用户名: 密码: 验证码:
成像光谱相似矿物识别及其矿物填图的不确定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
成像光谱遥感技术利用超高的光谱分辨率能够对地物进行连续的光谱成像,近年来在大气科学、生态、地质、水文和海洋等领域发挥着巨大的作用,特别是在地质领域的矿物识别和矿物填图方面尤为成功。但是,对于一些物化属性和光谱特征都十分相近的矿物的区分结果一直不是很理想;另外,成像光谱矿物填图受多种因素影响存在不确定性。在成像光谱矿物填图工程化应用中,空间分辨率和光谱分辨率的变化极大地影响和制约着工程化的实施。本文利用澳大利亚HyMap成像光谱数据,就上述方面的内容做了一些尝试性的分析和讨论,具体的章节内容分布如下:
    第一章和第二章简述了论文的选题意义及工作方法路线等,综述了成像光谱矿物区分、光谱重建的研究现状和理论方法以及成像光谱矿物填图的不确定。第三章重点讨论了成像光谱遥感技术解决相似矿物的区分问题。相似矿物因其相近的物理化学属性和光谱特征而在光谱层面利用单一方法不能很好区分。本章首先利用新疆东天山研究区原有的矿物填图结果进行了精度评价,通过对研究区的几条剖面进行成像光谱数据分析、野外PIMA光谱分析和室内岩矿鉴定等综合评价后,选取合适的尺度标准,经验性地总结了成像光谱矿物填图的填绘强度和填绘矿物的丰度之间的线性关系,探索矿物填图精度与矿物的“检出限”之间的关系。同时结果发现虽然其它填绘矿物的精度较好,但在绿泥石与绿帘石、伊利石与白云母等相似矿物的区分上仍然存在不少混淆和误判的现象。
    然后通过分析相似矿物的几种表现形式,再根据成像光谱的数据特征,采用针对性的方法对相似矿物进行区分。具体内容包括:①分析了造成矿物填图结果混淆的几种矿物形式的影响,主要是矿物的类质同象、同质多象以及混合矿物等;②成像光谱数据具有数据复杂、波段间相关性高以及存储海量等特点,导致一些分析方法受到限制,甚至造成分析结果变坏。本文在总结前人研究的基础上提出利用“Separating”思想进行数据分析,对数据按照矿物光谱特征进行分块处理,以此来减少数据间的相关性,提高处理速度;对一种方法处理后的数据进行分离,掩膜结果以外的数据,明确处理的方向,消除周边数据可能带来的影响。③采用基于改进的独立组分分析(ICA)矿物分类方法(针对混合矿物和相似矿物)、比值分析方法(针对相似矿物)和相似度分析(针对相似矿物)等相结合的方法,利用适当的组合方式及应用次序,针对性地解决相似矿物区分的问题。
    第四章主要分析了成像光谱矿物填图的不确定和影响因素的敏感性。光谱重建是整个成像光谱矿物填图的关键环节。论文首先通过几种大气校正和光谱重建方法的结果分析讨论了它们给填图结果造成的影响。然后论文采用图像模拟的方法,重点讨论了空间分辨率变化、空间分辨率和光谱分辨率联合变化对成像光谱矿物填图的影响。最后,利用一组模拟的图像的填图结果,通过多元线性分析统计模型和判别分析模型定量地分析了空间分辨率和光谱分辨率对矿物填图的敏感性,得出它们对成像光谱矿物填图的影响程度。
With continuously imaging and hyper-spectral resolution for targets, the RemoteSensing technology of Imaging Spectrometry plays an important role in geology,atmospheric science, ecology, hydrology and ocean. Especially, it has succeeded inminerals identification and minerals mapping of geology. However, it can not begotten a better application for minerals that the properties of physics, chemistry andspectral character are quite similar. In addition, it is uncertain because of beingaffected by a lot of factors. In course of its engineering application, the change ofspatial resolution and spectral resolution extremely affects and restricts execution ofengineering. Using the Australia's HyMap hyper-spectral data, the paper expounds theapplication analysis and discusses of identification of similar minerals, uncertaintyand sensitivity of mineral mapping. The main sections are as follows:
    In chapter one and chapter two, the paper's topic purporting and workingmethods and routes are summarily explained the and summarized, and presentresearch status and theories and methods of minerals identification of the imagingspectrometry remote sensing technology, spectral rebuilding and uncertainty ofaffecting factors are studied.
