用户名: 密码: 验证码:
基于噪声特性的电子倍增CCD最佳工作模式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从微光成像系统的特点可知,微光图像与一般的可见光图像不同,它是经过多次光电转换和电子倍增而形成的。由于输入照度低和背景差,系统所获取的光学信息十分微弱,使得输出图像画面上叠加有明显的随机闪烁噪声。照度越低,噪声表现越严重。另外,相对于高照度时的图像,低照度下的微光图像对比度与亮度同时下降,因而所获取的视频信息具有很低的信噪比,由此产生的输出图像没有足够的分辨率和对比度,不利于观察识别。因此,噪声是制约微光成像系统极限工作性能的关键因素。为了提高系统的成像质量,使其工作在最佳状态,有必要对其噪声特性进行深入研究,从而达到提高信噪比,提升视觉效果,增加作用距离,优化系统性能的目的。电子倍增CCD作为新型的微光成像器件,其低噪声、高灵敏度、高动态范围的特点决定了它在微光成像领域具有很大的发展潜力和应用前景。研究电子倍增CCD的噪声特性有助于深刻认识成像过程中的噪声规律,从而找到降低图像噪声,提高成像质量的具体技术途径和有效方法,进一步改善电子倍增CCD成像系统的性能,使其工作在最佳模式。
     本文从电子倍增CCD的工作原理出发,详细讨论了电子倍增CCD各种噪声成分的产生机理,包括光子散粒噪声、暗电流噪声、时钟感生电荷噪声和读出噪声,分析了电子倍增CCD特有的噪声参数——噪声因子,并给出了其极限理论值,从而定量描述了电子倍增CCD倍增寄存器的输入输出特性以及在信号倍增过程中引入的额外噪声,建立了电子倍增CCD的总噪声数学模型,为深入研究电子倍增CCD的噪声特性打下了基础。
     所有成像器件都有其对应的工作模式,根据器件的设计和制造工艺,应选取合适的工作模式使器件工作在最佳状态。本文基于电子倍增CCD的噪声特性,深入研究了暗电流和时钟感生电荷在不同工作模式下的表现,以暗电流噪声和时钟感生电荷噪声的总和作为选择器件工作模式的依据,结合具体的器件参数分别模拟了不同工作模式下电子倍增CCD的噪声特性,最终以积分时间为临界条件确定了电子倍增CCD的工作模式。该方法为电子倍增CCD工作模式的选取提供了切实可靠的理论依据,有助于深入理解电子倍增CCD的工作状态并设计高性能的器件。
     在电子倍增CCD中,信号电荷获得增强的同时暗电流也被放大了,因此控制暗电流水平对电子倍增CCD来说非常重要。本文运用Shockly-Read-Hall理论解释了非反转模式下电子倍增CCD表面暗电流的产生过程,定量描述了表面暗电流的恢复特征时间,在此基础上提出了周期反转模式的概念,通过时钟调制使电子倍增CCD周期性地工作在反转和非反转模式,动态地抑制了电子倍增CCD的表面暗电流,进一步提高了电子倍增CCD成像系统的探测灵敏度和信噪比,使电子倍增CCD工作在最佳模式。该模式还简化了电子倍增CCD的制造工艺,降低了加工难度,对提高系统的探测灵敏度和信噪比有着重要的意义。
     信噪比是表征电子倍增CCD极限探测特性的重要参数。本文根据线性系统信噪比理论分析了电子倍增CCD的极限探测性能,建立了不开增益和增益为无穷大时电子倍增CCD的信噪比极限理论模型,并对电子倍增CCD的信噪比模型进行了简化,根据积分时间的长短分为不同的噪声主导区域,讨论了像素合并模式对电子倍增CCD信噪比特性的影响,比较了ICCD与电子倍增CCD的信噪比特性,评价了两种微光成像系统的极限探测性能,更好地指导这两种微光成像系统的实际应用。
     针对科学应用的需要,本文对电子倍增CCD成像系统性能参数的测试方法进行了研究。将针对普通CCD的光子-噪声传递技术加以改进,建立了新的理论模型,提出了电子倍增CCD成像系统特有的性能参数的测量方法。在理论研究的基础上,搭建实验平台完成了电子倍增CCD成像系统性能参数的测试,包括转换增益、满阱、倍增增益、读出噪声、暗电流噪声、时钟感生电荷噪声和噪声因子等。实验结果与实际指标一致,取得了较好的效果,实现了电子倍增CCD各类噪声成分的分离测量,解决了一直以来困扰广大科研工作者的噪声分离测量的难题。
From the low light level imaging system features we can see, low light level images are different from visible light images. They repeatedly experience photoelectric conversion and electron multiplying. Since the low illumination and poor background, the optical informantion obtained by the system is very weak. For this reason, the output image is accompanied by evident random flicker noise. The lower the illumination, the higher the noise. Besides, the contrast and brightness of low light level images decrease so that the signal to noise ratio and resolution of the output image are low. It is difficult to observe and recognize. Therefore, Noise is a key factor which constraints the limit performance of low light level imaging systems. In order to improve the image quality of the system and achieve the optimum condition, it is necessary to study the noise characteristics of the system. Then we can inprove the signal to noise ratio, enhance the visual effect, increase the range of visibility and optimize the system performance. The electron multiplying CCD is a new type of low light level imaging device. Due to its low noise, high sensitivity and high dynamic range, the electron multiplying CCD has great development potential and application prospects. Studying the noise characteristics of electron multiplying CCDs contributes to a profound understanding of the noise laws in the imaging process, thus lowering image noise, enhancing image quality, further improving the imaging performance of the electron multiplying CCD and making it work at the optimum mode.
