用户名: 密码: 验证码:
基于智能结构的大型可展开天线在轨控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几十年来,由于通信、空间科学、地球观测事业迅猛发展,对高精度的网状展开天线的需求越来越迫切,所以大型空间网状展开天线及其反射面精度控制技术就成为大型空间天线研究的一个热门课题而受到世界各宇航公司和研究单位的关注。而振动是引起天线反射面精度下降的一个及其重要的原因。因此,必须对其振动进行控制。
     智能材料与结构的发展,为反射面振动控制问题提供了新的思路,显示出特有的生命力。因而,本文主要结合智能结构的新思想,提出了基于光纤传感器、压电作动器及H_∞混合灵敏度控制器的大型可展开天线反射面在轨振动控制的智能结构,并围绕其关键技术进行深入研究。主要工作如下:
     (1)在全面综合当前智能材料结构研究发展成果的基础上,针对可展开天线反射面在轨振动控制问题,提出了采用光纤传感器/压电作动器/H_∞控制器可展开天线纵向调整索反射面精度控制智能结构的新方案,并对其关键技术进行了设计。
     (2)通过对索网结构几何非线性的分析研究,建立了某周边桁架式可展开天线结构的非线性静力分析与动力分析计算模型,将其应用于实际天线结构的计算中,取得了合理的计算结果。
     (3)应用压电方程和弹性力学方程建立了含压电作动器的可展开天线智能结构机电耦合有限元方程及动力方程,从而,建立了含智能结构振动控制的模型。针对受控对象模型不确定性和受扰动的特点,采用H∞混合灵敏度控制方法设计控制器。
     (4)针对可展开天线中压电作动器的位置优化问题,提出了一种较为简便且有效的位置优化方法。该方法既考虑了外部激励力对候选单元位置处的响应的大小和应变能的大小,也考虑了可能配制智能结构的候选位置处作动力对响应的敏感程度。并把三者结合在一起,得到每一个单元的总的可控度指标,这个指标的最大值决定了智能结构的位置。并通过控制器仿真进行了验证。
     (5)针对可展开天线反射面振动控制智能结构中的测试问题,采用先进的光纤法珀(英文简写为F-P)传感器的传感测试技术。从光纤F-P传感器的理论模型出发,对光纤F-P传感器的应变传感机理进行了较系统的理论分析与研究。研究了使用此传感测试系统实现纵向调整索预应力及振动监测的理论和方法。设计了采用光纤法珀传感器可展开天线纵向调整索传感测试系统,建立了多模光纤传感测试系统中传感器的信噪比理论模型;完成了该测试系统的信号采集与处理部分的软硬件设计;最后对所设计的传感测试系统进行了试验标定。结果表明:该测试系统具有测试精度和灵敏度高、测试系统简单、测试性能稳定等优点。所设计的测试系统已初步具备了实验室使用的条件。
     (6)以某大型可展开天线模型为例,采用所设计的压电作动器/H_∞控制器可展开天线纵向调整索反射面精度控制智能结构系统进行了控制器仿真。仿真结果表明,所设计的控制系统能够使振动在极短的时间内得到有效抑制,且采用H_∞控制理论设计的控制器在笔者提出的传感器/作动器位置优化处控制效果最好。从而证明了本文设计的控制器的有效性和位置优化理论的正确性。采用所设计的光纤传感测试系统进行纵向调整索的静、动态特性测试,并与传统测试方法及理论值进行了对比。结果表明,基于光纤传感器纵向调整索智能结构能够准确测得调整索预应力、固有频率值及振型。
With the development of large diameter and high precision mesh shape antenna reflectors, shape precision control of antenna reflector has become one of the major developing trends of modern space technique. Because use of the control at orbit has great advantage to adapt the antenna reflector to the uncertain environment and disturbance, space organizations all over the world pay more and more attention to this promising technology. The important factor lead to the low precision is the vibration. So the vibration control is imposable.