    Some questions are discussed in chapter three about how to identify similarminerals with emphasis. Because of similarly physical and chemical attributes andSpectral Characteristics, the similar minerals can not be identified in spectral levelwith single method. The chapter first analyzes precision evaluation via intrinsicminerals mapping in the research area in East Tianshan Mountains in XinjiangProvince. Via data analysis of some profiles in research area,spectral analysis of fieldspectrum of PIMA and rock-mineral identification indoor, using appropriate scale, itwas summarized that the linear relation between mapping intensity and mappingabundance of imaging spectra mineral mapping, and explores the relation between theprecision of mineral mapping and “detection limit” of mineral. Although mappingprecision of other minerals is better,chlorite and epidote, illite and muscovite areconfused and identified falsely.
     Analyzing some cases of similar minerals, the similar minerals were identifiedwith aimed methods according to imaging spectral data pattern. The contents include:first, there are many causes of mineral mapping confusion, but the major causes areisomorphism, polymorphism and mixture of minerals. Second, because imagingspectrometry data has the characteristics that the data is complex, the relativity of
    inter-band is high, and huge memory, it is impossible to analyze it with some methods.Basing of summarizing the past research findings, the pager presents a viewpoint thatcarry on data sub-blocks with “separating” according to mineral spectroscopicCharacteristics, and decreases the relativity of inter-data and increases the workingspeed. After a method is applied to imaging, spectrometry data are separated bymasking it acceptant result, analyzing content is explicated and the affecting ofsurrounding data is removed. Third, aiming at the characteristics and identifyingfactor, minerals are differentiated with based ICA mineral mapping. (Aiming atmixture minerals and similar minerals), ratio analysis (Aiming at similar minerals)and similarity measures analysis methods through appropriate combined mode andapplicable sequence.Chapter four: the uncertainty and sensitivity of affecting factors of imagingspectra mineral mapping are analyzed. Spectrum rebuilding is an important part inimaging spectrometry minerals mapping. Firstly, the influence of atmosphericcorrection and spectral rebuilding methods was discussed. Then, the paper gaveinfluence of minerals mapping which results are got from images that their spatialresolution and spectral resolution are changed. Finally, Multi-linear Statistic Analysisand Discriminant Analysis are used to analyze sensitivity of spatial resolution andspectral resolution for minerals mapping quantificationally through a set of mappingresults of simulating images and a conclusion of effect digree was given.
引文
[1] Acharya, P. K., A. Berk, G. P. Anderson, et al, 1999, MODTRAN4: multi 批 le scattering and bi-directional reflectance distribution function(BRDF) upgrades to MODTRAN, Proceedings SPIE Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research Ⅲ, 19-21 July 1999,Vol.3756
    [2] Arhunen Oja E, Wang L, et al. A class of neural networks for independent component analysis. IEEE Trans on Neural Networks, 1997, 8(3) : 486
    [3] Bateson,C. A., G. P. Asner and C. A. Wessman. Endmenber Bundles: A New Approach to Incorporation Endmenber Variability into Spectral Mixture Analusia, IEEE Trans. Geosci. Remote Sensing ,2000,38(2): 1083-1094
    [4] Berk A., Bernstein L. S. and D. C. Robertson. MODTRAN : A moderate resolution model for LOWTRAN 7 , GLTR-89-0122, Air Force Geophysics Lab. , Hanscom AFB, MA, 1989,33p
    [5] Berk, A., G. P. Anderson, L. S. Bernstern, et al.MODTRAN4 radiative transfer modeling for atmospheric correction, Procedings SPIE Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research Ⅲ, 19-21 July 1999,Vol.3756
    [6] Boardman, J. W. Post-ATREM polishing of AVIRIS apparent reflectance data using EFFORT: a lesson in accuracy versus precision, Summaries of the Seventh JPL Airborne Earth Science Workshop, JPL Publication, 1998,97-21, 1:53
    [7] Boardman,J. W. leveraging the High Dimensionality of AVIRIS Data for Improved Sub-Pixel Target Unmixing and Rejection of False Positives: Mixture Tuned Matched filtering,Summaries of the Seventh Annual JPL Airborne Earth Science Workshop, Pasadena, CA. 1998a
    [8] Boardman,J. W., F. A. Kruse and R. O. Green. Mapping Target Signature via Partial Unmixing of AVIRIS Data, Summaries of the Fifth Annual JPL Airborne Earth Science Workshop, JPL Published, 1995, 1, pp39-40
    [9] Carvalho Jr, O. A. and P. R. Menese. Spectral Correlation Mapper (SCM): an Improvement on the Spectral Angle Mapper (SAM), Ninth JPL Airborne Earth Science Workshop, JPL publication 00-18, 2000.65-74
    [10] Chapman, I. M., and D. A. Naylor. Development of a Freely-Distributed, 2005
    [11] Chen C H, Zhang X. Independent component analysis for remote sensing study. SPIE vol . 3871, 1999: 150 -155
    [12] Clark R N. Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy. Manual of Remote Sensing. New York: John Wiley & Sons Inc, 1999
    [13] Clark R. N., Swayze G. A., Gallagher A., et al. The U. S. Geological Survey, Digital Spectral Library: Version 1: 0.2 to 3.0 μm, U. S. Geological Survey, Open File Report 1993. 592-1326
    [14] Clark, R. N., T. M. Hoefen, G. A. Swayze, et al. Assessment Tool for the Detection of Amphiboles from the Libby, Montana Region, Open-File Report 03-128, U. S. Geological Survey. 2003
    [15] Clark, R.N. and G. A. Swayze. Evolution in Imaging Spectroscopy Analysis and Sensor Signal-to-Noise: An Examination of How Far We Have Come, 1996 AVIRIS Workshop Proceedings, 1996, 49-53.
