用户名: 密码: 验证码:
Nosema属微孢子虫基因组特异共线性区域的进化与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DNA作为遗传物质在承载着生命延续的同时也为分子考古学家研究人类的起源、物种的进化史提供了新的契机。近年来,随着基因组数据库的丰富和完善,生物学家逐渐发现接近1/3的物种都具有物种特异基因,鉴于它们大多是随机产生和自然选择双重压力下被保留下来的“化石”基因,对物种的环境适应性、自然习性起着很关键的作用,有的甚至在人脑和视觉蛋白形成过程中扮演举足轻重的作用,因此逐渐受到遗传学家和分子考古学家的青睐。
     微孢子虫做为一种存在广泛宿主的“无线粒体”原生动物,它们兼具原核细胞和真核细胞的特征,尽管对于它们的进化地位仍然存在争议,但是近年来,越来越多的研究表明它们是进化地位较低的真核生物,并且目前已被NCBI归类为真菌类。其中家蚕微孢子虫(Nosema bombycis)作为首个被鉴定的微孢子虫,专性寄生于经济昆虫家蚕,是引发家蚕微粒子病的病原体。家蚕微孢子虫能够在外界环境刺激下,成功弹出极丝,将孢原质送入宿主体内从而成功的寄生,进而引起家蚕生理机能障碍,造成宿主细胞的病变坏死以及组织器官功能的丧失。鉴于其对人类经济生活带来的巨大危害,目前,家蚕微孢子虫已被世界各养蚕国家和地区列为唯一法定检疫对象。尽管对其研究已有近150年的历史,但是微粒子病的防控仍然是蚕业界研究的重点和难点。随着基因组时代的来临,人们获得了越来越多的微孢子虫基因组序列信息,因此,基于比较基因组学分析,探索不同种属之间的微孢子虫的差异基因的种类、数量及功能,对于研究不同种类微孢子虫生物学特征,发掘微孢子虫与其对应宿主之间的共进化关系,以及为寻找种属特异的检测靶标基因,具有十分重要的生物学意义。近年来,本实验室对家蚕微孢子虫进行了全基因组框架图的绘制,基于全基因组序列的数据,并结合已报道的其他微孢子虫基因组,我们首次鉴定到一段Nosema属特有的基因组区域,为哺乳动物寄生性微孢子虫——兔脑炎微孢子虫、肠道微孢子虫和比氏肠道微孢子虫基因组所缺失。这段Nosema属微孢子虫基因组共线性区域的演化历程是怎样的?分布于该基因组特异区域内的编码基因在家蚕微孢子虫基因组中扮演什么样的角色?鉴于物种特异基因在研究微孢子虫进化史以及不同微孢子虫间的分子鉴定两方面的重要性,同时也为了回答上述问题,本论文的主要研究内容包括:
     1. Nosema属微孢子虫特异基因组共线性区域的鉴定与分析
     对家蚕微孢子虫、兔脑炎微孢子虫和蜜蜂微孢子虫的同源基因进行比较分析,发现家蚕微孢子虫第32号Scaffold上存在一段1Nosema属特异的基因组区域,进而在已发布基因座位信息的六种微孢子虫中进行基因座位保守性分析,进一步证实该区域为脑炎属微孢子虫及比氏肠道微孢子虫基因所丢失的基因组片段。通过对其中分布的编码基因的预测及分析,发现这段特异的基因组区域存在两个编码序列,基因代号为NBO32g0034和NBO32g0035,前者编码DNA聚合酶kappa(简称NbPolκ),后者NBO32g0035的预测功能未知(简称NbOP1), RT-PCR实验证实这两个基因均能够正常转录。对该区域上游970bp序列进行启动子和调控元件预测,发现该区域存在保守的TATA框和GC框结构,并且含有SP1结合位点、CAP/CRP结合位点、bZIP (Basci-leucine zipper)转录因子蛋白、Tst-1结合位点和c-Myb等参与转录活性调节的调控基础序。该区域的GC含量明显大于N.bombycis基因组的平均GC含量,并且大量分布DNA类型的转座元件,暗示该区域是基因组不稳定区域。
     2. NbPolκ和NbOPl蛋白的编码基因序列特征及其染色体定位研究
     为了深入了解分布于该段特异基因组区域内的编码基因特征,我们首先针对NbOP1的编码基因进行预测及分析,结果显示该蛋白在家蚕微孢子虫基因组中不存在其他拷贝,其序列不具有信号肽,仅含有4个疏水簇,并且富含极性氨基酸,随后对该位置蛋白的二级结构进行预测,发现其包含20个a螺旋和11个β折叠。经过克隆测序发现该基因具有核苷酸多态性,属于典型的孤儿蛋白。
     随后,我们对NbPolκ蛋白的编码基因进行了生物信息分析,确定其D87至L417存在保守的DNA聚合酶kappa功能结构域,但比典型的真核生物POLK存在N-端和C-端的减缩,但是,这种两端不同程度的缺失并没有影响其氨基酸的结构特征。而用最大似然法构建的系统发育树结果显示NbPlκ与其他三种微孢子虫的POLK聚为一簇,但是这一簇基因却与真菌界的亲缘关系较远,而是落入了细菌域,并与梭状芽孢杆菌(Clostridia)亲缘关系较近。该系统发育树在一定程度上反映了NbPolκ的进化历程,推测NbPoκ可能水平转移自某一种细菌。
     通过对NbPolκ和NbOP1的同源信息检索,并制备探针进行Southern blot杂交,结果说明我们所分析的具有Nosema属微孢子虫基因组共线性区域位于家蚕微孢子虫的第XV染色体上。
     3. NbPolκ和NbOP1的在酿酒酵母中的定位
     首先采用亚细胞定位导肽预测软件对这两个基因进行亚细胞定位预测,结果显示NbPolκ可能分布于细胞核或者线粒体中,而NbOP1则具有细胞质定位特征。随后利用酿酒酵母表达系统,检测其各自的亚细胞定位分布。结果表明,NbOP1定位于酿酒酵母的细胞质;而NbPolK则能够靶向酿酒酵母线粒体,并且N-端导肽序列对于NbPolκ的定位信号没有任何影响。这一结果与克鲁斯锥虫的同源基因TcPolκ能够具有线粒体定位信号的特征相符合,暗示寄生生活中的NbPolK的特殊地演化地位及其与典型真核生物Po1κ的功能分化。
     4. NbPolκ和NbOPl在家蚕微孢子虫基因组中的功能验证
     为了更好的了解这两个编码基因在家蚕微孢子虫基因组的表达定位特征以及其可能存在的功能。我们构建了原核表达载体,通过重组融合蛋白的诱导表达和纯化,获得了与理论分子量一致的重组蛋白,用其免疫小鼠以制备多克隆抗体。免疫印迹结果显示所得抗血清特异性较好,能够识别与理论分子量相近的蛋白条带。分别用其与成熟孢子和处于增殖期的孢子进行间接免疫荧光,表明NbOP1为一种新鉴定到的位于家蚕微孢子虫孢壁的蛋白;而NbPolκ则是定位于家蚕微孢子虫细胞核的参与氧化损伤途径的蛋白。
     5. Nosema属微孢子虫基因组特异共线性区域的进化历程假说
     根据我们前面对两个编码基因的研究,结合微孢子虫的物种进化分析,我们通过总结实验结果并提出了该片段在微孢子虫基因组中进化历程的假说。假说核心为,微孢子虫的最近共同祖先(Last Common Ancester, LCA)通过水平基因转移或垂直遗传获得Nosema属微孢子虫基因组特异共线性区域,之后,该区域在微粒子属与脑炎属微孢子虫在物种分化之后各自独立进化。,NbPolκ勺保留可能是为了应对家蚕微孢子虫和蜜蜂微孢子虫来自昆虫宿主的剧烈地氧化应激(酚氧化物酶通路)的攻击所造成的DNA损伤,但是可能由于功能退化或者功能分化进而NbPolκ仅保留在四种感染昆虫的微孢子虫的基因组中中然而,家蚕微孢子虫物种特异基因NbOP1的保留是由于家蚕微孢子虫宿主专性适应性需要而衍生出的新的功能基因。当然,这些推论亟待进一步的实验验证。
     综上所述,本研究首次对家蚕微孢子虫物种特异基因进行细致的研究,并同其他微孢子虫的基因座位保守性进行了比较研究,证实这段Nosema属微孢子虫基因组特异共线性区域中的两个功能基因均能够编码家蚕微孢子虫生理代谢途径不可或缺的重要蛋白。最后,结合前期的分析数据我们对该区域的成因进行了初步探讨,并提出微孢子虫中差异基因序列的形成机制的假说。总之,本研究初步探索了家蚕微孢子虫专性细胞内寄生生活所形成的寄生虫与宿主协同进化历程,同时,也为筛选家蚕微粒子病的分子检测靶标基因奠定分子生物学基础。
DNA genetic information is not only contributed to life inheritance, but also offered clues to trace back to the origins and evolution of human beings for molecular archaeologists studies. In recent years, with the abundant and enrichment of genome database, biologists has figured out that nearly1/3species-specific genes existed in almost all of the species, which were randomly generated but be preserved under natural selection, and even plays a pivotal role in environmental adaption and natural habitats.