     In this paper, we start with the working principle of the electron multiplying CCD. Various noise components of the electron multiplying CCD and their generating mechanism are discussed in detail, including photon shot noise, dark current noise, clock induced charge noise and readout noise. Noise factor of the electron multiplying CCD is discussed and its theoretical value is shown. The noise factor quantitatively describes input and output characteristics of the electron multiplying register and the additional noise introduced by signal multiplication process. A mathematical model of total noise of the electron multiplier CCD is established. This chapter lays a foundation for further study in the noise characteristics of electron multiplying CCD.
     All the imaging devices have their corresponding operating mode. According to the device design and manufacturing process, selecting an appropriate operation mode will make the device work at the best condition. Based on the noise characteristics of the electron multiplying CCD, the performance of dark current and clock induced charge at different operating modes are studied. The sum of dark current noise and clock induced charge noise is taken as a selection basis of the operation mode of the device. The noise performances of the electron multiplying CCD at different working modes are simulated through specific device parameters. The integration time is taken as the critical condition to determine the operation mode of the electron multiplying CCD. This method provides a practical and reliable theoretical basis for the operation mode selection of the electron multiplying CCD. It also contributes to a better understanding of the working condition and to design high performance devices.
     In the electron multiplying CCD, signal charge and dark current are amplified at the same time. Therefore, it is important to control the dark current level. Shockley-Read-Hal theory is applied to describe the generation progress of surface dark current. Recovery characteristic time of surface dark current is described through a quantitative analysis. Periodic inverted mode is proposed based on the timing character. The electron multiplying CCD periodically switches from inverted mode to non-inverted mode by clock modulation. Then the surface dark current of the electron multiplying CCD is suppressed dynamically. The detection sensitivity and signal to noise ratio of the electron multiplying CCD are further improved and the device operates at the optimum mode. This mode simplifies the manufacturing process of the electron multiplier CCD and reduces the processing difficulty. It is of important significance for improving the detection sensitivity and signal to noise ratio of the system.
