用户名: 密码: 验证码:
基于特征的图像序列三维场景重建技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由图像序列恢复三维场景结构与摄像机运动是计算机视觉领域中重要的应用之一。三维场景重建分为基于特征与基于光流场两种方法,本文主要研究基于特征的图像序列三维场景恢复技术。
     提出了一种加速鲁棒性参数估计策略:MLESAC-A,通过设置预检验与后检验,不仅可以过滤病态抽样,还能使MLESAC能够采用动态次数抽样的方法从而提高算法效率。合成图像的实验表明加速策略的效率得到极大提高,且当outlier的比例低于30%时,RANSAC和MLESAC-A(EM)以及MLESAC-A(ME)所消耗的时间没有明显区别,RANSAC还略优一些;但当此比例超过30%时,RANSAC耗时呈指数增加,而无论是EM还是ME,MLESAC-A耗时并没有显著增加,表明MLESAC-A比RANSAC更稳定。
     指出了传统的鲁棒性策略是基于一维数据,这将限制获取的对应点数量从而影响后续的场景重建效果。提出了基于二维数据的MLESAC策略,用每组对应点的匹配点数与匹配强度指导抽样过程。对简单场景的图像对与复杂场景的图像对进行了实验,对应点的数量分别提高了16.7%与56.8%。
     提出了一种简化的三视图几何约束关系的实现策略,避免了求解三焦张量,通过对三视图进行全局的特征点匹配过程,能够获得最大数量的对应点,并通过误差矩阵对全局匹配进行限制,提高了搜索效率。
     以三视图为重建单元,提出了一种可并行迭代式分层射影重建策略。使用三视图的几何关系,避免了传统迭代重建中两视图几何关系的不确定性。可并行分层方法不断合并重建单元的对应点,直至最终只剩一个重建单元。对长度为n的序列,传统迭代方法需要进行n-1次重建单元合并,且重建层数为n-1;可并行迭代策略需要进行n-2次单元合并,重建层数为[log 2( n? 1)],且每一层的单元合并完全可并行,从而能够提高重建过程的效率。
     为了避免迭代式重建策略所存在的累积误差效应,提出了一种线性回溯射影结构恢复策略。每恢复一幅图像之后,将所有当前可见的结构用最新的数据进行回溯估计,并用新的结构更新摄像机的运动。回溯步骤会降低重建效率,然而由于重建方法全部是线性算法,而且结构与运动的恢复过程相比对应点合并过程,其增加的计算量可以忽略,因此对重建过程的效率影响非常小。
     对由上述方法获得的射影重建的初始结果利用非线性优化方法——光束法平差进行了非线性优化。利用Pollefeys的线性自标定方法快速的将射影重建的结果恢复至度量空间,在度量空间再次使用光束法平差进行非线性优化从而获得最终的在度量空间下可视化的场景结构与摄像机运动。
The recovery of structures of the scene and motion of the cameras from image sequence is one of the most important applications in computer vision. There are two kinds of methods of the 3d scene reconstruction: one is based on features, the other is based on optical flows. This paper researches the technology of 3d scene reconstruction from image sequence based on feature.
     An accelerated robust parameter estimation strategy named MLESAC-A is presented. By set preview and post verification, not only can it filters degenerate samples, but also can it adopts dynamic sample method so that it can improve the speed of the algorithm. Experiment on synthesis images show that MLESAC-A is much faster than MLESAC, and when the proportion of outliers is lower than 30% the consumed time of RANSAC, MLESAC-A(EM) and MLESAC-A(ME) is almost the same, but when the proportion is higher than 30% the time of RANSAC increases exponentially while the time of MLESAC-A(EM) and MLESAC-(ME) increase indistinctively, this shows MLESAC-A is more stable than RANSAC.