     The development of the smart materials and structures provides a new way of thinking for shape precision control, which displays the special vitality. Therefore, combining with the thought of smart materials and structures, intelligent structure of vibration control at orbit of large deployable antenna based on fiber optic sensor, PZT actuator and H∞mixed-sensitivity control method is proposed and studied. The main work is as follows:
     (1)Based on the completely synthesizing the available research results of smart materials and structures and according to the vibration control for large deployable antenna at orbit, intelligent structure of vibration control at orbit of large deployable antenna based on fiber optic sensor, PZT actuator and H∞mixed-sensitivity control method are put forward in this dissertation.
     (2)Considered the flexible cable net deployable antenna, the nonlinear static analysis and dynamic analysis formulation of the tensegrity space structure are derived and the calculation method is presented. The dynamic properties of the structure are investigated by calculating a real example.
     (3)Using some theory of piezoelectricity function and elasticity mechanics to deduce the finite element function of antenna which includes intelligent structure element. And the dynamics function of the antenna is obtained. So the vibration control modal with intelligent structures is established. Due to the high frequency not modeling and the low frequency perturbing, Mix-up sensitive function is applied to H∞control method.
     (4)According to the problem of placement optimization for the intelligent structures in the large deployable antenna, mode analysis technology is applied to optimize placements of intelligent structures in the mesh shape with the characteristic of large size and flexibility. The strain energy and response of the out force are studied. The response of actuate force is defined. So by weighting the candidate active members strains energy and the response for out force in each mode and the response of actuator force, the information of optimal placements is obtained. A control model example is calculated with the above method.
     (5)The advanced sensing monitor technology based on fiber optic Fabry-Perot (F-P)sensors is applied to intelligent structure of vibration control at orbit of large deployable antenna. The strain sensing properties of F-P sensors are researched based on coupled-wave theory. In the mean time, the fundamental principles of sensing monitor system are reviewed, the theoretical model for measuring the tensile force and the vibration parameters through measuring strain with F-P sensors is explored. The thesis modal of Signal Noise Ratio (SNR) for sense monitor system is established. Assignment test on the sensing element of large deployable antenna is carried out. The results show that the developed strain sensors using F-P have high precision, high sensitivity, very good linearity, coincidence and simple monitor system. The experiment results indicate that it is application in laboratory.
