用户名: 密码: 验证码:
无源探测系统波达方向估计关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目标信号的波达方向(Direction ofArrival, DOA)估计是无源探测系统的关键环节,直接影响着无源探测系统的性能发挥,并关系着电子战后续作战决策。为了实现无源探测系统的高精度测向,使其具有分辨多个同时到达信号的能力,本文利用空间谱估计技术进行信号波达方向估计,围绕着实际工程应用中空间谱估计技术所面临的关键问题展开研究。研究内容包括实际工程应用中所亟需解决的信源数估计、提高波达方向估计的测角精度和分辨力、非均匀噪声下的波达方向估计和非圆信号的波达方向估计,论文主要研究工作如下。
     信源数的精确估计是空间谱估计算法实现精确测向的前提,但是在实际系统中,由于色噪声的影响,信源数通常无法进行精确的估计。针对这个问题,提出了一种色噪声背景下的信源数估计方法,即基于特征子空间投影的信源数估计新方法,该方法根据信号子空间与噪声子空间相互正交这一原理,首先对特征向量进行划分,得到特征子空间,然后将协方差矩阵在特征子空间上进行投影,得到投影值,最后信号和噪声对投影值的贡献可由投影值的方差表示,进而实现信源数估计。计算机仿真证明了算法的有效性,并且利用实际测向系统中的接收数据验证了算法的工程实用性。
     为了提高空间谱估计算法的测角精度和分辨力,提出了两种基于延时相关函数的波达方向估计方法。阵列接收数据的非零延时相关函数中蕴含了信号的角度信息,并且对噪声具有一定的抑制作用。利用这个原理,首先在均匀线阵时,经过分析发现不同阵元的延时相关函数之间具有旋转不变性,提出了基于延时相关处理的ESPRIT(Estimationof Signal Parameters via Rotational Invariance Techniques)算法;然后在任意阵列摆放形式下,提出了基于延时相关处理的MUSIC(Multiple Signal Classification)算法,并且为了提高算法的实时性,引入了变尺度的混沌优化算法,简化了二维空间谱函数的构造和谱峰搜索过程。最后利用计算机仿真实验验证了两种算法的性能。
     针对实际测向系统中阵列输出噪声为非均匀噪声,经典MUSIC算法的性能下降甚至失效的问题,提出了一种非均匀噪声下的波达方向估计方法。首先利用三个变换矩阵对协方差矩阵进行处理,得到含有噪声和不含噪声的两部分数据;然后利用这两部分数据进行噪声协方差矩阵的估计;最后利用估计的噪声协方差矩阵对接收数据进行标准化处理,使得接收数据中的非均匀噪声变成了零均值的均匀白噪声,从而将非均匀噪声下的波达方向估计转变成白噪声下的波达方向估计,抑制了非均匀噪声对算法性能的影响。计算机仿真实验测试了该算法在非均匀噪声下的性能,实际测向系统中的实验验证了算法的工程实用性。
     利用信号的非圆特性可以提高测向性能,针对非圆信号,提出了两种非圆信号波达方向估计方法。第一种方法是基于矩阵重构的非圆信号ESPRIT算法,该方法通过对阵列接收数据进行共轭重构,构造了与阵元个数相同的具有旋转不变关系的多个子阵,然后通过延时相关处理抑制了高斯白噪声对算法的影响,提高了非圆信号波达方向估计的测角精度和正确分辨概率。第二种方法是一种稳健的四阶累积量非圆信号波达方向估计方法,首先根据四阶累积量抑制高斯噪声的性能构造两个四阶累积量矩阵,然后根据这两个矩阵之间的旋转不变性进行波达方向估计,最后在通道幅相误差模型下分析了该算法的稳健性并得出结论:只要接收通道中任意两个通道具有一致性,不需要误差校正就能进行正确估计。仿真实验表明,算法测角精度和分辨力得到提高,并且算法对幅相误差具有稳健性。
The direction of arrival (DOA) estimation of target signal is a crucial technique inpassive detection systems, which has a significant influence on the system performance andthe consequent combat dictations in the electronic warfare. The spatial spectrum estimationtechnique is employed in this dissertation to improve the DOA estimation performance inorder to achieve the high-precision of passive detection system and distinguish multipletargets arriving simultaneously. The dissertation focuses on the important problems of spatialspectrum estimation technique in practical applications, which involve the estimation ofsource number, the improvement of the angular accuracy and resolution of DOA estimation,the DOA estimation under non-uniform noises and the DOA estimation for non-circularsignals.The detailed works are described as below:
     The accurate estimation of source number is a prerequisite to the accurate directionfinding for spatial spectrum estimation algorithm. The source number is difficult to estimateaccurately in practical system, because of the effect of colored noises. Therefore, a newmethod for the estimation of source number based on the eigen subspace projection principleis proposed to solve this problem. For the signal subspace is orthogonal to the noise subspace,the value which the covariance matrix projects onto the post-processed eigen subspace isobtained, the source number can be estimated from the signal and noise’s respectivecontribution to the projection that is expressed by the projection’s variance. The effectivenessand the applicability of this method are verified by the simulation calculation andexperimental measurements.