     A conclusion that traditional robust strategy like RANSAC is based on 1D data is pointed out, this will restrict the number of correspondence so that the quality of reconstruction will be reduced. A MLESAC strategy based on 2D data is advanced, it uses matched number of each group of correspondence and matched score to guide sample process. Experiments on simple scene and complex scene show that the number of correspondence has been increased by 16.7% and 56.8% respectively.
     A simplified method that implements triple-view geometry constraint is put forward to substitute for the computation of trifocal tensor. By global features matching among three views, it can obtains maximum number of correspondence, and by the limitation of error matrix, the efficiency of the global matching process will be improved.
     A parallel iterative hierarchical projective reconstruction strategy is presented, which is organized on the reconstruction unit of triple-view. The usage of three view geometry constraint can avoid the uncertainty in epipolar geometry constraint which is used in traditional iterative reconstruction. The parallel method combines continues reconstruction unit until there is only one unit left. For a sequence of size n, the traditional method needs n-1 combinations and n-1 layers; while the parallel method needs n-2 combinations and [log 2( n ? 1)] layers, in each layer the combinations are parallel, which can improve efficiency of the reconstruction.
     To avoid the effect of cumulate error in conventional iterative reconstruction algorithms, a linear rewound method is put forward. In each iterative step, after the reconstruction of the current view, use the information to re-estimate all the structures that can be seen then, and update the motion of the cameras. The rewound step will reduce the efficiency of the reconstruction process, since all the methods used in reconstruction are linear and the incremental computation of structure from motion process can be ignored compared to the combinations of correspondence process, it will affect the reconstruction very slightly.
     A nonlinear optimization algorithm, bundle adjustment, is used to optimize the initialize projective reconstruction result obtained by above methods. A Pollefeys’s linear self-calibration method is adopted to upgrade the result from projective space to metric space, bundle adjustment is again used in metric space to achieve a final visible result of structures of the scene and motion of the cameras.
引文
[1]贾云得.机器视觉[M].北京:科学出版社, 2000
    [2]马颂德,张正友.计算机视觉——计算理论与算法基础[M]. 2nd ed.北京:科学出版社, 2003
    [3] SHAPIRO L G, STOCKMAN G C. Computer Vision[M]. Upper Saddle River, USA: Prentice Hall, 2001
    [4] MARR D. Vision[M]. San Francisco, USA: Freeman Publishers, 1982
    [5] ZHANG R, TSAI P S, CRYER J E, et al. Shape from Shading: A Survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(8): 690-706
    [6] SMOLIC A, MCCUTCHEN D. 3DAV exploration of video-based rendering technology in MPEG[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2004, 14(3): 348-356
    [7]李德仁,江志军.车载视频图像序列卡尔曼滤波及其移动量测应用[J].测绘科学, 2006, 31(4): 11-13
    [8] BARTOLI A, STURM P. Structure From Motion Using Lines: Representation, Triangulation and Bundle Adjustment[J]. Computer Vision and Image Understanding, 2005, 100(3): 416-441
    [9] ROSENFELD A, JOHNSTON E. Angle detection on digital curves[J]. IEEE Transactions on Computers, 1973, 22(8): 875-878