     (6)Taking a large deployable antenna as an example, the intelligent structure system is designed and is applied on monitoring and controlling of the large deployable antenna. With the results of simulation, the H∞control method is very effective. This is a successful example that the intelligent structures vibration control by H∞control method, too. Also the experimental research with fiber optic F-P sensor in the laboratory is done. Both the theoretical and experimental study results show that the method presented in this paper can be used to monitor the tension, the natural frequency of vibration and the mode shape.
引文
[1] 王玉虎. 智能结构在可展开天线振动控制中的应用. 西安电子科技大学硕士学位论文, 2004
    [2] 任辉, 王援朝. 欧洲航天局的天线结构技术. 通信与测控, 1995, 1: 59-66
    [3] Lier P, Erik S. Study of deployed and modular antive phased-array multibeam satellite antenna. IEEE Antennas and Propagation Magazine, 2003, 45(5): 34-45
    [4] Lichod Z, Jewski F D, David C R. Inflatably deployed membrane waveguide array antenna for space. Collection of Technical Papers -AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2003, 3: 2262-2268
    [5] Misawa M. Stiffness design of deployable satellite antennas in deployed configuration. Journal of Spacecraft and Rockets, 1998, 35(3): 380-386
    [6] 牟全臣, 黄文虎, 郑钢铁等. 航天结构主、被动一体化振动控制技术的研究现状和进展. 应用力学学报, 2001, 18(3): 1-7
    [7] 黄文虎, 王心清, 张景绘等. 航天柔性结构振动控制的若干新进展. 力学进展, 1997, 27(1): 5-18
    [8] 毛剑琴, 卜庆忠, 张杰等. 结构振动控制的新进展. 控制理论与应用, 2001, 18(5): 647-652
    [9] 沈润杰, 杜设亮, 梅德庆等. 智能结构振动控制. 机电工程, 1999, 5: 125-127
    [10] 董聪, 夏人伟. 智能结构设计与控制中的若干核心技术问题. 力学进展, 1996, 26(2): 166-178
    [11] 董维杰, 孙宝元, 崔玉国等. 基于压电自感知执行器悬臂梁振动控制. 大连理工大学学报, 2001, 41(1): 77-80
    [12] 孙东昌, 王大钧. 梁振动控制的分布压电单元法. 北京大学学报(自然科学版). 1996, 32(5): 585-593
    [13] 孙东昌, 王大钧. 梁振动控制的分布压电单元法的溢出分析与仿真. 北京大学学报(自然科学版), 1997, 33(3): 305-314
    [14] 陶宝祺. 智能材料结构. 国防工业出版社. 1997
    [15] 李川, 张以漠, 丁永奎. 光纤智能结构的传感研究. 飞通光电子技术, 2001, 1(4): 193-197
    [16] Kang H K. Development of fiber optic ingress/egress methods for smart composite structures. Smart Materials and Structure, 2000, 9(2): 149-156
    [17] Kersey A D, Davis M A, Patrick H j, et al. Fiber Grating Sensor. Lightwave Technology, 1997, 15(8): 1442-1462
    [18] 黄国权. 智能材料与智能结构及其应用. 机械工程师, 2002, 6?: 9-11
    [19] Housnet G W. Structural Control: Past, Present and Future. J. Engineering Mechanics, Special Issue. 1997, 123(9): 897-971
    [20] 黄尚廉, 陶宝祺, 沈亚鹏. 智能结构系统. 中国机械工程, 2000, 11(1-2): 32-36
    [21] Eche W, Grinn S. Optical fiber grating sensor network basing on high-reliable fibers and components for spacecraft health monitoring. International Society for Optical Engineering. Springer Berlin Heidelberg. New York: SPIE, 2001:160-167
    [22] 于秀娟, 余有龙, 张敏等. 光纤光栅传感器在航空航天材料/结构健康监测中的应用. 激光杂志, 2006, 27(1): 1-3
    [23] 刘云红. 21IC 中国电子网. 2006, 2, 13
    [24] 廖延彪, 黎敏. 光纤传感器的今日与发展. 传感器世界, 2004, 10(2): 6-12
    [25] 李尚俊. 光纤智能结构/蒙皮在航空上的应用.中国民航飞行学院学报, 2000(2): 29-30
    [26] Wang W M, Boyle W J O, Grattan K T V. Selfmixing interference in a diode experimental observations and theoretical analysis. App Opt, 1993, 32(9): 1551-1558
    [27] Case S W and Carman G P. Compression strength of composites containing embedded sensors or actuators. Intelligent Materials Systems and Structures, 1994, 5(1):4-11