     Signal to noise ratio is an important parameter for characterizing the limit detection characteristic of the electron multiplying CCD. Based on the signal to noise ratio theory of the linear system, the limit detection performance of the electron multiplying CCD is analyzed. Signal to noise ratio limit theoretical models of the electron multiplying CCD is established separately when the gain is zero or infinite. According to the length of integration time, signal to noise ratio models of the electron multiplying CCD are simplified and divided into different noise leading areas. The effects of pixel binning on the signal to noise ratio of the electron multiplying CCD are discussed. Signal to noise ratio performances of the ICCD and electron multiplying CCD are compared and the limit detection characteristics of two kinds of low light level imaging systems are evaluated. It is usefull for better guiding the practical applications of these two kinds of low light level imaging systems.
     Taking into account the need of scientific applications, the performance parameters test of the electron multiplying CCD imaging system is studied. Based on the photon transfer technique of the CCD, we make improvement and establish a new theoretical mode. A measurement method of specific performance parameters of the electron multiplying CCD is proposed. At the basis of theoretical research, an experimental platform is built to complete the parameters test of the electron multiplying CCD imaging system, including convert gain, full well, multiplication gain, resdout noise, dark current noise, clock induce charge noise, noise factor and so on. This method enables the measurement of various noise components of the electron multiplying CCD. The experimental results are really good and agree with the datasheet. It solves the problems which have troubled the scientists for many years.
引文
[1]周立伟.夜视技术述评.光学技术,1995,增刊:1-18.
    [2]张伟伟,雷隽,郑云飞.微光夜视仪技术及其应用.科技资讯,2006,(29):14~15.
    [3]张鸣平,张敬贤,李玉丹.夜视系统.北京:北京理工大学出版社,1993.
    [4]艾克聪.微光夜视技术的进展与展望.应用光学,2006,27(4):303~307.
    [5]李秦.微光噪声测试分析方法及技术研究[硕士学位论文].南京理工大学,1998.
    [6]韩卫华,钱光弟.CCD图像传感器新技术与发展方向.声屏世界,2007,(2):70~71.
    [7]许飞,王学飞,徐玉龙.CCD相机的数据采集与实时处理.软件导刊,2009,8(8):116~117.
    [8]刘继琨,赵宝芸.增强型CCD图像传感器.半导体光电,1998,19(1):37~39.
    [9]宋述燕,陈波.新型图像传感器ICCD的原理及应用.机械与电子,2007(29):436~437.
    [10]李震,宋航,邹永星.CCD图像传感器在微光电视系统中的应用.传感器世界,2004,(6):35~37.
    [11]李才平,邹永星,杨松龄.基于微光与红外的夜视技术.国外电子元器件,2006,(2):72~75.
    [12]张振中,李其祥.微光夜视技术的发展及评价.山西科技,2007,(3):110~124.
    [13]周立伟.光电子成像:走向新的世纪.北京理工大学学报,2002,22(1):1-12.
    [14]金伟其,刘广荣,王霞,等.微光像增强器的进展及分代方法.光学技术,2004,30(4):460~466.
    [15]向世明.三代微光和超二代微光夜视技术的研究和开发.应用光学,1994,15(2):1~16.
    [16]骆冠平,何开远,王志宏,等.二代微光像增强器的发展与应用.红外技术,2000,22(2):7-10.
    [17]徐江涛,张兴社.微光像增强器的最新发展动向.应用光学,2005,26(2):21-23.
    [18]姜德龙,吴奎,王国政,等.基于BCG-MCP的四代微光像增强技术.红外技术.2003,25(6):45~48.
    [19]王丽,尚晓星,王瑛.微光夜视技术的新进展.河南科技学院学报(自然科学版),2007,35(3):91~93.
    [20]陈庆佑.微光夜视技术进展简介.真空电子技术,2001,(1):32~35.
    [21]周立伟.关于微光像增强器的品质因数.红外与激光工程,2004,33(4):331~337.
    [22]RICHARDSON D. Technology for tomorrow's night vision. Armada International,1997, (4):32~37.