    [16] Clark, R.N., T.V.V. King, M. Klejwa, G. Swayze, and N. Vergo. High Spectral Resolution Reflectance Spectroscopy of Minerals, J. Geophys Res. 1990, 12653-12680.
    [17] Clough, S. A., and M. J. Iacono. line-by-line calculation of atmospheric Fluxes and Cooling Rates, Application to Carbon-Dioxide, Ozone, Methane, Nitrous-oxide, and the Halocarbons, J. Geophis. Res. 1995,100(D8): 16519-16535.
    [18] Cloutis E. A. Hyperspectral geological remote sensing: evaluation of analytical techniques , Int. J. Remote Sensing, 1996,Vol.17, No.12, 2215-2242
    [19] Cocks J, et al. The HYMAP airborne hyperspectral sensor: The system, calbration and performance, Presented at 1st EARSEL workshop on Imaging Spectroscopy Zurich, October 1998
    [20] Comon P. Independent Component Analysis, A new concept.Signal Processing, 1994, 36 (3): 287 ~314
    [21] Conel, J. E.. Calibration of data using ground – based spectral reflectance measurement, Proceeding of Airborne Imaging Spectrometer Data Analysis Workshop, JPL Publication 1985,41, 184-185
    [22] Congalton R G, Green K. Assessing the Accuracy of Remotely Sensed Data: Principle and Practices. Lewis Publishers.1999
    [23] Crosta,A. P., C. Sabine and J. Taranik. Hydrothermal Alteration Mapping at Bodie California, Using AVIRIS Hyperspectral Data, Remote Sensing Environ. 1998, Vol.65, pp.309-319.
    [24] Duke E. F. Near infrared spectra of muscovite, Tschermak substitution, and metamorphic reaction progress: implications for remote sensing, Geology, 1994,22:621-624
    [25] Fuping Gan, Runsheng Wang, Ainai Ma. Spectral Identification Tree (SIT) for Mineral Extraction Using AVIRIS Data,The Third International Asia-Pacific Environmental Remote Sensing of the Atmosphere, Ocean, Environment, and space,23-27 October 2002, Proceeding of SPIE 2003,Vol.4897
    [26] Gao, B. C., K. B. Heidebrechi and A. F. H. Goetz. Atmospheric Removal Pragram(ATREM) Version @.0 User Guide, Center foethe Study of Earth from Space/CIRES, University of Colorado, Boulder, Colorado. 1996
    [27] Goetz A. F. H., and V. Srivastava. Mineralogical mapping in the Cuprite mining district, Navada, Proceeding of Airborne Imaging Spectrometer Data Analysis Workshop, JPL Publication 1985,85-41, 22-31.