    [28] Ganhi M V, Thompson B S. Smart Materials and Structures. Chapman & Hall, London, 1992
    [29] 贺昌城, 顾振亚. 关于智能材料概念的探讨. 天津工业大学学报, 20(5): 42-45
    [30] 陶宝祺, 石立华, 熊克等. 自诊断自适应智能复合材料结构系统的研究. 应用科学学报, 1999, 17(1): 1-7
    [31] 王征, 陶宝祺.智能材料结构的振动控制.振动、测试与诊断, 1995, 15(1): 47-51
    [32] 袁慎芳, 陶宝祺, 王昕. 智能材料结构在民用上的应用. 南京航空航天大学学报, 1997, 29(5): 586-592
    [33] Kowbel W, Xia X, PZT/polymer flexible composites for embedded actuator and sensor applications. Proc. SPIE-Int. Soc. Opt. Eng. USA, Newport Beash, CA Pub, 1999: 32-42
    [34] Marco D P, Alessandro G. PVDF piezoelectric sensors and related electronics in structural engineering applications. IEEE Journal, 1996, 32(8): 228-231
    [35] 陈涛, 胡超, 黄文虎等. 航天器姿态调整时的变结构控制与振动抑制方法. 宇航学报, 2007, 28(5): 1199-1204
    [36] 路小波, 陶云刚, 何延伟. 基于压电元件的振动主动控制. 振动、测试与诊断, 1999, 19(2): 92-95
    
    [37]孙亚飞, 陈仁文, 徐志伟等. 基于压电智能结构飞机座舱振动噪声主动控制研究. 宇航学报, 2003, 24(1): 43-48
    [38] Wang B T, Chen R L. The use of piezoceramic transducers for smart structural testing. Proceedings of the SPIE-The International Society for Optical Engineering. USA, SPIE-Int Soc Opt Eng Pub.2000:879-889
    [39] 韩玉林, 李爱群, 林萍华等. 基于形状记忆合金的结构振动控制研究与展望.东南大学学报(自然科学版), 2000, 30(1): 146-154
    [40] 王辉, 陈再良. 形状记忆合金材料的应用. 机械工程材料. 2002,26(3): 5-8
    [41] 王社良, 沈亚鹏. 形状记忆合金的力学特性及其工程应用. 工业建筑, 1998, 28(3): 31-35
    [42] 刘军. 大型空间网状展开天线反射面精度控制的智能结构的研究. 西安电子科技大学硕士研究生学位论文, 2001
    [43] 李山青, 刘正兴, 杨耀文. 压电材料在智能结构形状和振动控制中的应用. 力学进展. 1999, 29(1): 66-76
    [44] 王社良, 苏三庆, 蒋险峰. 压电类智能结构的力学特性及其工程应用. 工业建筑. 2000, 30(3):43-46
    [45] 赵宏声, 黄俊, 姜德生.电流变体及其应用. 武汉工业大学学报. 1996, 18(2): 14-16
    [46] 张建华, 王鹤寿, 陶德华等. 电流变体及其在机电控制中的应用. 机电一体化. 2000, 6, 20-22
    [47] 龚烈航, 崔占山, 李忠国等. 电流变体及其在机械装备中的应用. 解放军理工大学学报(自然科学版). 2002, 3(3): 38-40
    [48] Hagi T. Matsuzaki Y and Machidas S. Experimental evaluation of smart structure with electro-rheological fluid. Proceedings of SPIE -The International Society for Optical Engineering. 2001, 4327: 185-192
    [49] Machida S. MatsuzakiY and Hagi T. Vibration control by smart structure with electro-rheological fluid. Proceedings of SPIE - The International Society for Optical Engineering, 2001, 4327: 176-184
    [50] Cho I, Seung-Bok L and Jae-Hong C. Vibration control of flexible structures using ER fluid dampers. Proceedings of SPIE - The International Society for Optical Engineering, 1997, 3041: 506-515
    [51] Sims N D, Stanway R J and Andrew R. Smart fluid damping: happing the force/velocity response through feedback control. Proceedings of SPIE - The International Society for Optical Engineering, 2000, 3985: 470-481
    [52] 殷景华, 王雅珍等. 功能材料概论.哈尔滨:哈尔滨工业大学出版社, 1999
    [53] Dosch J J, Inmal D J. A self-sensing piezoelectric actuator for collocated control. Intelligent Material Systems and Structures, 1992, 31:166-185
    [54] 杜设亮, 傅建中, 居冰峰等. 光纤智能结构及其在制造工程中的应用. 机电工程, 1999(5): 214-217
    [55] 李尚俊. 光纤智能结构/蒙皮在航空上的应用. 中国民航飞行学院学报, 2000(2): 29-30
    [56] 刘兴长, 涂压庆. 军用航空器的光纤智能结构分析. 压电与声光. 2002, 24(2): 97-100
    [57] 黄民双, 梁大开, 袁慎芳等. 应用于智能结构的光纤传感新技术研究. 航空学报. 2001, 22(4): 326-329
    [58] 廖延彪. 用于智能材料和结构的光纤传感技术. 激光与红外, 1999, 29(1): 14-16.
