulatory protein, is essential for assembly and function of mitochondrial complex I.Mol Cell Biol 2004;24:8447-8456.
    3. Lindner, D. J., E. C. Borden, and D. V. Kalvakolanu. 1997. Synergistic antitumor effects of a combination of interferons and retinoic acid on human tumor cells in vitro and in vivo. Clin. Cancer Res. 3:931–937.
    4. Lotan, R., M. I. Dawson, C. C. Zou, L. Jong, D. Lotan, and C. P. Zou. 1995.Enhanced efficacy of combinations of retinoic acid- and retinoid X receptorselective retinoids and alpha-interferon in inhibition of cervical carcinoma cell proliferation. Cancer Res. 55:232–236.
    5. Moore, D. M., D. V. Kalvakolanu, S. M. Lippman, J. J. Kavanagh, W. K.Hong, E. C. Borden, M. Paredes-Espinoza, and I. H. Krakoff. 1994. Retinoic acid and interferon in human cancer: mechanistic and clinical studies. Semin. Hematol. 31:31–37.
    6. Hofmann, E. R., M. Boyanapalli, D. J. Lindner, X. Weihua, B. A. Hassel, R.Jagus, P. L. Gutierrez, D. V. Kalvakolanu, and E. R. Hofman. 1998. Thioredoxin reductase mediates cell death effects of the combination of beta interferon and retinoic acid. Mol. Cell. Biol. 18:6493–6504.
    7. Nicolas Barnich, Tadakazu Hisamatsu, Jose E. Aguirre et al. GRIM-19 Interacts with Nucleotide Oligomerization Domain 2 and Serves as Downstream Effector of Anti-bacterial Function in Intestinal Epithelial Cells*. The Journal of biological chemistry Vol. 280, No. 19, Issue of May 13, pp. 19021–19026.
    8. Burysek, L., and P. M. Pitha. 2001. Latently expressed human herpesvirus 8-encoded interferon regulatory factor 2 inhibits double-strandedRNA-activated protein kinase. J. Virol. 75:2345-2352.
    9. Li, M., H. Lee, J. Guo, F. Neipel, B. Fleckenstein, K. Ozato, and J. U. Jung. 1998. Kaposi's sarcoma-associated herpesvirus viral interferon regulatory factor. J. Virol. 72:5433-5440.
    10. Lubyova, B., and P. M. Pitha. 2000. Characterization of a novel human herpesvirus 8-encoded protein, vIRF-3, that shows homology to viral and cellular interferon regulatory factors. J. Virol. 74:8194-8201.
    11. Rivas, C., A. E. Thlick, C. Parravicini, P. S. Moore, and Y. Chang. 2001. Kaposi's sarcoma-associated herpesvirus LANA2 is a B-cell-specific latent viral protein that inhibits p53. J. Virol. 75:429-438.
    12. Chengchen Lufei, Jing Ma,Guochang Huang,Tong Zhang,Veronica Novotny-Diermayr,Chin Thing Ong and Xinmin Cao. GRIM-19,a death-regulatory gene product,suppresses Stat3 activity via functional interaction. The EMBO Journal Vol. 22 No. 6 pp. 1325±1335, 2003.
    13. Zhang J, Yang J, Roy SK, Tininini S, Hu J, Bromberg JF,Poli V, Stark GR, Kalvakolanu DV. The cell death regulator GRIM-19 is an inhibitor of signal transducer and activator of transcription 3. Proc Natl Acad Sci USA 2003;100:9342-9347.
    14. Yu H, Jove R. The STATs of cancer--new molecular targets come of age. Nat Rev Cancer 2004;4:97-105.
    15. Frank DA. StAT signaling in cancer: insights into pathogenesis and treatment strategies. Cancer Treat Res 2003;115:267-291
    16. Kumar, A., M. Commane, T. W. Flickinger, C. M. Horvath, and G. R. Stark. 1997. Defective TNF-_-induced apoptosis in STAT1-null cells due to low constitutive levels of caspases. Science 278:1630–1632.