    [10] FREEMAN H, DAVIS L. A corner finding algorithm for chain-code curves[J]. IEEE Transactions on Computers, 1977, 26(3): 297-303
    [11] MORAVEC H P. Towards Automatic Visual Obstacle Avoidance: Proceedings of the 5th International Joint Conference on Artificial Intelligence, Cambridge, MA, USA, 1977[C]. [S. I. ]: [s. n. ], [1977]: 584-596
    [12] WANG H, BRADY M. Real-time corner detection algorithm for motion estimation[J]. Image and Vision Computing, 1995, 13(9): 695-703
    [13] TRAJKOVIC M, HEDLEY M. Fast corner detection[J]. Image and Vision Computing, 1998, 16(1): 75-87
    [14] SCHMID C, MOHR R, BAUCKHAGE C. Evaluation of Interest Point Detectors[J]. International Journal of Computer Vision, 2000, 37(2): 151-172
    [15]陈乐,吕文阁,丁少华.角点检测技术研究进展[J].自动化技术与应用, 2005,24(5): 1-4
    [16] BRESTSCHI, JURGEN. Automated Inspection Systems for Industry[M]. London, UK: IFS Publications, 1981
    [17] HARRIS C, STEPHENS M. A Combined Corner and Edge Detector: Proceedings of the Fourth Alvey Vision Conference, Manchester, UK, 1988[C]. [S. I. ]: [s. n. ], [1988]: 147-151
    [18] LIU W Y, LI H, ZHU G X. A Fast Algorithm For Corner Detection Using the Morphologic Skeleton[J]. Pattern Recognition Letters, 2001, 22(8): 891-900
    [19] HARTLEY R, ZISSERMAN A. Multiple View Geometry in Computer Vision[M]. 2nd ed. Cambridge, UK: Cambridge University Press, 2004
    [20] FAUGERAS O, LUONG Q T. The Geometry of Multiple Images: The Laws That Govern the Formation of Multiple Images of a Scene and Some of Their Applications[M]. new ed. Cambridge, MA, USA: The MIT Press, 2004
    [21] MUNDY J, ZISSERMAN A. Geometric Invariance in Computer Vision[M]. Cambridge, MA, USA: MIT Press, 1992
    [22]梅向明,刘增贤,王汇淳, et al.高等几何[M]. 2nd ed.北京:高等教育出版社, 2000
    [23]罗崇善,庞朝阳,田玉屏.高等几何[M]. 2nd ed.北京:高等教育出版社, 2006
    [24] STOLFI J. Oriented Projective Geometry: A Framework for Geometric Computation[M]. Boston, USA: Academic Press, 1991
    [25] LAVEAU S, FAUGERAS O. Oriented projective geometry for computer vision: Proceedings of the 4th European Conference on Computer Vision, Cambridge, UK, 1996[C]. Berlin, GER: Springer, 1996: 147-156
    [26] CARLSSON S. The Double Algebra: An Effective Tool for Computing Invariants in Computer Vision: Proceedings of 2nd European-US Workshop on Invariance in Computer Vision, Ponta Delgada, Azores, Portugal, 1993[C]. Berlin, GER: Springer, 1993
    [27] TRIGGS B. Matching constraints and the joint image: Proceedings of the 5th International Conference on Computer Vision, Cambridge, MA, USA, 1995[C]. Boston, MA, USA: IEEE Computer Society Press, 1995: 338-343
    [28] HEYDEN A. A common framework for multiple-view tensors: Proceedings of the 5th European Conference on Computer Vision, Berlin, GER, 1998[C]. Berlin, GER: Springer, 1998: 3-19
    [29] FAUGERAS O D, PAPADOPOULO T. Grassmann-Cayley algebra for modelingsystems of cameras and the algebraic equations of the manifold of trifocal tensors[R]. Sophia Antipolis, France: INRIA, 1997
    [30] ALOIMONOS J Y. Perspective approximations[J]. Image and Vision Computing, 1990, 8(3): 177-192
    [31] GUPTA R, HARTLEY R I. Linear pushbroom cameras[J]. IEEE Transactions On Pattern Analysis And Machine Intelligence, 1997, 19(9): 963-975
    [32]陈泽志,吴成柯,沈沛意.计算机视觉测量系统的误差模型分析[J].计算机辅助设计与图形学学报, 2002, 14(5): 389-393