    [59] Butter C D, Hocker G B. Fiber optics strain gauge. Appl Opt, 1978, 17(18): 2867-2869.
    [60] 廖延彪编著. 光纤光学. 北京: 清华大学出版社, 2000
    [61] Pei L, Zhang L Z and Yan F P. The application of optical fiber grating(OFG)pressure sensor on train real-time tracing system. Proceedings of SPIE. 2000, 4221:67-69
    [62] Kersey A D, Davis M A and Patrick H J, et al. Fiber grating sensors. Lightwave Technol, 1997, 15(8): 1442-1462
    [63] Philipp M, Nellen P A and Rolf B. Swiss federal laboratories for meterials testing and reserch. Application of fiber option and resistance strain gauges for long-term surveillance of civil engineering structures. CH-8600 Dubendorf, Swit Switzerland .
    [64] 何慧灵, 赵春梅, 陈丹等. 光纤传感器现状. 激光与光电子学进展, 2004, 41(3): 39-42
    [65] 刘沐宇, 袁卫国. 光纤传感在桥梁健康监测系统中的应用研究. 中南公路工程, 2004, 29(1): 108-111
    [66] 关铁梁. 智能材料中的光纤传感检测技术. 传感技术学报, 1995, 8(3): 79-83
    [67] Roberts S J, Davidson R. Cure and fabrication monitoring of composite materials with fiber-optic sensors. Composite science and technology, 1993, (49): 265-276.
    [68] 孙圣和, 王廷云, 徐影. 光纤测量与传感技术. 哈尔滨: 哈尔滨工业大学出版社. 2000
    [69] 鲍吉龙, 章献民, 陈抗生等. 光纤光栅传感器及其应用. 激光技术, 2000, 24(3): 174-179
    [70] 杨要恩, 刘明治, 王庆敏等. 光纤法珀应变传感器中传感头对中度对信噪比的影响, 西安电子科技大学学报, 2006, 33(3): 462-465
    [71] 杨要恩, 刘明治, 王庆敏等. 光纤珐珀传感器在大型可展开天线中的应用研究,宇航学报, 2007,28(6): 1648-1650
    [72] 杨要恩, 孙宝臣, 王庆敏等. 白光干涉型 F-P 光纤传感器结构参数研究, 传感技术学报, 2005, 18(2): 363-366
    [73] 杨要恩, 刘明治, 王庆敏等. 基于光纤传感器的可展开天线纵向调整索预应力研究, 中国机械工程, 2007
    [74] 杨要恩, 王庆敏, 孙宝臣等. F-P 光纤传感器的温度与应变传感特性研究. 传感器技术, 2005, 24(4): 24-28
    [75] 杨要恩, 孙宝臣, 王庆敏. 基于白光干涉的应变式 F-P 光纤传感器研究. 石家庄铁道学院学报, 2005, 18(1): 47-49
    [76] Badcock R A, Fernando G F. An intensity based optical fiber sensor for fatigue damage detection in advanced fiber reinforced composites. Smart Materials and Structures, 1995: 223-230
    [77] Brooks T, Liu D and Martin A. Design, fabrication and evaluation of an optical fibre sensor for tensile and compressive strain measurements via the use of white light interferometry. SPIE, 1996: 408-416
    [78] Hogg H, Mason B and Measures R M. Development of a fiber Fabry-Perot strain gauge system, Active Materials and Adaptive Structures, G. J. Knowles editor, IOP Publishing, Bristol and Philadelphia. 1992
    [79] Rao Y J, Cooper M R and Jackson D A. Absolute strain measurement using an in-fibre-Bragg-grating-based Fabry-Perot sensor. Electronics Letters, 2000, 36 (8): 708-709
    [80] Murphy V, MacCraith B D and Lawless B. Quasi-distributed fibre-optic chemical sensing using telecom optical fibre. Electronic Letters, 1997, 33 (7): 618-619
    [81] 张戌社. 基于光纤光栅的缆索智能结构研究及应用. 北京交通大学博士学位论文. 2005
    [82] 孙少勇. 大型空间网状天线反射面在轨控制中的作动器/传感器优化配置研究. 西安电子科技大学硕士学位论文, 2002