     Microsporidia is a kind of amitochondrion protozoa with a wide range of host. Although most of its genome exhibits both prokaryotes and eukaryotes characteristics, their evolutionary status remains controversial. Microsporea is placed within fungi by NCBI nowadays, as platitudinous published results demonstrated they are closer related to eukaryotes or sister-group of fungi with a common ancestor. Nosema bombycis, the first microsporidia to be identified, is an obligate intracellular parasite that causes pebrine. They can severely infected silkworm as eject sporoplasm into host cells/tissues through polar tube, which in turn resulting in host insects metabolic disturbance, cells necrosis and organs dysfunction. Pebrine can lead to the great loss of silk industry, thus it was pronounced as the only legal quarantine disease amongst worldwide sericulture countries. Despite the study on N. bombycis has experienced nearly150years, the prevention and control of pebrine are still suspended at present. Recent year witness the booming era of microspora genome, as well the indefatigable exploring of the distinction characteristics among different genus for species-specific genes selection. Basing on the draft genome of N. bombyis carried out by our lab, we predicted and analyzed a Nosema-specific genome region, which contains two CDS genes named as NbPolκ and NbOPl in N. bombycis, but absent in the genome of Encephalitozoon cuniculi, Encephalitozoon intestinalis and Enterocytozoon bieneusi. NbPolκ has homologue genes in Nosema ceranae, whereas its neighbor ones were only kept in No.32Scaffold in N. bombycis. The objective of this work is to study where does it comes from and and what's the functional role of this divergent genome region in N. bombycis.
     To answer these questions, as well as take into account of the significant role of species-specific genes involved in evolution analysis, we performed this study in following aspects:
     1. The identification and analysis of Nosema-specific genome collinearity region
     By comparing with the homologue genes among N. bombycis, N. cernaea, and E. cuniculi genome data, we analyzed two encoding genes NbPolκ and NbOP1distributed within a Nosema-specific genome region at No.32scaffold in N. bombycis. RT-PCR results indicated that both genes are transcribed in midguts of silkworm infected by N. bombycis.
     The characteristics analysis on their upstream sequence of this region exhibit both core promoter and regulatory element motifs that could regulated the transcriptional levels. In addition, the GC content of the specific region was higher than the average GC%of (the) whole N. bombycis genome. Transposable elements were widely distributed at this region, which implies the flexible of this region.
     2. The sequences characteristics and chromosomal localization of NbPolκ and NbOPl genes
     To further analyze the characteristics of encoding genes that distributed in this region, we first analyzed the composition of amino acids of NbOP1, and the results showed that NbOPl is a kind of typical orphan gene that contains4hydrophobic clusters and with abundant of polar amino acids. The prediction of NbOP1secondary structure showed that it is a folded protein with20a-helices and11β-sheet. Moreover, this single copy gene also showed nucleotide polymorphism. We thereafter analyzed the NbPolκ gene, and confirmed it has DNA polymerase kappa functional domain from D87to L417. But the reduction occurred at both N-and C-termini ends, comparing with POLK from other eukaryotes. It is notably that this termini reduction has no effect on the protein folding. Finally, the phylogenic analysis demonstrated this gene is closer related to prokaryotes, which implied that the unique evolution process of this gene in N. bombycis. Moreover, southern hybridization results showed that this Nosema-specific genomic region is located on the chromosome XV of N. bombycis.
     3. The localization of NbPolκ and NbOP1protein in Saccharomyces cerevisiae
     The subcellular localization signals were primarily predicted, and the results indicate NbPolκ contains N-terminal transite peptide that target to nuclear or mitochondrion, however the NbOP1is equipped with cytoplasm target peptides. In order to verify the subcellular localization of these two proteins, we constructed recombinant vectors of NbPolκ-pUG35,NbPolκ-pUG36, and NbOP1-pUG35, respectively. After that, positive expression recombinant yeasts strain for NbPolκ and NbOP1were induced in SC-Ura-Met for expression. The result indicated orphan protein has no specific targeting signals, but NbPolK could target on yeast mitochondrion regardless of N-terminal transit peptide, it is notable that the later result is consistent with the characteristics of TcPolκ, indicating the un-perspective evolutionary process and functional divergent of Polκ.
     4. The existence meanings of NbPolK and NbOP1in N. bombycis
     To better understand the function of these two proteins, we reconstructed recombinant vectors of NbPolκ and NbOP1, and then transformed them into E. coli BL21, and the fusion protein purified by Ni-NTA affinity columns, was immunized with mice for polyclonal antibody preparation, repectively. Western blot results showed that both NbPolK and NbOP1were expressed in N. bombycis. Immunolocalization through indirect fluorescent assay displayed that orphan protein is localized on the surface of spores, the result of which implied it could be a spore wall protein (SWP) or a protein interact with SWP. Whereas, NbPolκ can recognize DNA but involving in oxidative damage pathway.
     5. The formation of this Nosema-specific collinearity region in N. bombycis
     According to the analysis of two coding sequences and microsporidia speciation, a hypothesis on the evolution of this genomic fragment was proposed. The core of this hypothesis is that after the Last Common Ancestor (LCA) of microsporidia obtained this fragment from HGT or Vertical inheritance, but diverged during the independent evolution of different microsporidia. In Nosema genus, NbOP1was only reserved in N. bombycis to meet the needs of neofunctionalisation. But, to the Encephalitozoon genus, the genomes of which faced more serious reduction evolution, both NbPolκ and NbOP1were lost at last because of degeneration or subfunctionlisation. While NbPolκ reservation may contribute to both N. bombycis and N. ceranae bypass the DNA damage caused by the attack of host phenol Oxidase Activation Pathway, but NbOP1 was only kept in N. bombycis because of the needy of specific host recognization or interaction. However, our hypothesis is still needs further verification in future.