    [33] LONGUET-HIGGINS H C. A Computer Algorithm for Reconstructing a Scene from Two Projections[J]. Nature, 1981, 293: 133-135
    [34] FAUGERAS O D, MAYBANK S. Motion from point matches: multiplicity of solutions[J]. The International Journal of Computer Vision, 1990, 4(3): 225-246
    [35] LUONG Q T. Matrice Fondamentale et Autocalibration en Vision par Ordinateur[D]. Orsay, France: Universit de Paris-Sud, 1992
    [36] FAUGERAS O D. What can be seen in three dimensions with an uncalibrated stereo rig?: Proceedings of European Conference on Computer Vision, Santa Margherita Ligure, Italy, 1992[C]. Berlin, GER: Springer, 1993: 563-578
    [37] HARTLEY R I. In Defense of the Eight-Point Algorithm[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(6): 580-593
    [38] LUONG Q T, FAUGERAS O. The Fundamental Matrix: Theory, Algorithms, and Stability Analysis[J]. International Journal of Computer Vision, 1996, 17(1): 43-76
    [39] CHESI G, GARULLI A, VICINO A, et al. Estimation the Fundamental Matrix via Constrained Least-Squares: A Convex Approach[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(3): 397-401
    [40] BARTOLI A, STURM P. Nonlinear Estimation of the Fundamental Matrix with Minimal Parameters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(3): 426-432
    [41] ZHANG Z Y. On the Optimization Criteria Used in Two-View Motion Analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(7): 717-729
    [42]王伟,吴成柯.估计基础矩阵的六点综合算法[J].中国科学(E辑), 1997, 27(2): 165-170
    [43]陈泽志,吴成柯,刘勇.基础矩阵估计的加权归一化线性算法[J].软件学报,2001, 12(3): 420-426
    [44]陈泽志,吴成柯.一种高精度估计的基础矩阵的线性算法[J].软件学报, 2002, 13(4): 840-845
    [45]陈付幸,王润生.基础矩阵估计的聚类分析算法[J].计算机辅助设计与图形学学报, 2005, 17(10): 2251-2256
    [46] ZHANG Z Y. Determining the Epipolar Geometry and its Uncertainty: A Review[J]. International Journal of Computer Vision, 1998, 27(2): 161-198
    [47] SPETSAKIS M E, ALOIMONOS J. A multi-frame approach to visual motion perception[J]. International Journal of Computer Vision, 1991, 16(3): 245-255
    [48] WENG J, AHUJA N, HUANG T. Closed-form solution and maximum likelihood: A robust approach to motion and structure estimation: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Ann Arbor, MI, USA, 1988[C]. Los Alamitos, CA, USA: IEEE Computer Society Press, 1988: 381-386
    [49] HARTLEY R I. Lines and points in three views and the trifocal tensor[J]. International Journal of Computer Vision, 1997, 22(2): 125-140
    [50] HARTLEY R I. Minimizing algebraic error in geometric estimation problems: Proceedings of the 6th International Conference on Computer Vision, Bombay, India, 1998[C]. Delhi, India: Narosa Publishing House, 1998: 469-476
    [51] TORR P H S, ZISSERMAN A. Robust parameterization and computation of the trifocal tensor[J]. Image and Vision Computing, 1997, 15(8): 591-605
    [52] HARTLEY R I, SCHAFFALITZKY F. Reconstruction from projections using Grassmann tensors: Proceedings of the 8th European Conference on Computer Vision, Prague, Czech Republic, 2004[C]. Berlin, GER: Springer, 2004: 363-375
    [53] HEYDEN A. Tensorial Properties of Multilinear Constraints[J]. Mathematical Methods in the Applied Sciences, 2000, 23: 169-202
    [54] HARTLEY R I. Computation of the Quadrifocal Tensor: Proceedings of the 5th European Conference on Computer, London, UK, 1998[C]. Berlin, GER: Springer, 1998: 20--35
    [55] FISCHLER M A, BOLLES R C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography[J]. Communications of the ACM, 1981, 24(6): 381-395