    [23]谢剑锋,王英瑞.微光CCD成像器件性能比较研究.红外与激光工程,2006,35(增刊):64~67.
    [24]程开富.微光摄像器件的发展趋势.电子元器件应用,2004,6(10):7-16.
    [25]周立伟,刘广荣,高稚允,等.用于微光摄像的高灵敏度电子轰击电荷耦器件.中国工程科学,1999,3(1):56~62.
    [26]WILLIAMS M J, REINHEIMER A L, JOHNSON C B, et al. Back-illuminated and electronbombarded CCD low light level imaging system performance. Proc. SPIE,1995, 2551:208~223.
    [27]DALINENKO I N, KOSSOV V G, LAZOVSKY L Y, et al. Design and fabrication technology of thinned backside excited CCD imagers and the family of the intensified electron-bombarded CCD image tubes. Proc. SPIE,1995,2551:197~205.
    [28]刘广荣,左昉,周立伟,等.EBCCD的增益及信噪比研究.光学技术,2002,28(2):120~122.
    [29]左昉,刘广荣,高稚允,等.用于微光成像的BCCD, ICCD, EBCCD性能分析.北京理工大学学报,2002,22(1):109~112.
    [30]杨承,朱大勇.EBCCD等几种常见成像器件的分析及比较.仪器仪表学报,2005,26(8):275~276.
    [31]刘广荣,周立伟,王仲春,等.背照明CCD微光成像技术.红外技术,2000,22(1):8-12.
    [32]BRYUKHNEVITCH G I. Picosecond image converter tubes incorporated with EBCCD readout. Proc. SPIE,1992,1655:94~105.
    [33]Dunham M E, Donaghue D W, Schempp W V, et al. Performance factors for intensified CCD system. Proc. SPIE,1992,1655:66~73.
    [34]HYNECEK J. Impactron--a new solid state image intensifier. IEEE Transaction on Electron Devices,2001,48(10):2238~2241.
    [35]DENVIR D J, CONROY E. Electron Multiplying CCD Technology:The new ICCD, Proc. SPIE,2003,4796:164~174.
    [36]张灿林,陈钱,周蓓蓓.高灵敏度电子倍增CCD的发展现状.红外技术,2007,29(4):192~195.
    [37]苏学征.EMCCD技术——单光子水平的成像探测.现代科学仪器,2005,(2):51~53.
    [38]魏继锋,张凯.光子成像计数技术及其新进展.光电探测,2007,44(7):27~32.
    [39]陈闽,杨胜杰.电子倍增CCD微光传感器件性能及其应用分析.电光与控制,2009, 16(1):47-50.
    [40]iXonEM+EMCCD Camera:Back-illuminated EMCCD Cameras. Andor Technology. http://www.andor.com/scientific_cameras/ixon/
    [41]Newton EMCCD and CCD Cameras:A New Approach to Spectroscopy. Andor Technology. http://www.andor.com/scientific_cameras/newton/
    [42]LucaEM EMCCD Camera:The latest imaging innovation from the EMCCD experts. Andor Technology. http://www.andor.com/scientific_cameras/luca/
    [43]冯志伟,程灏波,宋谦,等.电子倍增电荷耦合器件的调制传递函数测量.光学学报,2008,28(9):1171~6171.
    [44]段帷,赵昭旺.基于EMCCD的成像系统的构建.天文研究与技术(国家天文台台刊),2006,3(4):387~393.
    [45]张涛.EMCCD与USB的整合[硕士学位论文].中国科学院研究生院(云南天文台),2008.
    [46]许武军,李建伟,危峻,等.电子倍增CCD在天基空间监视中的应用.科学技术与工程,2006,6(1):42~44.
    [47]许武军,曾艳,危峻,等.微光视觉CCD在卫星云图观测中的应用.上海航天,2006,(3):28~31.