     In summary, this study aimed to study the encoding genes within Nosema-specific genome collinearity region, and finally confirmed that both of these two genes encode important proteins indispensably involving in physiological metabolisms of N. bombycis. We finally imagined the evolutionary process of this region in microsporidia according to the bioinformatic analysis and experimental results. This study not only enriches the functional genome data of N. bombycis, but also lays the basis of the molecular biological targets of pebrine.
引文
1. Bohne W, Ferguson JD, Kohler K, Gross U, Develpmental Expression of a Tandemly Repeated, Glycine- and Serine-Rich Spore Wall Protein in the Microsporidian Pathogen Encephalitozoon cuniculi. Infection and Immunity,1999.68(4):p.2268-2275.
    2. Galbreath J, Smith EJ, Terry SR, Becnel JJ, Dunn MA, Invasion success of Fibrillanosema crangonycis, n.sp., n.g.:a novel vertically transmitted microsporidian parasite from the invasive amphipod host Crangonyx pseudogracilis. International Journal for Parasitology,2004. 34:p.235-244.
    3. Lom J, Nilsen F, Fish microsporidia:fine structural diversity and phylogeny. International Journal for Parasitology,2003.33:p.107-127.
    4. Sak B, Kvac M, Kucerova Z, Kvetonova D, Sakova K., Latent microsporidial infection in immunocompetent individuals-a longitudinal study. PloS Negl Trop Dis,2011.5(5):p. e1162.
    5. Velasquez JN, Chertcoff AV, Etchart C, di Risio C, Sodre FC, Cucher MA, Carnevale S, First case report of infection caused by Encephalitozoon intestinalis in a domestic cat and a patient with AIDS. Vet Parasitol.,2012.190(3-4):p.583-6.
    6. Abu Samra N, Thompson PN, Jori F, Zhang H, Xiao L, Enterocytozoon bieneusi at the wildlife/livestock interface of the Kruger National Park, South Africa. Vet Parasitol.,2012. 190(3-4):p.587-90.
    7. Wagnerova P, Sak B, Kvetonova D, Bunatova Z, Civisova H, Marsalek M, Kvac M, Enterocytozoon bieneusi and Encephalitozoon cuniculi in horses kept under different management systems iin the Czech Republic. Vet Parasitol.,2012.190(3-4):p.573-7.
    8. Lallo MA, Calabria P, Milanelo L, Encephalitozoon and Enterocytozoon (microsporidia) spores in stool from pigeons and exotic birds:microsporidia spores in birds. Vet Parasitol.,2012. 190(3-4):p.418-22.
    9. Ardila-Garcia AM, Fast NM, Microsporidian infection in a free-living marine nematode. Eukaryot Cell,2012.11(12):p.1544-1551.
    10. Saito T, Bj(?)rnson S, The convergent lady beetle, Hippodamia convergens Guerin-Meneville and its endoparasitoid Dinocampus coccinellae (Schrank):The effect of a microsporidium on parasitoid development and host preference. J. Inverterbr. Pathol,2013.
    11. Ovcharenko M, Swiatek P, Ironside J, Skalski T, Orthosomella lipae sp. n. (Microsporidia) a parasite of the weevil, Liophloeus lentus Germar,1824 (Coleoptera:Curculionidae). J. Inverterbr. Pathol,2013.112(1):p.33-40.
    12. Petty BM, Johnson DT, Steinkraus DC, Ovavesicula popilliae (Microsporidia:Ovavesiculidae) spore production in naturally infected adult Japanese beetles (Coleoptera:Scarabaeidae). J. Inverterbr. Pathol,2012.111(3):p.255-6.
    13. Mansour L, Ben Hassine OK, Vivares CP, Cornillot E, Spraguea lophii (Microsporidia) parasite of the teleost fish, Lophius piscatorius from Tunisian coasts:evidence for an extensive chromosome length polymorphism. Parasitol. Int.,2013.62(1):p.66-74.
    14. Casal G, Matos E, Garcia P, Al-Quraishy S, Azevedo C, Ultrastructural and molecular studies of Microgemma carolinus n. sp. (Microsporidia), a parasite of the fish Trachinotus carolinus (Carangidae) in southern Brazil. Parasitology,2012.139(13):p.1720-1728.
    15. Morsy K, Abdel GF, Mehlhorn H, Bashtar AR, Abdel GR, Ultrastructure and molecular phylogenetics of a new isolate of Pleistophora pagri sp. nov. (Microsporidia, Pleistophoridae) from Pagrus pagrus in Egypt. Parasitol. Res.,2012.111(4):p.1587-1597.
    16. Wang TC, Nai YS, Wang CY, Solter LF, Hsu HC, Wang CH, Lo CF, A new microsporidium, Triwangia caridinae gen. nov., sp. nov. parasitizing fresh water shrimp, Caridina formosae(Decapoda:Atyidae) in Taiwan. J. Inverterbr. Pathol,2013.
    17. Stentiford GD, Bateman KS, Feist SW, Chambers E, Stone DM, Plastic parasites:Extreme dimorphism creates a taxonomic conundrum in the phylum Microsporidia. Int. J. Parastiol., 2012.7519(12):p.00314-1.
    18. 吴正理,家蚕微孢子虫(Nosema bombycis)孢壁蛋白的研究——三种主要蛋白质成分的鉴定与克隆分析博士学位论文.重庆:西南大学,2007.
    19. Bruce Alberts, Alexander Johnson, Julian Leweis, Martin Raff, Keith Roberts, Petet Walter, Molecular Biology of the Cell. New York:Garland Science,2002.4th edition.
    20. Bigliardi E, S.L., Cell biology and invasion of the microsporidia. Microbes and Infection,2001. 3:p.373-379.
    21. Couzinet S, C.E., Schittny J, Deplazes P, Weber R, Zimmerli S, Phagocytic Uptake of Encephalitozoon cuniculi by Nonprofessional phagocytes. Infection and Immunity,2000. 68(12):p.6939-6945.
    22. Hayman RJ, H.F., Amon J, Nash ET., Developmental Expression of Two Spore Wall Proteins during Maturation of the Microsporidian Encephalitozoon intestinalis. Infection and Immunity, 2001.69(11):p.7057-7066.
    23. Embley TM, Hirt PR, Early branching eukaryotes? Curr. Opin. Genet. Dev.,1998.8(6):p. 624-629.
    24. Franzen C, How do microsporidia invade cells? Folia parasitologica,2005.52(1-2):p.36-40.
    25. Dunn MA, S.E., Microsporidian life cycles and diversity:the relationship between virulence and transmission. Microbes and Infection,2001.3:p.381-388.
    26. Franzen C, Miiller A., Cryptosporidia and Microsporidia--Waterborne Diseases in the Immunocompromised Host. Diagn Microbiol Infect Dis,1999.34:p.245-262.
    27. Guomo AC, Desjardins AC, Bakowski AM, et al., Microsporidian genome analysis reveals evolutionary strategies for obligate intracellular growth. Genome Res.,2012.22:p. 2478-2488.
    28. Wasson K., R.L., Mammalian Microsporidiosis. Vet Pathol,2000.37:p.113-128.
    29. 向仲怀,蚕丝生物学.北京:中国林业出版社,2005.1.
    30. Wright JH, Craighead EM, Infectious motor paralysis in young rabbits. J. Exp. Med,1922:p. 135-140.
    31. Matsubayashi H, Koike T, Mikata T, Hagiwara S, A case of Encephalitozoon-like-body infection in man. Arch. Pathol.,1959.67:p.181-187.