     To improve the resolution and angular accuracy of spatial spectrum estimationalgorithms, two DOA estimation methods based on delay correlation function are proposed.Non-zero delay correlation function of received data contains the DOA information of signals,and has a restraining influence on the noise. Considering this principle, the rotationalinvariance of delay correlation functions among different antennas of the uniform linear array(ULA) has been found. An ESPRIT (Estimation of Signal Parameters via RotationalInvariance Techniques) algorithm based on delay correlation processing is proposed. For anarbitrary array, a MUSIC (Multiple Signal Classification) algorithm based on delaycorrelation processing is developed. To improve the real-time performance of the algorithm,the mutative scale chaos optimization algorithm is used to simplify the construction oftwo-dimensional spectral function and the spectral peak searching. The performances of these two algorithms are tested with the computer simulation.
     In actual direction finding system, the performance of classical MUSIC algorithm maybe deteriorated due to the effect of non-uniform noise received by the array. To solve thisproblem, a new method for DOA estimation is proposed under the condition of non-uniformnoise. Firstly, by processing the covariance matrix with three transformation matrixes, twoparts of data without and with noise are obtained respectively. Then, the noise covariancematrix is estimated with the two parts of data. Finally, the non-uniform noise is changed towhite noise with equivalent value by standardizing the received data with the estimated noisecovariance matrix. Tthe non-uniform noise background for DOA estimation turns into thewhite noise background, which could minimize the effect of non-uniform noise on theperformance of algorithm. Simulation results testify to the performance of proposed algorithmunder non-uniform noise background and experimental results in actual direction findingsystem prove the engineering practicability of the proposed algorithm.
     The non-circular characteristics of signals can be used to improve the performance ofdirection finding. According to the characteristics of non-circular signals, two DOAestimation algorithms are designed. The first method is the ESPRIT algorithm of non-circularsignals based on the matrix regrouping. Sub-matrixes that have the same amount of elementsin array with rotational invariance relationship are constructed through theconjugatereconstruction of received data. Then the influence of Gaussian white noise on thealgorithm is restrained by delaying correlation processing, the simulation results show that theperformance of the proposed algorithm are better than the ESPRIT algorithm. The second oneis a robust non-circular signal DOA estimation method on the basis of fourth-order cumulant.Fourth-order cumulant could extend array aperture and suppress Gaussian noise. In view ofthese characteristics, two fourth-order cumulant matrixes are constructed, and the DOAestimation is completed on the basis of the rotational invariance of the two matrixes. Then, therobustness of this algorithm with the channel amplitude and phase error model is analyzedand the conclusions are as follows: if only any two of the reception channels arefairlyconsistent, the accurate DOA estimation could be acquired without error correction. Theangular accuracy and the resolution are improved obviously from predictions, and theproposed algorithm is robust to amplitude-phase error.
引文
[1] Schroer R. Electronic warfare[J]. IEEE Trans. on Aerospace and Electronic SystemsMagazine,2003,18(7):49-54.