    [48]马晓燠,饶长辉,张学军.三种光电器件用于天体光度测量时的性能比较.光学学报,2007,27(5):882~888.
    [49]龚德铸,王立,卢欣.微光探测EMCCD在高灵敏度星敏感器中的应用初探.红外与激光工程,2007,36(增刊):534~539.
    [50]刘霞.基于EMCCD探测器的X射线数字成像系统的研制[硕士学位论文].中北大学,2007.
    [51]郭文斌.EMCCD图像处理系统及应用技术研究[硕士学位论文].中北大学,2008.
    [52]陈晨,许武军,翁东山,等.电子倍增CCD噪声来源和信噪比分析.红外技术,2007,29(11):634-637.
    [53]唐红民,魏宏刚,廖胜.电子倍增CCD(EMCCD)的噪声特性分析.应用光学,2009,30(3):386~390.
    [54]张伟,汪岳峰,雷鸣.像增强器三维噪声测试技术.军械工程学院学报,2002,14(1):29~32.
    [55]李升才,金伟其,张长泉.微光成像系统三维噪声测量及其分析.北京理工大学学报,2005,25(5):439~442.
    [56]李升才,徐宗昌,肖顺旺.微光增强型电荷耦合装置成像系统三维噪声模型及其测量分析.兵工学报,2006,27(3):463~466.
    [57]胡立茂.红外与微光图像噪声处理及硬件实现[硕士学位论文],南京理工大学,2004.
    [58]DENVIR D J, CONROY E. Electron Multiplying CCDs. Proc. SPIE,2003,4877:55~68.
    [59]JERRAM P, POOL P, BELL R, et al. The LLLCCD:Low Light Imaging without the need for an intensifier. Proc. SPIE,2001,4306:178~186.
    [60]DENVIR D J, COATES C G. Electron Multiplying CCD Technology:Application to Ultrasensitive Detection of Biomolecules. Proc. SPIE,2002,4626:502~512.
    [61]POOL P J, MORRIS D G, BURT D J. Application of electron multiplying CCD technology in space instrumentation, Proc. SPIE,2005,5902:1~6.
    [62]MACKAY C, BASDEN A, BRIDGELAND M. Astronomical imaging with L3CCDs: detector performance and high-speed controller design. Proc. SPIE,2004,5499:203~209. [63] SMITH D R, WALTON D M, HOLLAND A D, et al.. EMCCDs for space applications. Proc. SPIE,2004,6276:985~991.
    [64]VREE G A, WESTRA A H, MOODY I, et al.. Photon-counting gamma camera based on an electron-multiplying CCD. IEEE Transactions on Nuclear Science,2005,52(3):580~588.
    [65]COATES C G, DENVIRA D J, MCHALE N G, et al.. Ultra sensitivity, speed and resolution:optimizing low-light microscopy with the back-illuminated electron multiplying CCD. Proc. SPIE,2003,5139:56~66.
    [66]Smith D R, Ingley R, Holland A D. Proton irradiation of EMCCDs. IEEE Transactions on Electron Devices,2006,53(2):205~210.
    [67]韩露,熊平.EMCCD工作原理及性能分析.传感器世界,2009,(5):24~28.
    [68]JERRAM P A, POOL P J, BURT D J, et al.. Electron Multiplying CCDs. SNIC Symposium, Stanford, California-3-6 April 2006,0019:1~5.
    [69]L3VisionTM Sensors:CCD97-00 Back Illuminated 2-Phase IMO Series Electron Multiplying CCD Sensor. E2V Technologies. http://www.e2v.com/assets/media/files/documents/imaging-13vision/CCD97.pdf
    [70]李云飞,司国良,郭永飞.科学级CCD相机的噪声分析及处理技术.光学精密工程,2005,13(S1):158~163.
    [71]许秀贞,李自田,薛利军.CCD噪声分析及处理技术.红外与激光工程,2004,33(4):343~357.