    32. Desportes I, Charpentier YL, Galian A, Bernard F, Cochand B, Lavergne A, Ravisse P, Modigliani R Occurrence of a new microsporidian:Enterocytozoon bieneusi in the enterocytes of a human patient with AIDS. J. Protozool,1985.32:p.250-254.
    33. 张志芳,沈中元,何家禄,微孢子虫研究进展.蚕业科学,2000.26(1):p.38-44.
    34. Deplazes P, Mathis A, Miiller C, Weber R, Molecular epidemiology of Encephalitozoon cuniculi and first detection of Encephalitozoon bieneusi in fecal samples of pigs. J Eukaryot Microbiol,1996.43(5):p.93S.
    35. Dider ES, Vossbrinck CR, Baker MD, Rogers LB, Bertucci DC, Shadduck JA, Identification and characterization or three Encephalitozoon cuniculi strains. Parasitology,1995.111(Pt 4):p. 411-421.
    36. Vossbrinck CR, Baker MD, Didier ES, Debrunner BA, Shadduck JA, Ribosomal DNA sequences of Encephalitozoon bellem and Encephalitozoon cuniculi:species identification and phylogenetic construction. J. Eukaryot. Microbiol.,1993.40:p.354-362.
    37. Becnel JJ, Andreadis TG, Microsporidia in insects. The Microsporidia and Microsporidiosis, 1999. Washington:ASM Press:p.172-195.
    38. Hunt RD, King NW, Foster HL, Encephalitozoonosis:evidence for vertical transmission. J. Infect. Dis,1972.126:p.212-214.
    39. Galvan AL, Magnet A, Izquierdo F, Fenoy S, Rueda C, Fernandez Vadillo C,Henriques-Gil N, Del Aguila C, Molecular Characterization of Human-Pathogenic Microsporidia and Cyclospora cayetanensis Isolated from Various Water Sources in Spain:a Year-Long Longtitudinal Study. Appl. Environ. Microbiol.,2013.79(2).
    40. Ben AL, Yang W, Widmer G, Gamma V, Ortega Y, Xiao L, Survey and genetic characterization of wastewater in Tunisia for Cryptosporidium spp., Giardia duodenalis, Enterocytozoon bieneusi, Cyclospora cayetanensis and Eimeria spp. J Water Health,2012.10(3):p.431-444.
    41. Dubuffet A, Smith JE, Solter L, Perotti MA, Braig HR, Dunn AM, Specific detection and localization of microspridian parasites in invertebrate hosts by using in situ hybridization. Appl. Environ. Microbiol.,2013.79(1).
    42. BouchaudO, Circumstances for diagnosis and treatment of intestinal parasitosis in France. Presse Med,2013.42(1):p.84-92.
    43. Musser FR, Knighten KS, Self SR, Impact of Nosema(Microsporidia) infection and fumagillin treatment on Lygus lineolaris (Hemiptera:Miridae). J Invertebr Pathol,2012.111(2):p.101-5.
    44. Fan NW, Lin PY, Chen TL, Chen CP, Lee SM, Treatment of microsporidial keratoconjunctivitis with repeated corneal swabbing. Am J Ophthalmol,2012.154(6):p.927-933.
    45. Huffman DE, Gennaccaro A, Rose JB, Dussert BW, Low- and medium- pressure UV inactivation of microsporidia Encephalitozoon intestinalis. Water Res.,2002.36:p.3161-3164.
    46. Peyretaillade E, Biderre C, Peyret P, Duffeux F, Meternier G, Gouy M, Michot B, Vivares CP, Microsporidian Encephalitozoon cuniculi, a unicellular eukaryote with an unusual choromosomal dipersion ofribosomla genes and a LSU rRNA reduced to the universal core. Nucleic Acids Res.,1998.26:p.3513-3520.
    47. Biderre C, Pages M, Metenier G, David D, Bata J, Prensier G, Vivares CP, On small genomes in eukaryotic organisms:molecular karyotypes of two microsporidian species(Protozoa) parasites of vertebrates. C. R. Acad. Sci. Ser.,1994.317:p.399-404.
    48. Brugere FJ, C.E., Metenier G, Bensimon A, Vivares PC, Encephalitozoon cuniculi(Microspora) genome:physical map and evidence for telomere-associated rDNA units on all chromosomes. Nucleic Acids Res.,2000.28(10):p.2026-2033.
    49. Peyret P, Katinka DM, Duprat S, Duffieux F, Barbe V, Barbazanges M, Weissenbach J, Saurin W, Vivares PC, Sequence and Analysis of Chromosome I of the Amitochondriate Intracellular Parasite Encephalitozoon cuniculi(Microspora). Genome Res.,2007.11:p.198-207.
    50. Kathinka DM, Dupprat S, Cornillot E, Metenier G, Thomarat F, Prensier G, Barbe V, Peyretaillade E, Brottier P, Wincker P, Delbac F, Alaoui EH, Peyret P, Saurin W, Gouy M, Weissenbach J, Vivares PC, Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature,2001.414:p.450-453.
    51. Pomber JF, X.J., Smith DR, Heiman D, Young S, Cuomo CA, Weiss LM, Keeling PJ, Complete genome sequences from three genetically distinct strains reveal a high intra-species genetic diversity in the microsporidian Encephalitozoon cuniculi. Eukaryot Cell,2013.
    52. Mittleider D, Green LC, Mann VH, Michael SF, Didier ES, Brindley PJ, Sequence survey of the genome of the opportunistic microsporidian pathogen, Vittaforma corneae. J. Eukaryot. Microbiol.,2002.49(5):p.393-401.
    53. Slamovits HC, Fast MN, Law SJ, Keeling JP, Genome Compaction and Stability in Microsporidian Intracellular Parasites. Curr. Biol,2004.14:p.891-896.
    54. Sokolova YY, Dolgikh W, Morzhina EV, Nassonova ES, Issi IV, Terry RS, Irnside JE, Smith JE, Vossbrinck CR, Establishment of the new genus Paranosoma based on the ultrastructure and molecular phylogeny of the type species Paranosema grylli from the cricket Gryllus bimaculatus. J. Inverterbr. Pathol,2003.84:p.159-172.
    55. Corradi N, Akiyoshi DE, Morrison HG, Feng XC, Weiss LM, Tzipori S, Keeling PJ, Patterns of Genome Evolution among the Microsporidian Parasites Encephalitozoon cuniculi, Antonospora locustae and Enterocytozoon bieneusi. PLoS One,2007.2(12):p. e1277.
    56. Akiyoshi DE, Morrison HG, Lei S, Feng X, Zhang Q, Corradi N, Mayanja H, Turnwine JK, Keeling PJ, Weiss LM, Tzipori S, Genomic survey of the non-cultivaiable opportunistic human pathogen, Enterocytozoon bieneusi. PLoS Pathog.,2009.5(1):p. e1000261.
    57. Franzen C, Nassonova ES, Scholmerich J, Issi IV, Transfer of the members of the genus Brachiola(microsporidia) to the genus Anncaliia based on ultrastructural and molecular data. J. Eukaryot. Microbiol.,2006.53:p.26-35.
    58. Williams BA, Lee RC, Becnel JJ, Weiss LM, Fast NM, Keeling PJ, Genome sequence surveys ofBrachiola algerae and Edhazardia aedis reveal microsporidia with low gene densities. BMC Genomics,2008.9:p.200.