    [2]朱松.现代高科技战争条件下的电子战[J].电子对抗技术,1999,14(2):7-11.
    [3]汤永涛,厉春生,王国恩.国外电子侦察装备的现状与发展趋势[J].舰船电子工程,2008,28(6):18-20.
    [4]张文旭,司锡才,蒋伊琳.相位干涉仪测向系统相位误差研究[J].系统工程与电子技术,2006,28(11):1631-1632.
    [5]司伟建,万良田.立体基线算法的测向误差研究[J].弹箭与制导学报,2012,32(4):13-17.
    [6]王永良,陈辉,彭应宁.空间谱估计理论与算法[M].北京:清华大学出版社,2004.
    [7] Schmidt R O. Multiple emitter location and spectrum estimation [J]. IEEE Trans. onSignal Processing,1986,34(3):276-280.
    [8] Abeida H, Delmas J P. Statistical performance of MUSIC-like algorithms in resolvingnoncircular sources[J]. IEEE Trans. on Signal Processing,2008,56(9):4317-4329.
    [9] Jin He, Swamy M N S, Ahmad M O. Efficient application of MUSIC algorithm under thecoexistence of far-field and near-field sources[J]. IEEE Trans. on Signal Processing,2012,60(4):2066-2070
    [10] Jong Min Kim, Ok Kyun Lee, Jong Chul Ye. Compressive MUSIC: revisiting the linkbetween compressive sensing and array signal processing[J]. IEEE Trans. on InformationTheory,2012,58(1):278-301.
    [11] Goossens R, Rogier H, Werbrouck S. UCA root-MUSIC with sparse uniform circulararrays[J]. IEEE Trans. on Signal Processing,2008,56(8):4095-4099.
    [12] Huang J, Li W, Manikas A. Fast root-MUSIC for arbitrary arrays[J]. Electronics Letters,2010,46(2):174-176.
    [13] Li F, Liu H. Statistical Analysis of beam-space estimation for direction-of-arrivals[J].IEEE Trans. on Signal Processing,1994,42(3):604-610.
    [14] Yeo Sun Yoon, Amin M G. High-resolution through-the-wall radar imaging usingbeamspace MUSIC [J]. IEEE Trans. on Antennas and Propagation,2008,56(6):1763-1774.
    [15] Xiaofei Zhang, Lingyun Xu, Lei Xu, etal. Direction of departure (DOD) and direction ofarrival (DOA) estimation in MIMO radar with reduced-dimension MUSIC[J]. IEEECommunications Letters,2010,14(12):1161-1163.
    [16] Jianfeng Li, Xiaofei Zhang. Improved joint DOD and DOA estimation for MIMO arraywith velocity receive sensors[J]. IEEE Signal Processing Letters,2011,18(12):717-720.
    [17] Longting Huang, Yuntao Wu, So H C, etal. Multidimensional sinusoidal frequencyestimation using subspace and projection separation approaches[J]. IEEE Trans. onSignal Processing,2012,60(10):5536-5543.
    [18] Roy R,Kailath T.ESPRIT-estimation of signal parameters via rotational invariancetechniques[J]. IEEE Trans. on Acoustics Speech and Signal,1986,37(7):984-995.
    [19] Taillefer E, Nomura W, Jun Cheng, etal. Enhanced reactance-domain ESPRIT algorithmemploying multiple beams and translational-invariance soft selection fordirection-of-arrival estimation in the full azimuth[J]. IEEE Trans. on Antennas andPropagation,2008,56(8):2514-2526.
    [20] Badeau R, Richard G, David B. Performance of ESPRIT for estimating mixtures ofcomplex exponentials modulated by polynomials[J]. IEEE Trans. on Signal Processing,2008,56(2):492-504.
    [21] Yang Ho Choi. ESPRIT-based coherent source localization with forward and backwardvectors[J]. IEEE Trans. on Signal Processing,2010,58(12):6416-6420.
    [22] Haardt M, Nossek J A. Unitary ESPRIT: how to obtain increased estimation accuracywith a reduced computational burden[J]. IEEE Trans. on Signal Processing,1995,43(5):1232-1242.