    17. Hirano T,Ishihara K,Hibi M. Roles of STAT3in mediating the cell growth,differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene,2000,19(21):2548.
    18. Alonzi T,Maritane D,Gorgoni B,et al. Essential Role of STAT3 in the control of the acute-phase response as revealed by inducible gene inactivationin the liver. Mol Cell Biol,2001,21(5):1621.
    19. Decker T,Kovarik P.Serine phosphorylation of STATs. Oncogene,2000,19(21):2628.
    20. 卢圣栋.现代分子生物学实验技术,第二版.中国协和医科大学出版社.278-279.
    21. 王继红,白眉蝮蛇去整合素 Adinbitor 的基因克隆、表达及其部分生物学活性.中国生物化学与生物物理学报.
    22. 卢圣栋.现代分子生物学实验技术,第二版.中国协和医科大学出版社.383-384.
    23. 卢圣栋.现代分子生物学实验技术,第二版.中国协和医科大学出版社.419-420.
    24. LIU Yuying#, QIAN Henian, HUANG Hualiang, FENG Jie, CUI Heng, FU Tianyun, et al . RENATURATION, PURIFICATION AND ACTIVITY OF 6B11 OVARIAN CARCINOMA ANTI-IDIOTYPIC ANTIBODY scFv EXPRESSED AS INCLUSION BODIES IN E.coli. J Beijing Med Univ, 1998,30:400-403.
    25. Wang xinliang , Huang yunhui , Zhu xihua , He rui , Zhao yibo .CLONING AND EXPRESSION OF HUMAN FAS cDNA IN E.coli AND PIRIFICATION OF RHFAS PROTEIN.中国免疫学杂志 2002 年第 18 卷.
    26. TANG Wei-Hua,QIU Zi-Long,WANG Zong-Yang,ZHANG Jin-Liu and HONG Meng-Min. Expression of a Rice cDNA c73 in E.coli Cells and Purification of Its Fusion Protein.植物生理学报 Vol.25 No.4 1999.
    27. 党双锁, 王宏仓, 贾晓黎等. 幽门螺杆菌 vacA 基因重组表达的包涵体复性及ELISA 方法的建立. 世界华人消化杂志. 2005, 13(20): 2500-2503
    28. 张静波,张世馥,黄东阳等.组织和细胞培养技术.第一版.北京.人民卫生出版社 2002 年.111-112.
    29. Yan GM, Irwin RP, Lin SZ, et al.Dipheylhydantoin induceds apoptotic cell death of cultured rat cerebellar granule neutons.J Pharmacol Exp Ther.1995,274:983-990.
    30. 卢圣栋.现代分子生物学实验技术,第二版.中国协和医科大学出版社.660-661.
    31. 唐古生,STAT3 与肿瘤治疗.实用肿瘤杂志.2004 年第 19 卷第三期.257-260.
    32. N iu G, W righ t KL , HuangM , et al. Const itut ive STA T3 act ivity up regulates V EGF exp ression and tumo r angiogenesis[J ]. O ncogene, 2002, 21 (13) : 2000- 2008.
    33. N iu G, Shain KH, HuangM , et al. O verexp ression of a dom inant2negat ive signal t ransducer and act iva2 to r of t ranscription 3 variant in tumo r cells leads to production of so luble factors that induce apop to sis and cell cycle arrest [J ]. Cancer Res, 2001, 61 (8) :3276- 3280.
    34. Mo ra LB,Buet tner R, Seigne J , et al. Constitutive activation of STAT3 in human pro state tumo rs and cell lines: direct in hibition of STAT3 signaling induces apop to sis of prostate cancer cells [J ]. Cancer Res,2002, 62 (22) : 6659- 6666.
    35. Song L , Turk son J , Karras JG, et al. A ct ivat ion of STA T3 by recep to r tyro sine k inases and cytok ines regulates survival in human non2small cell carcinoma cells[J ]. O ncogene, 2003, 22 (27) : 4150- 4165.