    59. Cornman RS, Chen YP, Schatz MC, Street C, Zhao Y, Densany B, Egholm M, Hutchison S, Pettis JS, Lipkin Wl, Evans JD, Genomic Analyses of the Microsporidian Nosema ceranae, an Emergent Pathogen of Honey Bees. PLoS Pathog.,2009.5(6):p. e1000466.
    60. Corradi N, Haag KL, Pombert JF, Ebert D, Keeling PJ, Draft genome sequence of the Daphnia pathogen Octosporea bayeri:insights into the gene content of a large microsporidian genome and a model for host-parasite interactions. Genome Biol.,2009.10:p. R106.
    61. Corradi N, Pombert JF, Farinelli L, Didier ES, Keeling PJ, The complete sequence of the smallest known nuclear genome from the microsporidian Encephalitozoon intestinalis. Nat Commun,2010.1:p.77.
    62. Christian D, Jacques D, Laurent G, Bernard P, Didier R, Delegation fracaise pour le bioterrorisme et les maladies infectieuses au CDC et au NIAID/NIH. Annee Biol.,1999.38:p. 1-16.
    63. Huang WF, Tsai SJ, Lo CF, Soichi Y, Wang CH, The novel organization and complete sequence of the ribosomal RNA gene of Nosema bombycis. Fungal Genetics and Biology,2004.41:p. 473-481.
    64. Kawakami Y, Inoue T, Ito K, Kitamizu K, Hanawa C, Ando T, Iwano H, Ishihara R, Identification of a chromosome harboring the small subunit ribosomal RNA gene of Nosema bombycis. J. Inverterbr. Pathol,1994.64(2):p.147-8.
    65. 刘含登,家蚕微孢子虫(Nosema bombycis)(?)基因组学研究——核糖体蛋白基因及rDNA序列特征分析.博士学位论文.重庆:西南大学,2011.
    66. 潘国庆,家蚕微孢子虫(Nosema bombycis)基因组学研究——基因组生物学分析与基因组 进化.博士学位论文.重庆:西南大学,2009.
    67. 李田,家蚕微孢子虫(Nosema bombycis)基因组学研究——编码基因的比较基因组与转录组分析博士学位论文.重庆:西南大学,2009.
    68. Jinshan Xu, Guoqing Pan, Lin fang, Li Jun, Xiangjun Tian, Tian Li, Zeyang Zhou, Zhonghuai Xiang, The varying microsporidian genome:Existence of long-terminal repeat retrotransposon in domesticated silkworm parasite Nosema bombycis. International Journal for Parasitology, 2006.36(9):p.1049-56.
    69. Wu Z, Li Y, Pan G, Li C, Hu J, Liu H, Zhou Z, Xiang Z, A complete Sec61 complex in Nosema bombycis and its comparative genomics analyses. J Eukaryot Microbiol,2007.54(4):p. 379-80.
    70.党晓群,家蚕微孢子虫功能基因组职究——家蚕微孢子虫类枯草杆菌蛋白酶NbSLPl的功能分析.博士学位论文.重庆:西南大学,2012.
    71. 林立鹏,家蚕磁孢子虫(Nosema bombycis)功能基因组研究——家蚕微孢子虫纺锤剩体相关基因的鉴定及其蛋白定位研究.博士学位论文.重庆:西南大学,2012.
    72. Kirstin K, Julie CB, Genomic evolution of the placenta using co-option and duplication and divergence. Genome Res.,2008.18(5):p.695-705.
    73. Dujon B, The yeast genome porject:what did we learn? Trends Genet,1996.12:p.263-270.
    74. Casari G, De Daruvar A, Sander C, Schneider R, Bioinformatics and the discovery of gene function. Trends Genet,1996.12:p.244-245.
    75. 张岚,李庆章,新基因功能研究的整体策略.中国畜牧兽医,2011.38(5):p.109-113.
    76. 字友梅,王少元,新基因功能的研究策略.医学综述,2011.17(10):p.1478-1481.
    77. 熊绍权,杨寒朔,龙奇达,新基因AY358935的生物信息学分析及功能预测.南方医科大学学报,2010.30(2):p.232-235.
    78. 张业勤,生物信息每学在搜索水稻新基因及其功能预测中的运用.贵州师范大学学报(自然科学版),2006.24(3):p.106-110.
    79. 张成岗,贺福初,生物信息学在新基因全长cDNA序列分析及功能预测中的作用.生物化学与生物物理进展,2003.30(1):p.159-163.
    80.卜友泉,杨正梅,宋方洲,新基因功能研究的策略和方法.生命科学研究,2006.10(2):p.95-107.
    81. Mizukami M, Hanagiri T, Yasuda M, et al., Antitumor effect of antibody agasinst a SEREX-defined antigen (UOEH-LC-1) on lung cancer xenotransplanted into serve combined immunodeficiency mice. Cancer Res,2007.67(17):p.8351-8357.
    82. 杜建军,窦科峰,王兆太,胡沛臻,王为忠,高志清,胃癌下调查因CA11表达产物的组织分布和细胞定位.细胞与分子免疫学杂志,2002.18(3):p.1-6.
    83. 李寒,张宏,王海燕,肾脏特异性表达新基因在肾脏组织中的分布.中国现代医学杂志,2004.153-155.
    84. 陈菊祥,卢亦称,胡国汉,孙克华,骆纯,赵炜,谢毅,人LNX新基因克隆及组织分布和在脑胶质瘤中的表达.中华医学杂志,2005.85(38):p.2704-2710.
    85. 李波,家蚕新基因Bm-X的表达及亚细胞定位研究.硕士学位论文,浙江理工大学,2008.
    86. 罗阳,人类BSP蛋白相关新基因的cDNA克隆、定位和表达.博士学位论文,中国医科大学,2002.
    87. Jones AC, Monroe EA, Podell S, Hess WR, Klages S, Esquenazi E, Niessen S, Hoover H, Rothmann M, Lasken RS, Yates JR 3rd, Reinhardt R, Kube M, Burkart MD, Allen EE, Dorrestein PC, Gerwick WH, Gerwick L., Genomic insights into the physiology and ecology of the marine filamentous cyanobacterium Lyngbya majuscula. Proc Natl Acad Sci,2011.108(21): p.8815-8820.
    88. Zhang YE, Landback P, Vibranovski MD, Long M, Accelerated recruitment of new brain development genes into the human genome. PLoS Biol,2011.9(10):p. e1001179.
    89. 朱化彬,王栋,程金华,郝海生,杨波,王振玲,刘永华,不同物种Y染色体特异基因产物的研究畜牧兽医学报,2006.36(11):p.53-58.
    90. Liandong Y, Ming Z, Beide F, Shunping H, Genome-wide identification, characterization, and expression analysis of lineage-specific genes within zebrafish. BMC Genomics,2013.14:p. e65.
    91. Toll-Riera M, Laurie S, Alba MM., Lineage-specific variation in intensity of natural selection in mammals. Mol Biol Evol,2011.28(1):p.383-398.
    92. 杨冬燕,杨永存,杨小柯,李浩,张倩,邓平建,物种特异性基因扩增鉴别参加食用植物油.中国卫生检验杂志,2011.21(09):p.2120-2122.
    93. 张丽,吴刚,武玉花,肖玲,曹应龙,卢长明,新型花生内源特异参照基因的开发与应用研究.中国油料作物学报,2008.30(4):p.411416.