    [83] 白冰, 常军, 刘正兴. 梁振动控制中压电作动器的位置优化准则. 上海交通大学学报, 2005, 39(2): 288-292
    [84] 曾光, 李东旭. 空间智能桁架作动器/传感器位置优化中的遗传算法应用. 宇航学报, 2007, 28(2): 461-464
    [85] Yang C D, Tai H C and Lee C C. Experimental approach to selecting H∞weighting functions for DC servos. J. of Dynamic Systems, Measurement and Control, 1997, 119(1): 101-105
    [86] 沈世钊, 徐崇臣, 赵臣等. 悬索结构设计. 北京:中国建筑工业出版社(第二版), 2005
    [87] 贾建援. 工程有限单元法. 西安电子科技大学, 2000
    [88] 罗鹰. 大型星载可展开天线的动力优化设计与工程结构的系统优化设计. 西安电子科技大学博士学位论文, 2004
    [89] 刘明治,那柏.网状天线的反射面形状精度调整.宇航学报, 2001, 22(6): 45-48
    [90] 韦娟芳. 空间 4-10 米可展开天线的动力耦合分析及实验技术研究, 浙江大学博士学位论文, 2002
    [91] 董积平, 曾小金, 尤睿. 国外一些星载大型可展开天线的发展概述. 星载大型可展开天线技术研讨会论文集, 2003
    [92] Bamford R, Kuo C P. Long stroke precision PZT actuator, AIAA, SDM Conference Prodeedings, New Orleans, 1995
    [93] Ben K W. Adaptive Structures: An Overview.J.Spacecraft.1990, 27(3): 330-337
    [94] 王威远, 魏英杰, 王聪等. 压电智能结构传感器/作动器位置优化研究, 宇航学报, 2007, 28(4): 1025-1029
    [95] Natore M, Sogura S and Kuwao F. Control of truss structures using uember actuators. System and Signal Processing, 1993, 7(4): 321-323
    [96] 薛定宇. 控制系统计算机辅助设计-MATLAB 语言与应用. 2005, 北京: 清华大学出版社
    [97] Stein G, Athens M. The LQG/LTR procedure for multivariable feedback control design. IEEE Transaction of Automatic Control, 1987, AC-32(2):105-114
    [98] Zames G. Feedback and optimal sensitivity: model reference transformations, multiplicative seninorms and approximate inverses. Proceedings 17th Alperton Conference, 1979: 744-752
    [99] Skogestad S, Postlethwaite I. Multivariable feedback control: analysis and design. New York: John Wiley, 1996
    [100] The mathworks Inc. Robust control toolbox user’s manual. 2005
    [101] The mathworks Inc. μ-analysis and synthesis toolbox use’s manual. 2004
    [102] 薛定宇, 陈阳泉. 高等应用数学问题的 MATLAB 求解. 北京: 清华大学出版社, 2004
    [103] Balas G, Chen Y Q. Fractional calculus applications in automatic control and robotics. Las Vegas: 41st IEEE CDC, Tutorial workshop 2, 2002
    [104] 楼顺天, 姚若玉, 冶继民. 基于 MATLAB7.X 的系统分析与设计-控制系统.西安: 西安电子科技大学出版社. 2005
    [105] Yang C D, Tai H C and Lee C C. Experimental approach to selecting H∞ weighting functions for DC servos. J. of Dynamic Systems, Measurement and Control, 1997, 119(1): 101-105
    [106] 申铁龙. H∞控制理论及应用. 北京: 清华大学出版社. 1996
    [107] 杨要恩. 白光干涉型光纤传感器的研究. 石家庄铁道学院硕士学位论文. 2005
    [108] Fernando G. F. Liu T. A frequency division multiplexed low-finesse fiber optic Fabry-Perot interferometric sensor system. In: International conference on health monitoring of civil infrastructure system(ICHMCI’99 Proceedings), 1999 : 144-153
    [109] 玻恩 M, 沃耳夫 E. 光学原理 光的传播、干涉和衍射的电磁理论 (上、下册).北京: 科学出版社, 1981