    [28] Green A. A., Berman M., Switzer P., et al. A transformation for ordering multispectral data in terms of image quality with implications for noise removal, IEEE Trans. Geosci. Remote Sens, 1988,26(1):65-74
    [29] Green R. O., Eastwood M. L., et al. Imaging spectroscopy and the airborne visible/infrared imaging spectrometer(AVIRIS) , Remote Sens. Environ., 1998, 65:227-248
    [30] Hapke B. Bidirectional reflectance spectroscopy, 1, Theory, Journal of Geophysical Research, 1981,86: 3039-3054
    [31] Harsanyi J C, Chen-I Chang. Hyperspectral Image Classification and Dimensionality Reduction: An Orthogonal Subspace Projection Approach. IEEE Transaction on Geoscience and Remote Sensing, 1994, 32(4):779~785
    [32] Harsanyi J. C. and Chang C. Hyperspectral image classification and dimensionlity reduction: an orthogonal subspace projection approach, IEEE Trans. Geosci. Remote Sens,1994,2(4):779-785
    [33] Heinz C D, Chang C I. Fully Constrained Least Squares Linear Spectral Mixture Analysis Method for Material Quantification in Hyperspectral Imagery. IEEE Trans. on Geoscience and Remote Sensing , 2001 (39) : 529~545
    [34] Hyvarinen A. Independent component analysis: A tutorial [EB/ OL]. Http: / / www. cis. hut. fi/ projects/ica/ , 2000
    [35] Hyvrinen A. Fast and robust fixed2point algorithms for independent component analysis. IEEE Trans. Neural Networks, 1999, 8(3): 622~634
    [36] Hyvrinen A. Independent component analysis: Algorithms and applications. Neural Networks , 2000 ,13 : 411~430
    [37] Kaufman, Y. J., D. Tanre, L. A. Remer, et al. Operational Remote Sensing of Tropospheric Aerosol over Land from EOS Moderate Imaging Spetroradiometer, J. Geophys. Res. 1997,102, 17051
    [38] Kruse F A, G. L. Raines, and K. Watson.Analytical techniques for extracting geologic information from multichannel airborne spectroradiometer and airborne imaging spectrometer data, Proceedings of the t Fourth thematic conference on geologic remote sensing, San Francisco, California, 1985,1-4 April, PP309-324.
    [39] Kruse F. A. and Lefkoff A. B. Knowledge-based geologic mapping with imaging spectrometers, Remote Sensing Review, 1993,8:3-28
    [40] Kruse F. A. Use of airborne imaging spectrometer data to map minerals associated with hydrothermally altered rocks in the Northern Grapevine Mountains, Nevada, and California , Remote Sens. Environ., 1988,24:31-51
    [41] Kruse F. A., and A. B. Lefkoff. Knowledge-Based Geologic Mapping with Imaging Spectrometers, Remote Sensing Reviews, 1993,8:3-28
    [42] Kruse F. A., Kiereinyoung K. S. and Boardman J. W., 1990, Mineral mapping at Cuprite, Nevada, with a 63-channel imaging spectrometer, PE & RS, 56(1):83-92
    [43] Kruse F.A., Baugh W. M. and Atkinson W. W. Mapping alteration minerals in drill core using a field spectrometer and hyperspectral image analysis techniques, Presented at the tenth thematic conference on geologic remote sensing, San Antonio, TX 9-12 may 1994 ,Ⅱ37--43
    [44] Kruse, F. A. The effects of Spatial Resolution, Spectral Resolution and Signal-to-Noise Ratio on Geologic Mapping using Hyperspectral Data, Northern Grapevine Mountain, Navada, Proceedings of 2000 AVIRIS Workshops, JPL, Pasadena, CA. 2000
    [45] Kruse, F. A. Comparison between AVIRIS and Hyperion for Hyperspectral Mineral Mapping, Proceedings of 2002 AVIRIS Workshops.2002
    [46] Lee C., and Landgrebe D. A. Analysis high-dimensional multispectral data., IEEE Trans. Geosci. Remote Sens., 1993,31(4):792-800
    [47] Lee J. B., Woodyatt S., and Berman M. Enhancement of high spectral resolution remote-sensing data by a noise-Adjust principal components transform, IEEE Trans. Geosci. Remote Sens. 1990,28(3):295-304
    [48] Meer,F. van der and W. Bakker. Cross Correlogram Spectral Matching: Application to Surface Mineralogical Mapping by Using AVIRIS Data from Cuprite, Nevada, Rem. Sens. Env. 1997, Vol.61, PP 371-382
    [49] Nascimento, J. M. P. Does Independent Component Analysis Play a Role in Unmixing Huperspectral Data, IEEE Trans. Geosci. Remote Sensing ,2005,40(1): 175-187
    [50] Nascimento, J. M. P, and J. M. B. Dias. Vertex Component Analysis: A Fast Algorithm toUnmixHypersopectralData,IEEE Trans. Geosci. Remote Sensing,2005, 43(4): 898-910
    [51] Sunshine J M and Pieters C M. Determining the composition of olivine from reflectance spectroscopy. J. Geophysic. 1998.Research, 103(E6):13675-13688
    [52] Swayze G.A, Clark R.N, Goetz A.F.H,K.E. Livo, and S.S. Sutley. Using imaging spectroscopy to better understand the hydrothermal and tectonic history of the Cuprite Mining District, Nevada, Summaries of the Seventh JPL Airborne Earth Science Workshop, January 12-16, 1998, R.O. Green editor, JPL Publication 97-21, 1:383-384,.