    94. Network, C.G.A., Comprehensive molecular portraits of human breast tumours. Nature,2012. 490(7418):p.61-70.
    95. Khalturin K, Hemmrich G, Fraune S, Augustin R, Bosch TC, More than just orphans:are taxonomically-restricted genes important in evolution? Trends Genet,2009.25:p.404-413.
    96. Yin Y, Fischer D, Identification and investigation of ORFans in the viral world. BMC Genomics,2008.9(24):p.1-10.
    97. Carvunis AR, Rolland T, Wapinski I, Calderwood MA, Yildirim MA, Simonis N, Charloteaux B, Hidalgo CA, Barbette J, Santhanam B, Brar GA, Weissman JS, Regev A, Thierry-Mieg N, Cusick ME, Vidal M., Proto-genes and de novo gene birth. Nature,2012.487(7407):p. 370-374.
    98. Pancsa R, Tompa P, Structural disorder in eukaryotes. PLoS One,2012.7(4):p. e34687.
    99. Chen S, Zhang YE, Long M, New genes in Drosophila quickly become essential. Science,2010. 330(6011):p.1682-1685.
    100. Beese LS, Derbyshire V, Steitz TA, Structure of DNA polymerase I Klenow fragment bound to duplex DNA. Science,1993.260(5106):p.352-5.
    101. William JA, Ying Li, Gabriel W, Bacterial DNA Polymerase I [Book]. WILEY,2010.15, SEP.
    102. Ollis DL, Brick P, Hamlin R, Xuong NG, Steitz TA, Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP. Nature,1985.313:p.762-766.
    103. Lawrence CW, Christensen R, UV mutagenesis in radiation-sensitive strains of yeast. Genetics, 1976.82(2):p.207-32.
    104. Lawrence CW, Cellular functions of DNA polymerase zeta and Revl protein. Adv Protein Chem,2004.69:p.167-203.
    105. Wittschieben J, S.M., Lalani E, Jacobs MA, Marini F, Gearhart PJ, Rosewell I, Stamp G, Wood RD.,, Disruption of the devlopmentally regulated Rev3l gene causes embryonic lethality. Curr Biol,2000.10(19):p.1217-20.
    106. Garcia-Diaz M, D.O., Lopez-Fernandez LA, de Lera LT, Saniger ML, Ruiz JF, Parraga M, Garcia-Ortiz MJ, Kirchhoff T, del Mazo J, Bernad A, Blanco L,, DNA polymerase lambda (Pol lambda), a novel eukaryotic DNA polymerase with a potential role in meiosis. J Mol Biol,2000. 301(4):p.851-67.
    107. Dominguez O, R.J., Lain de Lera T, Garcia-Diaz M, Gonzalez MA, Kirchhoff T, Martinez-A C, Bernad A, Blanco L.,, DNA polymerase mu (Pol mu), homologous to TdT, could act as a DNA mutator in eukaryotic cells. EMBO J,2000.19(7):p.1731-42.
    108. Prakash S, Johnson RE, Prakash L, Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu Rev Biochem,2005.74:p.317-53.
    109. Gody VG, Jarosz DF, Walker FL, Simmons LA, Walker GC, Y-family DNA polymerases respond to DNA damage-independent inhibition of replication fork progression. EMBO J,2006. 25(4):p.868-79.
    110. Reuven NB, Arad G, Maor-Shoshani A, Livneh Z, The mutagenesis protein UmuC is a DNA polymerase activated by UmuD', RecA, and SSB and is specialized for translesion replication. J Biol Chem,1999.274(45):p.31763-6.
    111. Tang M, Shen X, Frank EG, O'Donnell M, Woodgate R, Goodman MF, UmuD'(2)C is an error-prone DNA polymerase, Escherichia coli pol V. Proc Natl Acad Sci,1999.96(16):p. 8919-24.
    112. Wanger J, G.P., Kim SR, Yamada M, Matsui K, Fuchs RP, Nohmi T, The dinB gene encodes a novel E. coli DNA polymerase, DNA pol Ⅳ, involved in mutagenesis. Mol Cell,1999.4(2):p. 281-6.
    113. Ogi T, Kato T. Jr., Kato T, Ohmori H, Mutation enhancement by DINB1, a mammalian homologue of the Escherichia coli mutagenesis protein dinB. Genes Cells,1999.4(11):p. 607-18.
    114. Gerlach VL, Aravind L, Gotway G, SchultzRA, Koonin EV, Friedberg EC, Human and mouse homologs of Escherichia coli DinB (DNA polymerase Ⅳ), members of the UmuC/DinB superfamily. Proc Natl Acad Sci,1999.96(21):p.11922-7.
    115. Gerlach VL, F.W., Fischhaber PL, Richardson JA, Aravind L, Koonin EV, Bebenek K, Kunkel TA, Friedberg EC,, Human DNA polymerase kappa:a novel DNA polymerase of unknown biological function encoded by the DINB1 gene. Cold Spring Harb Symp Quant Biol,2000.65: p.41-9.
    116. Masutani C, Kusumoto R, Yamada A, Dohmae N, Yokoi M, Yuasa M, Araki M, Iwai S, Takio K, Hanaoka F, The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta. Nature,1999.399(6737):p.700-4.
    117. Lin W, Xin H, Zhang Y, Wu X, Yuan F, Wang Z, The human REV1 gene codes for a DNA template-dependent dCMP transferase. Nucleic Acids Res.,1999.27(22):p.4468-75.
    118. Tissier A, M.J., Frank EG, Woodgate R,, poliota, a remarkably error-prone human DNA polymerase. Genes Dev,2000.14(13):p.1642-50.
    119. Ulrich Hubscher, Silvio Spadari, Giuseppe Villani, Giovanni Maga, DNA Polymerases:Discovery, Characterization and Functions in Cellular DNA Transactions World Scientific Publishing Company;,2010.1 edition.
    120. Kunkel TA, Considering the cancer consequences of altered DNA polymerases function. Cancer Cell,2003.3:p.105-100.
    121. Errol C. Friedberg, DNA Repair and Mutagenesis. Washington:ASM Press,2006.2nd edition.
    122. Carlson KD, Johnson RE, Prakash L, Prakash S, Washington MT, Human DNA polymerase kappa forms nonproductive complexes with matched primer termini but not with mismatched primer termini. Proc Natl Acad Sci,2006.103(43):p.15776-15781.
    123. Vasquenz-Del Carpio R, Silverstein TD, Lone S, Johnson RE, Prakash L, Prakash S, Aggarwal AK, Role of human DNA polymerase kappa in extension opposite from a cis-syn thymine dimer. J Mol Biol,2011.408(2):p.252-261.
    124. Julian ES, Alan RL, Roger W, Y-family DNA polymerases and their role in tolerance of cellular DNA damage. Nature Reviews Molecular Cell Biology,2012.13:p.141-152.
    125. Zhang YB, Y.F., Wu XH, et al., Error-free and error-prone lesion bypass by human DNA polymerase k in vitro. Nucleic Acids Res.,2000.28:p.4138-4146.
    126. 陈建明,余应年,跨损伤合成的DNA聚合酶——一类新的DNA聚合酶.生物化学与生物物理近战,2001.28(1):p.56-59.
    127. 吕翎娜,唐铁山,郭彩霞,,哺乳动物跨损伤DNA聚合酶Poιk研究进展生物化学与生物物理进展,2011.38(3):p.204-209.
    128. Tang M, S.X., Frank EG, O'Donnell M, Woodgate R, Goodman MF.,, Roles of E.coli DNA polymerases IV and V in lesion-targeted and untargeted SOS mutagenesis. Nature,2000. 404(6781):p.1014-8.