    [72]马俊婷,李仰军,郝晓剑.科学级CCD相机的噪声分析和信号处理.华北工学院学报,2001,22(2):83~86.
    [73]张志伟.光电检测技术.北京:清华大学出版社,2005.
    [74]田芊,廖延彪.工程光学.北京:清华大学出版社,2006.
    [75]L3VisionTM Sensor Technical Notes:Dark Signal and Clock Induced Charge. http://www.e2v.com/module/page-357/datasheets-and-technical-notes.cfm.
    [76]白廷柱,金伟其.光电成像原理与技术.北京:北京理工大学出版社,2006.
    [77]DUSSAULT D, HOESS P. Noise performance comparison of ICCD with CCD and EMCCD cameras. Proc. SPIE,2000,5563:195~204.
    [78]STEVE B H. Handbook of CCD Astronomy. UK:Cambridge University Press,2000.
    [79]HYNECEK J, NISHIWAKI T. Excess Noise and Other Important Characteristics of Low Light Level Imaging Using Charge Multiplying CCDs. IEEE Transactions on Electron Devices,2003,50(1):239~245.
    [80]PLAKHOTNIK T, CHENNU A, ZVYAGIN A V. Statistics of single-electron signals in electron multiplying charge coupled devices. IEEE Transactions on Electron Devices,2006, 53(4):618~622.
    [81]ROBBINS M S, HAD WEN B J. The Noise Performance of Electron Multiplying Charge Coupled Devices. IEEE Transactions on Electron Devices,2003,50(5):1227~1232.
    [82]TUBBS R N. Lucky Exposures:Diffraction limited astronomical imaging through the atmosphere[Ph.D. Thesis Dissertation]. Cambridge University, UK,2003.
    [83]李刚,周彦平.CCD图像传感器件的输出噪声及其处理电路研究.电子质量,2007,(4):25~29.
    [84]杨博雄,胡新和,傅辉清,等.CCD工作信号的噪声分析与处理.光学与光电技术,2004,2(4):51~53.
    [85]佟首峰,阮锦,郝志航.CCD图像传感器降噪技术的研究.光学精密工程,2000,8(2):140~145.
    [86]李艺琳,冯勇,安澄全.用相关双采样技术提高CCD输出信号的信噪比.电测与仪表,1999,36(5):31~32.
    [87]焦斌亮,王利刚,常丹华.CCD降噪技术的理论分析.菏泽师专学报,2002,24(4):8-23.
    [88]包军林,庄奕琪,杜磊,等.光电耦合器件l/f噪声和g-r噪声的机理研究.光子学报,2005,34(6):857~860.
    [89]DAIGLE O, GACH J L, GUILLAUME C, et al.. L3CCD results in pure photon counting mode. Proc. SPIE,2004,5499:219~227.
    [90]方如章,刘玉风.光电器件.北京:国防工业出版社,1988.
    [91]顾祖毅,田立林,富力文.半导体物理学.北京:电子工业出版社,1995.
    [92]程开富.帧转移虚相CCD的发展现状.光电子技术,1995,15(3):183~189.
    [93]张坤.高帧速CCD摄像器件的设计.红外与激光工程,1999,28(2):58~61.
    [94]张坤,李仁豪.埋沟CCD器件工作状态的设计.半导体光电,2000,21(S1):49~52.
    [95]EMCCD Technology-Optimizing Impact Ionization. Andor Technology. http://www.andor-tech.com
    [96]余宁.天文CCD的技术现状与发展.天文学进展,1991,9(1):69~77.
    [97]HYNECEK J. Virtual phase CCD technology. IEEE Electron Devices Meeting,1979,25: 611~614.
    [98]SAKS N S. A technique for suppressing dark current generated by interface states in buried channel CCD imagers. IEEE Electron Device Letter,1980,1(7):131~133.
    [99]BURKE B E. Suppressing dark current in charge-coupled devices. United States Patent 5008758.