    36. Turk son J , Ryan D, Kim JS, et al. Phosphotyrosyl peptides block STAT32mediated DNA binding activity, gene regulat ion, and cell t ransfo rmat ion [J ]. JBio l Chem, 2001, 276 (48) : 45443- 45455.
    37. Rahaman SO , Harbo r PC, ChernovaO , et al. Inh ibition of const itut ively active STA T3 supp resses p roliferat ion and induces apop to sis in glioblastoma multiforme cells [J ]. O ncogene, 2002, 21 (55) : 8404 -8413.
    38. 唐凤鸣,STAT3 对肿瘤细胞分化增殖及抗凋亡的调节.泸州医学院学报.2003 年第 26 卷第 3 期.270-271.
    39. Stev A , Benjamin B. Rituximab inactivates STAT3 activity in B- Non - Hodgkin ’ s Lymphoma through inhibition of the interleukin l0 autocrinePparactine loop and results in down - regulation of Bcl - 2 and senstivation to cytotoxic drugs [J ] . Cancer Re , 2001 July1 ; 61 : 5137.
    40. Bromberg JF, W rzeszczynskaMH, Devgan G, et al.STAT3 as an oncogene [J ]. Cell, 1999, 98 (3) : 295-303.
    41. B romberg J. Stat p ro teins and oncogenesis[J ]. J Clin Invest, 2002,109 (9) : 1139- 1142.
    42. Wang Lixia , Zheng Mingxue. Regulation and detecting methods of cell apoptosis. Journal of Animal Science and Veterinary Medicine .Vol. 26 No. 2 2007.40-42.
    43. Angell JE, Lindner DJ, Shapiro PS, Hofmann ER, Kalvakolanu DV. Identification of GRIM-19, a novel cell death-regulatory gene induced by the interferon-beta and retinoic acid combination,using a genetic approach. J Biol Chem 2000;275:33416-33426.
    44. Fearnley, I. M., J. Carroll, R. J. Shannon, M. J. Runswick, J. E. Walker, and J. Hirst. 2001. Grim-19, a cell death regulatory gene product, is a subunit of bovine mitochondrial NADH:ubiquinone oxidoreductase (complexi). J. Biol.Chem. 276:38345–38348.
    45. Chidambaram, N. V., J. E. Angell, W. Ling, E. R. Hofmann, and D. V. Kalvakolanu. 2000. Chromosomal localization of human GRIM-19, a novelIFN-beta and retinoic acid-activated regulator of cell death. J. Interferon Cytokine Res. 20:661–665.
    46. Lindner, D. J., E. C. Borden, and D. V. Kalvakolanu. 1997. Synergistic antitumor effects of a combination of interferons and retinoic acid on human tumor cells in vitro and in vivo. Clin. Cancer Res. 3:931–937.
    47. Lotan, R., M. I. Dawson, C. C. Zou, L. Jong, D. Lotan, and C. P. Zou. 1995.Enhanced efficacy of combinations of retinoic acid- and retinoid X receptorselective retinoids and alpha-interferon in inhibition of cervical carcinoma cell proliferation. Cancer Res. 55:232–236.
    48. Moore, D. M., D. V. Kalvakolanu, S. M. Lippman, J. J. Kavanagh, W. K.Hong, E. C. Borden, M. Paredes-Espinoza, and I. H. Krakoff. 1994. Retinoic acid and interferon in human cancer: mechanistic and clinical studies. Semin. Hematol. 31:31–37.
    49. Hofmann, E. R., M. Boyanapalli, D. J. Lindner, X. Weihua, B. A. Hassel, R.Jagus, P. L. Gutierrez, D. V. Kalvakolanu, and E. R. Hofman. 1998. Thioredoxinreductase mediates cell death effects of the combination of beta interferon and retinoic acid. Mol. Cell. Biol. 18:6493–6504.