    129. Wagner J, N.T., Escherichia coli DNA polymerase IV mutator activity:genetic requirements and mutational specificity. J Bacteriol,2000.182(16):p.4587-95.
    130. McKenzie GJ, Lee PL, Lombardo MJ, Hastings PJ, Rosenberg SM, SOS mutator DNA polymerase IV functions in adaptive mutation and not adaptive amplification. Mol Cell,2001. 7(3):p.571-9.
    131. Kevin AF, Zucai S, Mechanism of DNA Polymerization Catalyzed by Sulfolobus solfataricus P2 DNA Polymerase Ⅳ. Biochemistry,2004.43:p.2116-2125.
    132. Jarosz DF, Godoy VF, Walker GC, Proficient and accurate bypass of persistent DNA lesions by DinB DNA polymerases. Cell Cycle,2007.6(7):p.817-822.
    133. Johnson RE, P.S., Prakash L., The human DINB1 gene encodes the DNA polymerase Poltheta. Proc Natl Acad Sci,2000.97:p.3838-3843.
    134. Washington MT, Johnson RE, Prakash L, et al., Human DINB1-encoded DNA polymerase kappa is a promiscuous extender of mispaired primer termini. Proc Natl Acad Sci,2002.99(4): p.1910-1914.
    135. Kim SR, Maenhaut MG, Yamada M, et al., Multiple pathways for SOS-induced mutagenesis in Escherichia coli:an overexpression of dinB/dinP results in strongly enhancing mutagenesis in the absence of any exogenous treatment to damage DNA. Proc Natl Acad Sci,1997:p. 13792-13797.
    136. Sherrer SM, Fiala KA, Fowler JD, Newmister SA, Pryor JM, Suo Z, Quantitative analysis of the efficiency and mutagenic spectra of abasic lesion bypass catalyzed by human Y-family DNA polymerases. Nucleic Acids Res.,2011.39(2):p.609-622.
    137. Levine RL, M.H., Grollman A, et al., Translesion DNA synthesis catalyzed by human pol eta and pol kappa across 1,N6-ethenodeoxyadenosine. J Biol Chem,2001.276(22):p. 18717-18721.
    138. Ohashi E, O.T., Kusumoto R, et al., Error-prone bypass of certain DNA lesions by the human DNA polyemerase kappa. Genes Dev,2000.14:p.1589-1594.
    139. Ohashi E, B.K., Matsuda T, et al., Fidelity and processivity of DNA synthesis by DNA polymerase kappa:the product of the human DINB gene. J Biol Chem,2000.275:p. 39678-39684.
    140. Haracska L, Unk I, Johnson RE, et al., Stimulation of DNA synthesis activity of human DNA polymerase kappa by PCNA. Mol Cell Biol,2002.22:p.784-791.
    141. Haracska L, K.C., Unk I, et al., Interaction with PCNA is essential for yeast DNA polymerase eta function. Mol Cell,2001.8(2):p.407-415.
    142. Haracska L, J.R., Unk I, et al., Physical and functional interactions of human DNA polymerase eta with PCNA. Mol Cell Biol,2001.21(21):p.7199-7206.
    143. Haracska L, J.R., Unk I, et al., Targeting of human DNA polymerase iota to the replication machinery via interaction with PCNA. Proc Natl Acad Sci,2001.98(25):p.14256-14261.
    144. Yamada A, M.C., Iwai S, et al., Complementation of defective translesion synthesis and UV light sensitivity in xeroderma pigmentosum variant cells by human and mouse DNA polymerase eta. Nucleic Acids Res.,2000.28:p.2473-2780.
    145. Goldsby RE, L.N., Hays LE, et al.,, Defective DNA polymerase-delta proofreading causes cancer suspectibility in mice. Nat Med,2001.7.
    146. Loeb KR, L.L., Significance of multiple mutations in cancer. Carcinogenesis,2000.21:p. 379-385.
    147. Ogi T, Shinkai Y, Tanaka K, Ohmori H,, Pol kappa protects mammalian cells against the lethal and mutagenic effects of benzo[a]pyrene. Proc Nad Acad Sci,2002.99(24):p.15548-53.
    148. Bergoglio V, Bavoux C, Verbiest V, et al.,, Localisation of human DNA polymerase kappa to replication foci. J Cell Sci,2002.115(Pt 23):p.4413-8.
    149. Wang J, Kawamura K, Tada Y, et al.,, DNA polymerase k, implicated in spontaneous and DNA damage-induced mutagenesis, is overexpressed in lung cancer. Cancer Res,2001.61:p. 5366-9.
    150. Darnell Jr. JE, Transcription factors as targets for cancer therapy. Nat Rev Cancer,2002.2:p. 741-750.
    151. Bi X, Barkley LR, Slater DM, Tateishi S, Yamaizumi M, Ohmori H, Vaziri G, Rad18 regulates DNA polymerase kappa and is required for recovery from S-phase checkpoint-mediated arrest. Mol Cell Biol,2006.26(9):p.3527-3540.
    152. Bi X, Slater DM, Ohmori H, Vaziri G, DNA polymerase kappa is specifically required for recovery from the benzo[a]pyrene-dihydrodiol epoxide(BPDE)-induced S-phase checkpiont. J Biol Chem,2005.280(23):p.22343-55.
    153. Yang Y, Li Z, Roles of heat shock protein gp96 in the ER quality control:redundant or unique function?. Mol Cell,2005.20(3):p.173-182.
    154. Lu X, Shao J, Li H, Yu Y, Temporal gene expression changes induced by a low concetration of benzo[a]pyrene diol epoxide in a normal human cell line. Mutat Res,2010.684(1-2):p.74-80.
    155. Lu X, Shao J, Li H, Yu Y, Early whole-genome transcriptional response induced by benzo[a]pyrene diol epoxide in normal human cell line. Genomics,2009.93(4):p.332-342.
    156. Wang Q, Jiang H, Fan Y, Huang X, Shen J, Qi H, Li Q, Lu X, Shao J, Phosphorylation of the alpha-subunit of the eukaryotic initiation factor-2(eIF2alpha) alleviates benzo[a]pyrene-7,8-diol-9,10-epoxide induced cell cycle arrest and apoptosis in human cells. Environmental toxicology and Phamagology,2011.31(1):p.18-24.
    157. Zhu HF, Fan YF, Shen J, Qi HY, Shao JM,, Characterization of human DNA polymerase k promoter in response to benzo[a]pyrene diol epoxide. Environmental toxicology and Phamagology,2012.33:p.205-211.
    158. Rajao MA, Passos-Silva DG, DaRocha WD, Franco GR, Macedo AM, Pena SD, Teixeira SM, Machado CR,, DNA polymerase kappa from Trypanosoma cruzi localizes to the mitochondria, bypass 8-oxoguanine lesions and performs DNA synthesis in recombination intermediate. Mol Microbiol,2008.06521:p.1365-2958.
    159. Nicolas C, Patrick JK, Microsporidia:a journey through radical taxonomical revisions. Fungal Biology Reviews,2009.23:p.1-8.
    160. Witter MW, Weiss LM, The microsporidia and microsporidiosis. America Society for Microbiology Press,1999.
    161. Dider ES, Snowden KF, Shadduck JA, Biology of microsporidian Species Infecting Mammals. Adv Parasitol,1998.40:p.283-320.