    [56] TORR P H S, MURRAY D W. The Development and Comparison of Robust Methods for Estimating the Fundamental Matrix[J]. International Journal of Computer Vision, 1997, 24(3): 271-300
    [57] TORR P H S, ZISSERMAN A. MLESAC: A new robust estimator with application to estimating image geometry[J]. Computer Vision and Image Understanding, 2000, 78(1): 138-156
    [58] TORR P H S. Bayesian Model Estimation and Selection for Epipolar Geometry and Generic Manifold Fitting[J]. International Journal of Computer Vision, 2002, 50(1): 35-61
    [59] TORR P H S, DAVIDSON C. IMPSAC: Synthesis of Importance Sampling and Random Sample Consensus[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(2): 354-364
    [60] MATAS J, CHUM O. Randomized RANSAC with T. d, d. test[J]. Image. and Vision Computing, 2004, 22(10): 837-842
    [61] MATAS J, CHUM O. Randomized RANSAC with Sequential Probability Ratio Test: Proceedings of the 10th IEEE International Conference on Computer Vision, New York, USA, 2005[C]. Los Alamitos, CA, USA: IEEE Computer Society Press, 2005: 1727-1732
    [62]陈付幸,王润生.基于预检验的快速随机抽样一致性算法[J].软件学报, 2005, 16(8): 1432-1437
    [63] TORDOFF B J, MURRAY D W. Guided-MLESAC: Faster Image Transform Estimation by Using Matching Priors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1523-1535
    [64] CHUM O, MATAS J, KITTLER J. Locally optimized RANSAC: Proceedings of the 25th DAGM Symposium, Heidelberger Platz, GER, 2003[C]. Berlin, GER: Springer, 2003: 236-243
    [65] CHUM O, MATAS J, KITTLER J. Enhancing RANSAC by generalized model optimization: Proceedings of the 6th Asian Conference on Computer Vision, Jeju Island, Korea, 2004[C]. Seoul, Korea: Asian Federation of Computer Vision Societies, 2004: 812-817
    [66] HARTLEY R I, GUPTA R, CHANG T. Stereo from uncalibrated cameras: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Champaign, USA, 1992[C]. Illinois, USA: IEEE Computer Society Press, 1992: 761-764
    [67] FAUGERAS O D. Stratification of 3-Dimensional Vision: Projective, A±ne, and Metric Representations[J]. Journal of the Optical Society of America A, 1995, 12(3): 465-484
    [68] HARTLEY R I, STURM P F. Triangulation[J]. Computer Vision and Image Understanding, 1997, 68(2): 146-157
    [69] TOMASI C, KANADE T. Shape and motion from image streams under orthography: A factorization approach[J]. International Journal of Computer Vision, 1992, 9(2): 137-154
    [70] POELMAN C, KANADE T. A paraperspective factorization method for shape and motion recovery[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(3): 206-218
    [71] STURM P, TRIGGS W. A factorization based algorithm for multi-image projective structure and motion: Proceedings of 4th European Conference on Computer vision, Cambridge, UK, 1996[C]. Berlin, GER: Springer, 1996: 709-720
    [72] AANAES H, FISKER R, ASTROM K, et al. Robust Factorization[J]. IEEE transactions on Pattern Analysis and Machine Intelligence, 2002, 24(9): 1215-1225
    [73] JACOBS D W. Linear Fitting with Missing Data for Structure-from-Motion[J]. Computer Vision and Image Understanding, 2001, 82(2): 57-81
    [74] MARTINEC D, PAJDLA T. Structure from Many Perspective Images with Occlusions: Proceedings of the 7th European Conference on Computer Vision, Copenhagen, Denmark, 2002[C]. Berlin, GER: Springer, 2002: 355-369