    [53] Tompkins S., Mustard J. F., et al. Optimization of endmembers for spectral mixture analysis , Remote Sens. Environ., 1997,59:472-489
    [54] Vermote E. F. , D. Tanre' , J. L. Deuze' , M. Herman, and J. J. Morcrette. Second Simulation of the Satellite Signal in the Solar Spectrum(6S), 6S User Guide,Version 2,NASA 1997
    [55] Winter, M. E.. N-FINDR: an Algorithm for Fast Autonomous Spectral End-member Determination in Hyperspectral Data, Proceedings of SPIE Imaging Spectrometry, 1999,Vol 3753.
    [56] Xiuping, J. and J. A. Richards. Binary Coding of Imaging Spectrometer Data for Fast Spectral Matching and Classification, Remote Sensing Environ, 1993,Vol.43, pp.47-53
    [57] Yuhas R. H., Geotz F. H. A., et al.Discrimination among semiarid landscape endmembers using the spectral angle mapper (SAM) algorithm, Summaries of the Third Annual JPL Airborne Geoscience workshop, 1 June 1992, Pasadena, CA, JPL Publication 92-14,147-149
    [58] 柏延臣.遥感信息提出的不确定性和尺度效应研究.北京:中国科学院, 2002.1-10
    [59] 陈丰,林传易,张蕙芬,等.矿物物理学概论.北京:科学出版社,1995
    [60] 陈庆林,薛永祺. OMIS 成像光谱数据信噪比的估算.遥感学报,2000,4(4):284-289
    [61] 陈述彭,童庆禧,郭华东主编.遥感信息机理研究. 北京:科学出版社,1998
    [62] 承继成,郭华东,史文中,等.遥感数据的不确定性问题.北京:科学出版社,2004.1-7
    [63] 甘甫平,王润生. 遥感岩矿信息提取基础与技术方法研究. 北京:地质出版社.2004
    [64] 甘甫平,王润生,马蔼乃.基于特征谱带的高光谱遥感矿物谱系识别.地学前缘, 2003,10(2):445-454
    [65] 葛咏,王劲峰.遥感信息的不确定性研究—误差传递模型.北京:地质出版社.2003:1-22.
    [66] 郭小方,王润生.机载成像光谱图像边缘辐射畸变校正.中国图像图形学报,2000,5(1):16-20
    [67] 胡圣武,许辉,王新洲,等. 遥感数据的模糊不确定性及其处理方法探讨.地理与地理信息科学,2004, 20(4):19-22
    [68] 姬金生.东天山康古尔塔格金矿带地质与成矿.北京:地质出版社.1994
    [69] 姜小光,唐伶俐,等.高光谱数据的光谱信息特点及面向对象的特征参数选择——以北京顺义区为例.遥感技术与应用,2002, 17(4):59-65
    [70] 矫东风,吕新彪.信息熵在甘南西部金矿预测中的应用研究.地质与勘探,2004,40(3):69-73
    [71] 李德毅,史学梅,孟海军.隶属云和隶属云发生器.计算机研究和发展, 1995,42(8):32-41
    [72] 李加宏,秦勇.应用分形几何学与小波理论对成像光谱数据进行地物识别的模型研究.遥 感技术与应用,1996, Vol.11,No.1, pp.1-6
    [73] 李小文 , 高峰 , 王锦地 , 等 . 遥感反演中参数的不确定性与敏感性矩阵 . 遥感学报,1997,1(1):5-14
    [74] 刘立柱.概率与模糊信息论及其应用.北京:国防工业出版社.2004:147-158
    [75] 刘圣伟,甘甫平,王润生. 用卫星高光谱数据提取江西德兴铜矿矿山废水的PH值污染指标. 地质通报. 2003,22(11~12):1013~1020
    [76] 刘政凯,岑曙炜. 成像光谱遥感图像的有限光谱混合分析. 环境遥感,1996 ,11(1) : 32~37
    [77] 马尔福宁(A.S. Marfunin).矿物物理学导论.北京:地质出版社,1984
    [78] 毛景文,杨建民,韩春明,等 东天山铜多金属矿床成矿系统和成矿地球动力学模型.地球科学,2002,27(4):413-424
    [79] 潘兆橹.结晶学与矿物学(第三版)上下册,北京:地质出版社,1993
    [80] 浦瑞良,宫鹏.高光谱遥感及其应用. 北京:高等教育出版社,2000
    [81] 佘丰宁,蔡启铭.主成分监督分类及其在水质特征遥感图像识别中的应用.湖泊科学, 1997 , 9(3) : 261 ~268
    [82] 史文中,王树良.GIS 数据之属性不确定性的研究.中国图像图形学报, 2001, 6(9):918-924
    [83] 史文中.空间数据误差处理的理论与方法.北京:科学出版社,1999.1-32.