    162. Wissler L, Gadau J, Simola DF, Helmkampf M, Bornberg-Bauer E., Mechanisms and dynamics of orphan gene emergence in insect genomes. Genome Biol Evol,2013.5(2):p.439-455.
    163. Krylov DM, Wolf YI, Rogozin IB, Koonin EV, Gene loss, protein sequence divergence, gene dispensability, expression level, and interactivity are correlated in eukaryotic evolution. Genome Res,2003.13(10):p.2229-2235.
    164. Long M, Betran E, Thornton K, Wang W, The origin of new genes:glmpsesfrom the young and old. Nat Rev Genet,2003.4(11):p.865-875.
    165. Donoghue MT, Keshavaiah C, Swamidatta SH, Spillane C, Evolutionary origins of Brassicaceae specific genes in Arabiopsis thaliana. BMC Evol Biol,2011.11(1):p.47.
    166. Colbourne JK, Pfrender M, Gilber D, et al., The ecoresponsive genome of Daphnia pulex. Science,2011.331(6017):p.555-561.
    167. Khalturin K, Anton-Erxleben F, Sassmann S, Wittlieb J, Hemmrich G, Bosch CGT, A novel gene family controls species-specific morphological traits in Hydra. PLoS Biol,2008.6(11):p. e278.
    168. Khalturin K, H.G., Fraune S, Augustin R, Bosch TCG, More than just orphans:are taxonomically-restricted genes important in evolution. Trends Genet,2009.25(9):p.404-413.
    169. Milde S, Hemmrich G, Anton-Erxleben F, Khalturin K, Wittlieb J, Bosch CGT, Characterization of taxonomically restricted genes in a phylum-restricted cell type. Genome Biol,2009.10(1):p. R8.
    170. Voolstra CR, Sunagawa S, Matz MV, Bayer T, et al., Rapid evolution of coral proteins responsible for interaction with the enviroment. PLoS One,2011.6(5):p. e20392.
    171. 张瑞芝,向恒,潘国庆,李田,周泽扬,两种微孢子重全基因组中密码子编好性比较蚕学通讯,2011.31(1):p.1-8.
    172. 向恒,家蚕微孢子虫基因组学研究——水平基因转移分析.博士学位论文.重庆:西南大学,2010.
    173. Christoph D, Viviane P, The Eukaryotic promoter database EPD:the impact of in silico primer extesion. Nucleic Acids Res.,2004.32:p.82-85.
    174. Reese MG, Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. Comput Chem,2001.26(1):p.51-56.
    175. Eddy SR, Accelerated Profile HMM Searches. PloS Comput Biol,2011.7(10):p. e1002195.
    176. Robert DF, Jody C, Sean RE, HMMER web server:interactive sequence similarity searching. Nucleic Acids Res.,2011.39(S2):p. W29-W37.
    177. 高绘菊,牟志美,王彦文,张升祥,时连辉,家蚕微孢子虫病研究进展.北方残叶,2001.22(4):p.8-10.
    178. 沈中元,家蚕微粒子病的发生与防治近况畜牧兽医科技信息,2000.3:p.14-16.
    179. Jams TY, Kauff F, Schoch CL, et al.,, Reconstructing the early evolution of fungi suing a six-gene phylogeny. Nature,2006.443(7113):p.818-822.
    180. Cavalier ST, A 6-kingdom classification and a unified phylogeny. Endocytobiology Ⅱ,1983:p. 1027-34.
    181. Swofford DL, PA UP:Phylogenetic Analysis Using Parsimony (and Other Methods). Version 4, 2003.
    182. Posada D, ModelTest Server:a web-based tool for the statistical selection of models of nucleotide substitution online. Nucleic Acids Res.,2006.34:p.700-3.
    183. Guindon S, Gascuel O, A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol,2003.52:p.696-704.
    184. Ronquist F, Huelsenbeck JP, Mrbayes 3:Bayesian phylogenetic inference under mixed models. Bioinformatics,2003.19:p.1572-4.
    185.李瑞芳,李宏,蛋白质折叠速率与其氨基酸序列极性的关系.生物信息学,2009.7(4):p.288-291.
    186. Wang D, Calla B, Vimolmangkang S, Wu X, Korban SS, Huber SC, Clough SJ, Zhao Y., The orphan gene ybjN conveys peiotropic effects on multicellular behavior and survival of Escherichia coll PLoS One,2011.6(9):p. e25293.
    187. 黄为,家蚕微孢子虫(Nosema bombycis)基因组研究——分子核型分析及染色体分离测序.博士学位论文,重庆:西南大学,2012.
    188. Williams, B.A.P., et al., A broad distribution of the alternative oxidase in microsporidian parasites. PLoS Pathog.,2010.6:p. e1000761.
    189. 胡军华,家蚕微孢子虫(Nosema bombycis)线粒体相关基因研究.博士学位论文.重庆:西南大学,2008.
    190. 邓远洪,李能章,林立鹏,潘国庆,李田,周泽扬,家蚕微孢子虫细胞分裂周期蛋白N端编码序列在酿酒酵母中的启动子活性分析.蚕业科学,2011.37(04):p.0688-0694.
    191. Niedenthal RK, Riles L, Johnston M, Hegemann JH, Green fluorescent protein as a marker for gene expression and subcellular localization in budding yeast. Yeast,1996.,12(8):p.773-786.
    192. Claros MG, Vincens P, Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem,1996.241(3):p.779-86.
    193. Cokol M, Nair R, Rost B, Finding nuclear localization signals. EMBO Rep,2000.1:p. 411-415.
    194. Nakai K, Horton P, PSORT:a program for detecting srting signals in proteins and predicting their subcellular localization. Trends Biochem Sci,1999.24:p.34-36.
    195. Small I, Peeters N, Legeai F, Lurin C, Predotar:A tool for rapidy screening proteomes for N-terminal targeting sequences. Proteomics,2004.4(6):p.1581-60.
    196. Brameier M, Krings A, MacCallum RM, NucPred—predicting nuclear lcalization of proteins. Bioinformatics,2007.23(9):p.1159-60.
    197. Bhasin M, Raghava GP, ESLpred:SVM-based method for subcellular localization of eukaryotic proteins using dipeptide composistion and PSI-BLAST. Nucleic Acids Res.,2004.32:p. W414-W419.
    198. Kumar M, Verma R, Raghava GP, Prediction of mitochondrial proteins using support vector machine and hidden Markov model. J Biol Chem,2005.281:p.5337-63.
    199. Burri L, Williams BA, Bursac D, et al, Microsporidian mitosomes retain elements of the general mitochondrial targeting system. Proc Natl Acad Sci,2006.103(43):p.15916-15920.
    200. 邓远洪,家蚕微孢子虫(Nosema bombycis)(?)功能基因组研究——家蚕微孢子虫serpin蛋白NbSPN13的定位研究硕士学位论文.重庆:西南大学,2012.
    201. Neupert W, Herrmann JM, Translocation of proteins into mitochondria. Annu Rev Biochem, 2007.76:p.723-749.
    202. Heinz E, Williams TA, Nakjang S, Noel CJ, Swan DC, Goldberg AV, Harris SR, Weinmaier T, Markert S, Becher D, Bernhardt J, Dagan T, Hacker C, Lucocq JM, Schweder T, Rattei T, Hall N, Hirt RP, Embley TM., The genome of the obligate intracellular parasite Trachipleistophora hominis:new insights into microsporidian genome dynamics and reductive evolution. PLoS Pathog.,2012.8(10):p. e1002979.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700