    [75] HARTLEY R I, SCHAFFALIZKY F. PowerFactorization: 3D Reconstruction with Missing or Uncertain Data: Australia-Japan Advanced Workshop on Computer Vision, Adelaide, Australia, 2003[C]. [S. I. ]: [s. n. ], 2003
    [76] BUCHANAN A M, FITZGIBBON A W. Damped Newton Algorithms for Matrix Factorization with Missing Data: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 2005[C]. Washington,, DC, USA: IEEE Computer Society Press, 2005: 316-322
    [77] BEARDSLEY P A, TORR P H S, ZISSERMAN A. 3D model acquisition from extended image sequences: Proceedings of the 4th European Conference on Computer Vision, Cambridge, UK, 1996[C]. Berlin, GER: Springer, 1996: 683-695
    [78] BEARDSLEY P A, ZISSERMAN A, MURRAY D W. Sequential Updating of Projective and Affine Structure from Motion[J]. International Journal of Computer Vision, 1997, 23(3): 235-259
    [79] FITZGIBBON A W, ZISSERMAN A. Automatic Camera Recovery for Closed or Open Image Sequences: Proceedings of the 5th European Conference on Computer Vision, Berlin, Germany, 1998[C]. London, UK: Springer, 1998
    [80] HARTLEY R I. Chirality[J]. International Journal of Computer Vision, 1998, 26(1): 41-61
    [81] NISTER D. Reconstruction from uncalibrated sequences with a hierarchy of trifocal tensors: Proceedings of the 6th European Conference on Computer Vision, Dublin, Ireland, 2000[C]. Berlin, GER: Springer, 2000: 649-663
    [82] TORR P H S, FITZGIBBON A W, ZISSERMAN A. The problem of degeneracy in structure and motion recovery from uncalibrated image sequences[J]. International Journal of Computer Vision, 1999, 32(1): 27-44
    [83] POLLEFEYS M, KOCH R, VERGAUWEN M, et al. Hand-Held Acquisition of 3D Models with a Video Camera: Proceedings of Second International Conference on 3-D Imaging and Modeling (3DIM'99), Ottawa, Canada, 1999[C]. Los Alamitos, CA, USA: IEEE Computer Society Press, 1999: 14-23
    [84] POLLEFEYS M, VERBIEST F, GOOL L V. Surviving dominant planes in uncalibrated structure and motion recovery: Proceedings of the 7th European Conference on Computer Vision, Copenhagen, Denmark, 2002[C]. Berlin, GER: Springer, 2002: 837-851
    [85] HARTLEY R I, KAHL F. Critical Configurations for Projective Reconstruction from Multiple Views[J]. International Journal of Computer Vision, 2007, 71(1): 5-47
    [86] TRIGGS B, MCLAUCHLAN P, HARTLEY R I, et al. Bundle Adjustment - A Modern Synthesis: Proceedings of the International Workshop on Vision Algorithms: Theory and Practice, Freiberg, GER, 1999[C]. Berlin, GER: Springer, 1999: 298-372
    [87] MAYBANK S J, FAUGERAS O D. A theory of self-calibration of a moving camera[J]. International Journal of Computer Vision, 1992, 8(2): 123-151
    [88] FAUGERAS O D, LUONG Q T, MAYBANK S J. Camera Self-Calibration: Theory and Experiments: Proceedings of the 2nd European Conference of Computer Vision, Santa Margherita Ligure, Italy, 1992[C]. Berlin, GER: Springer, 1992: 321-334
    [89] LUONG Q T, FAUGERAS O D. Self-Calibration of a Moving Camera from Point Correspondences and Fundamental Matrices[J]. International Journal of Computer Vision, 1997, 22(3): 261-289
    [90] POLLEFEYS M, KOCH R, GOOL L V. Self-Calibration and Metric Reconstruction Inspite of Varying and Unknown Intrinsic Camera Parameters[J].International Journal of Computer Vision, 1999, 32(1): 7-25
    [91] HEYDEN A, ASTROM K. Flexible Calibration: Minimal Cases for Auto-calibration: Proceedings of the 7th IEEE International Conference on Computer Vision, Kerkyra, Greece, 1999[C]. Los Alamitos, CA, USA: IEEE Computer Society Press, 1999: 350-355