    [84] 舒宁. 国内外有关成像光谱数据影像分析方法研究. 国土资源遥感,1998,(1):16~20
    [85] 唐攀科,王润生,杨苏明,等.成像光谱地物识别影响因素的不确定性浅析—以矿物识别为例.地质与勘探,2006 No.2:74-78
    [86] 唐攀科,李国斌,等. 成像光谱遥感技术及其在地质中的应用.矿产与地质,2006 No.2:160-165
    [87] 王光远,张跃.模糊随机过程分析.贵阳:贵州科技出版社,1994
    [88] 王晋年,郑兰芬,童庆禧.成像光谱图象光谱吸收鉴别模型与矿物填图研究 .环境遥感,1996,11(1):20-31
    [89] 王润民,李思楚.新疆哈密黄山东铜镍硫化物矿床成岩成矿物理化学条件.成都地质学院学报 1987 14(3):1-10
    [90] 王润生等.成像光谱方法技术开发应用研究.国土资源部“九五”重点科研项目报告,国土资源航空物探遥感中心,1999
    [91] 王润生,甘甫平.成像光谱矿物填图技术与应用示范.国家高科技研究发展计划(863 计划)课题技术报告,国土资源航空物探遥感中心,2004
    [92] 王润生,甘甫平,杨苏明,等.成像光谱技术在资源勘查中的应用研究课题技术报告,国土资源航空物探遥感中心,2005
    [93] 王中宇,夏新涛,朱坚民.测量不确定度的非统计理论.北京:国防工业出版社,2001.15-21.
    [94] 邬伦,于海龙,高振纪,等.GIS 不确定性框架体系与数据不确定性研究方法.地理学与国土 研究,2002,18(4):1-5.
    [95] 吴小培,冯焕清,周荷琴,等. 基于独立分量分析的图像分离技术及应用. 中国图像图形学报,2001 ,6 (2) :133~137
    [96] 吴昀昭.遥感地球化学研究.地球科学进展,2003,18(2):228-235
    [97] 徐希孺,2005,遥感物理.北京:北京大学出版社,2005
    [98] 杨存建,周成虎. 基于知识的遥感图像分类方法的探讨. 地理学与国土研究, 2001 ,17(1) : 72~77
    [99] 杨福生,洪波,唐庆玉. 独立分量分析及其在生物医学工程中的应用. 国外医学生物医学工程分册,2000 ,23 (3) :129~134
    [100] 余松煜, 周源华, 吴时光. 数字图象处理. 北京: 电子工业出版社, 1987
    [101] 张 海 荣 .GIS 中 数 据 不 确 定 性 研 究 综 述 . 徐 州 师 范 大 学 学 报 ( 自 然 科 学 版 ), 2001,19(4):66-68.
    [102] 张钧萍,张晔,周廷显. 成像光谱技术超谱图像分类研究现状与分析. 中国空间科学技术,2001(1) :37~41
    [103] 张宗贵,王润生.基于谱学的成像光谱遥感技术发展与应用. 国土资源遥,2000,3:16~24.
    [104] 张宗贵,甘甫平,等.新疆东天山土屋—延东地区航空成像光谱调查成果报告,中国国土资源航空物探遥感中心,2003
    [105] 张宗贵.成像光谱岩矿识别方法技术研究和影响因素分析. 国土资源遥感, 2004 (04):72-73
    [106] 赵英时.遥感应用分析原理与方法.北京:科学出版社.2003
    [107] 张良培,张立福.高光谱遥感.武汉:武汉大学出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700