    50. Yu H, Jove R. The STATs of cancer--new molecular targets come of age. Nat Rev Cancer 2004;4:97-105.
    51. Frank DA. StAT signaling in cancer: insights into pathogenesis and treatment strategies. Cancer Treat Res 2003;115:267-291
    52. Kumar, A., M. Commane, T. W. Flickinger, C. M. Horvath, and G. R. Stark. 1997. Defective TNF-_-induced apoptosis in STAT1-null cells due to low constitutive levels of caspases. Science 278:1630–1632.
    53. Hirano T,Ishihara K,Hibi M. Roles of STAT3in mediating the cell growth,differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene,2000,19(21):2548.
    54. Alonzi T,Maritane D,Gorgoni B,et al. Essential Role of STAT3 in the control of the acute-phase response as revealed by inducible gene inactivation in the liver. Mol Cell Biol,2001,21(5):1621.
    55. Decker T,Kovarik P.Serine phosphorylation of STATs. Oncogene,2000,19(21):2628.
    56. Chengchen Lufei, Jing Ma,Guochang Huang,Tong Zhang,Veronica Novotny-Diermayr,Chin Thing Ong and Xinmin Cao. GRIM-19,a death-regulatory gene product,suppresses Stat3 activity via functional interaction. The EMBO Journal Vol. 22 No. 6 pp. 1325±1335, 2003.
    57. Zhang J, Yang J, Roy SK, Tininini S, Hu J, Bromberg JF,Poli V, Stark GR, Kalvakolanu DV. The cell death regulator GRIM-19 is an inhibitor of signal transducer and activator of transcription 3. Proc Natl Acad Sci USA 2003;100:9342-9347.
    58. Huang G, Lu H, Hao A, Ng DC, Ponniah S, Guo K, Lufei C,Zeng Q, Cao X. GRIM-19, a cell death regulatory protein, is essential for assembly and function of mitochondrial complex I.Mol Cell Biol 2004;24:8447-8456
    59. Nicolas Barnich, Tadakazu Hisamatsu, Jose E. Aguirre et al. GRIM-19 Interacts with Nucleotide Oligomerization Domain 2 and Serves as DownstreamEffector of Anti-bacterial Function in Intestinal Epithelial Cells*. The Journal of biological chemistry Vol. 280, No. 19, Issue of May 13, pp. 19021–19026.
    60. Burysek, L., and P. M. Pitha. 2001. Latently expressed human herpesvirus 8-encoded interferon regulatory factor 2 inhibits double-stranded RNA-activated protein kinase. J. Virol. 75:2345-2352.
    61. Li, M., H. Lee, J. Guo, F. Neipel, B. Fleckenstein, K. Ozato, and J. U. Jung. 1998. Kaposi's sarcoma-associated herpesvirus viral interferon regulatory factor. J. Virol. 72:5433-5440.
    62. Lubyova, B., and P. M. Pitha. 2000. Characterization of a novel human herpesvirus 8-encoded protein, vIRF-3, that shows homology to viral and cellular interferon regulatory factors. J. Virol. 74:8194-8201.
    63. Rivas, C., A. E. Thlick, C. Parravicini, P. S. Moore, and Y. Chang. 2001. Kaposi's sarcoma-associated herpesvirus LANA2 is a B-cell-specific latent viral protein that inhibits p53. J. Virol. 75:429-438.
    64. Taegun Seo,1 Daeyoup Lee,1 Young Sam Shim et al.Viral Interferon Regulatory Factor 1 of Kaposi’s Sarcoma-Associated Herpesvirus Interacts with a Cell Death Regulator, GRIM19, and Inhibits Interferon/Retinoic Acid-Induced Cell Death. Journal of virology, Sept. 2002, p. 8797–8807
    65. X. Zhang, M. S. Choe, J. E. Lee, S. Muller, M. Tighiouart, A. Rogatko, B. S. Glisson, Z. Chen, F. R. Khuri and D. M. Shin . GRIM-19 expression and its correlation with clinical outcomes of an induction chemotherapy for patients with locally advanced squamous cell carcinoma of the head and neck (SCCHN). Journal of Clinical Oncology, 2005 ASCO Annual Meeting Proceedings.Vol 23, No 16S (June 1 Supplement), 2005: 5519.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700