    [92] POLLEFEYS M, GOOL L V, OOSTERLINCK A. Modulus Constraint: A New Constraint for Self-Calibration: Proceedings of the 13th International Conference on Pattern Recognition, Vienna, Austria, 1996[C]. Los Alammitos, CA, USA: IEEE Computer Society Press, 1996: 349-353
    [93] TRIGGS B. Auto-Calibration and the Absolute Quadric: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Puerto Rico, 1997[C]. Washington, DC, USA: IEEE Computer Society Press, 1997: 609-614
    [94] HEYDEN A, HUYNH D O. Auto-Calibration via the Absolute Quadric and Scene Constraints: Proceedings of the 16th International Conference on Pattern Recognition, Quebec, Canada, 2002[C]. Los Alammitos, CA, USA: IEEE Computer Society Press, 2002: 631-634
    [95] ZHANG Z Y. Camera Calibration with One-Dimensional Objects[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(7): 892-899
    [96] STURM P. Critical Motion Sequences for the Self-Calibration of Cameras and Stereo Systems with Variable Focal Length[J]. Image and Vision Computing, 2002, 20(5): 415-426
    [97]邱茂林,马颂德,李毅.计算机视觉中摄像机定标综述[J].自动化学报, 2000, 26(1): 43-55
    [98]孟晓桥,胡占义.摄像机自标定方法的研究与进展[J].自动化学报, 2003, 29(1): 110-124
    [99] POLLEFEYS M, GOOL L V, VERGAUWEN M, et al. Visual Modeling with a Hand-Held Camera[J]. International Journal of Computer Vision, 2004, 59(3): 207-232
    [100] RODRIGUEZ T, STURM P, WILCZKOWIAK M, et al. VISIRE - Photorealistic 3D Reconstruction from Video Sequences: Proceedings of IEEE International Conference on Image Processing, Barcelona, Spain, 2003[C]. [S. I. ]: [s. n. ], 2003: 705-708
    [101] RODRIGUEZ T, STURM P, GARGALLO P, et al. Photorealistic 3D Reconstruction from Handheld Cameras[J]. Machine Vision and Applications, 2005,16(4): 246--257
    [102]陈泽志,刘勇,吴成柯.相机非定标图像序列三维物体的测量[J].自然科学进展, 2002, 12(9): 975-981
    [103]刘钢,彭群生,鲍虎军.基于多幅图像的场景交互建模系统[J].计算机辅助设计与图形学学报, 2004, 16(10): 1419-1424
    [104] EIST. ATTEST[EB/OL]. [2006-02-01]. http: //www. extra. research. philips. com/ euprojects/attest/
    [105] REDERT A, BEECK M, FEHN C, et al. ATTEST -- Advanced Three-Dimensional Television System Technologies: Proceedings of 1st International Symposium on 3D Data Processing, Visualization and Transmission, Padova, Italy, 2002[C]. Los Alamitos, CA, USA: IEEE Computer Society Press, 2002: 313-319
    [106] FEHN C, BARRE R, PASTOOR S. Interactive 3DTV -- Concepts and Key Technologies[J]. Proceedings of the IEEE, 2006, 94(3): 524-538
    [107] TANGER R, ATZPADIN N, MULLER M, et al. Depth Acquisition for Post-Production Using Trinocular Camera Systems and Trifocal Constraint: Proceedings of International Broadcast Conference, Amsterdam, Netherlands, 2006[C]. [S. I. ]: [s. n. ], [2006]: 329-336
    [108] EOS. Photo Modeler[EB/OL]. [2006-02-01]. http: //www. photomodeler. com/corp06. html
    [109] SMOLIC A, KIMATA H, VETRO A. Development of MPEG Standards for 3D and Free Viewpoint Video: Proceedings of SPIE Optics East, Three-Dimensional TV, Video, and Display IV, Boston, MA, USA, 2005[C]. [S. I. ]: [s. n. ], [2005]: 262-273
    [110] SMOLIC A, MULLER K, MERKLE P, et al. 3D Video and Free Viewpoint Video -- Technologies, Applications and MPEG Standards: Proceedings of International Conference on Multimedia & Expo, Toronto, Canada, 2006[C]. [S. I. ]: [s. n. ], [2006]: 2161-2164

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700