    [110] 廖延彪编著. 光纤光学. 北京: 清华大学出版社, 2000
    [111] Escober P, Gusimeroti V, Mantineli M. Fiber optic interferometric sensor for concrete structure. Proc.1st. European Conference on Smart Structure and Materials, Glasgow, 1992: 215-218
    [112] Rao Y L. Enabling fiber-optic sensor techniques for health monitoring of the three gorges gam. ICHMCIS’99, 1999, 10-14
    [113] Hendrick R O, Shadwam M and Nazarian S. Measuring stress distribution in parameters using single-model fiber. SPIE, 1798(1992): 200-204
    [114] Ansari F. Keep-time monitoring of concrete structure by embedded optical fibers, Proceeding of the Asce, Autoio J. X. 1992: 49-59
    [115] Mixhie W C. Fiber optic technique for simultaneous measurement of strain and temperature variations in composite materials. Proc. SPIE. 1991, 1588: 342-349
    [116] Davis M.A, Kersey A.D and Berkoff T. A. Dynamic strain monitoring of an in-use interstate bridge using fiber bragg grating sensors. SPIE 3043:87-95
    [117] 陈刚,黄尚廉. 采用多项式拟合进行谱峰定位的误差分析. 光谱分析, 2002, 23(2): 31-36
    [118] 姜国强. 数字滤波的改进与实现.洛阳工学院学报, 1995, 6(3): 45-50
    [119] 赵毅. 数字滤波的算术平均法和加权平均法. 仪表技术, 2001, 4: 2-6
    [120] 万鹏,朱洁,陈贻范. 移动平均法的数字滤波特性分析. 海洋技术, 1997, 16(3): 19-23
    [121] 赵国新. 栏按钮上添加文本标签. Vckbase online help journal. 2002, 5(11): 23-29
    [122] 闵尖. 浅谈系统的定时关机. 在线杂志, 2002, 14(20): 45-49
    [123] 李安东. 多工具条编程秘技. www.csdn.net. 2001: 10
    [124] Liu X J, Wei H T. Development of an optical fiber lactate sensor. Mikrochim.1999, 9(131):129-135
    [125] Frank J S, David R W. Multi-analyses sensing: from site-selective deposition to randomly-ordered addressable optical fiber sensors. Mikrochim. 1999, 7(131), 99-105
    [126] Wang Y, Liu W H and Wang K. Optical fiber sensor for barbarize based on fluorescence quenching of-(4-diphenylyl)-6-phenylbenzoxazole. Fresenius J Anal Chem. 1998, 360: 702-706
    [127] Pai I A, Dhurandhar S V.Radiation pressure induced instabilities in laser interferometric detectors of gravitational waves. Eur. Phys. J.D. 2007, 8: 346-352
    [128] Moriwaki S, Sakaida H,Yuzawa T.Measurement of the residual birefringence of interferential mirrors using Fabry-Perot cavity. Appl.Phys,B. 2006: 65-69
    [129] Okhotnikov O G, Guina M. Colliding-pulse harmonically mode-locked fiber laser. Appl. Phys., 2001, B 72-76
    [130] 马建明, 周长城. 数据采集与处理技术. 西安:西安电子科技大学出版社, 1998: 27-36
    [131] 楼顺天, 陈生潭. Matlab5.x 程序设计语言. 西安:西安电子科技大学出版社, 2000: 236-259
    [132] 叶培大. 光纤理论. 上海: 知识出版社, 1985
    [133] 张思. 振动测试与分析技术. 北京: 清华大学出版社. 1991
    [134] 李德葆, 张元润. 振动测量与试验分析. 北京: 机械工业出版社. 1991
    [135] 欧进萍. 结构振动控制-主动、半主动和智能控制. 北京: 科学出版社. 2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700