    [100]JORDEN P R, POOL P, TULLOCH S M. Secrets of E2V Technologies CCDs(ex Marconi CCDs). Experimental Astronomy,2002,14(2):69~75.
    [101]刘恩科,朱秉升,罗晋生.半导体物理学(第7版).北京:电子工业出版社,2008.
    [102]Donald A. Neamen著.赵毅强,姚素英,解晓东等译.半导体物理与器件(第三版).北京:电子工业出版社,2005.
    [103]BURKE B E, GAJAR S A. Dynamic suppression of interface-state dark current in buried-channel CCDs. IEEE Transaction Electron Devices.1991,38(2):285~290.
    [104]ONG D W, PIEERET R F. Thermal carrier generation in Charge-Coupled Devices. IEEE Transaction Electron Devices,1975,22(8):593~602.
    [105]周斌,刘秉琦,满波.微光像增强器图像传递信噪比的测试研究.应用光学,2004,25(5):60~66.
    [106]邹异松.电真空成像器件及理论分析.北京:国防工业出版社,1989.
    [107]向世明.微光像增强器信噪比理论极限问题研究.应用光学,2008,29(5):724~726.
    [108]王吉晖,白廷柱,金伟其,等.像增强器信噪比测试方法的分析与研究.光学技术,2005,31(2):177-178.
    [109]DAVID D, PAUL H. Noise performance comparison of ICCD and EMCCD cameras. Proc. SPIE,2004,5563:159~204.
    [110]王书宏,胡谋法,陈曾平.天文CCD相机的噪声分析与信噪比模型的研究.半导体光电,2007,28(5):731~734.
    [111]Digital Camera Fundamentals. Andor Technology. http://www.andor.com/pdfs/Digital%20Camera%20Fundamentals.pdf
    [112]LucaEM S 658M. Andor Technology. http://www.andor.com/pdfs/specs/luca_s.pdf
    [113]闫丰,于子江,于晓,等.电晕探测紫外ICCD相机图像噪声分析与处理.光学精密工程,2006,14(4):709~713.
    [114]王加朋,王淑荣,李福田,等.空基紫外成像仪关键器件ICCD非均匀性校正技术.光学精密工程,2007,15(9):1353~1360.
    [115]祝永坚.微光景象匹配基准图生成技术研究[博士学位论文].南京理工大学,2007.
    [116]尚媛园,关永,张伟功,等.CCD固体成像器件性能测试方法的研究.光学学报,2008,28(专刊):317~322.
    [117]李彬华,魏名智,叶彬浔,等.KAF-4301ECCD在低温下微光成像特性的实验研究.光学技术,2006,32(1):3-7.
    [118]李彬华,叶彬浔.CCD相机读出噪声、电荷转移效率的测试和归算的改进方法.天文研究与技术(国家天文台台刊),2005,2(3):177~185.
    [119]宋谦,季凯帆,曹文达.天文用电荷耦合器件的实验室检测.天体物理学报,1999,19(3):333~337.
    [120]JANESICK J R. Scientific charge coupled devices. USA:SPIE Press,2001.
    [121]DEWEERT M J. Photon transfer methods and results for electron multiplication CCDs. Proc. SPIE,2004,5558:248~259.
    [122]HYTTI H T. Characterization of digital image noise properties based on RAW data. Proc. SPIE,2006,6059:1~12.
    [123]JANESICK J R. CCD transfer method-standard for absolute performance of CCDs and digital CCD camera systems. Proc. SPIE,1997,3019:70~102.
    [124]吴建文,禅野孝广,姚永强.天文选址相机的研制.天文学报,2004,45(2):220~227.
    [125]吴光节.CCD图像暗场拍摄与处理.云南天文台台刊,1997,(3):82~87.
    [126]丁晓华,李由,于起峰.CCD噪声标定及其在边缘定位中的应用.光学学报,2008,28(1):99~104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700