    [23] Tripathy P, Srivastava S C, Singh S N. A modified TLS-ESPRIT-based method forlow-frequency mode identification in power systems utilizing synchrophasormeasurements[J]. IEEE Trans. on Power Systems,2011,26(2):719-727.
    [24] Bachl R. The forward-backward averaging technique applied to TLS-ESPRITprocessing[J]. IEEE Trans. on Signal Processing,1995,43(11):2697-2699.
    [25] Nagsha V, Kay S. On frequency estimation with the IQML algorithm[J]. IEEE Trans. onSignal Processing,1994,42(9):2509-2513.
    [26] Stoica P, Sharman K C. Maximum likelihood methods for direction-of-arrivalestimation[J]. IEEE Trans. on Acoustics, Speech and Signal Processing,1990,38(7):1132-1143.
    [27]庞伟正,高洪元,王艳丽等.基于粒子群优化算法的相干信源波达方向估计[J].哈尔滨工程大学学报,2006,27(3):453-456.
    [28]高洪元,刁鸣.重构分数低阶协方差的子空间拟合测向算法[J].电波科学学报,2009,24(4):730-734.
    [29]刁鸣,李小刚,王冰.文化算法的最大似然测向方法研究[J].哈尔滨工程大学学报,2008,29(5):509-513
    [30] Bilik I. Spatial comprehensive sensing for direction-of-arrival estimation of multiplesources using dynamic sensor arrays[J]. IEEE Trans. on Signal Processing,2011,47(3):1754-1769.
    [31]刘鲁涛,司锡才,王立国.基于因子分析的信源数与噪声估计[J].电子学报,2011,39(4):837-841.
    [32] Chevalier P, Ferreol A, Albera L. High-resolution direction finding from higher orderstatistics: the2q-MUSIC algorithm[J]. IEEE Trans. on Signal Processing,2006,54(8):2986-2997.
    [33] Pal P, Vaidyanathan P P. Multiple level nested array: an efficient geometry for2qth ordercumulant based array processing[J]. IEEE Trans. on Signal Processing,2012,60(3):1253-1269.
    [34] Ye Z, Zhang Y. DOA estimation for non-Gaussian signals using fourth-ordercumulants[J]. IET Microwaves, Antennas&Propagation,2009,3(7):1069-1078.
    [35]陈建,王树勋.基于高阶累积量虚拟阵列扩展的DOA估计[J].电子与信息学报,2007,29(5):1041-1044.
    [36]唐建红,司锡才,初萍.改进的基于四阶累积量的MUSIC算法[J].系统工程与电子技术,2010,32(2):256-259.
    [37]吴建新,王彤,索志勇.一种快速波达方向估计算法[J].西安电子科技大学学报,2009,36(2):263-268.
    [38]刘红明,何子述,夏威等.无参考信号条件下基于MSWF的DOA估计算法[J].电子学报,2010,38(9):1979-1983.
    [39] Xu W, Stewart W K. Multiresolution-signal direction-of-arrival estimation: a waveletsapproach[J]. IEEE Signal Processing Letters,2000,7(3):66-68.
    [40]吕铁军,王河.利用改进遗传算法的DOA估计[J].电波科学学报,2000,15(4):429-433.
    [41]徐尚志,徐旭,叶中付.基于遗传算法的DOA估计[J].中国科学技术大学学报,2004,34(3):361-365.
    [42] Tuan D, Demmel Franz, Russer P. Wideband direction-of-arrival estimation usingfrequency-domain frequency-invariant beamformers: an analysis of performance[J].IEEE Microwave and Wireless Components Letters,2004,14(8):383-385.
    [43] S Vigneshwaran, Narasimhan Sundararajan, P Saratchandran. Direction of arrival (DOA)estimation under array sensor failures using a minimal resource allocation neuralnetwork[J]. IEEE Trans. on Antennas and Propagation,2007,55(2):334-343.
    [44] Fonseca N, Coudyser M, Laurin J J, etal. On the design of a compact neuralnetwork-based DOA estimation system[J]. IEEE Trans. on Antennas and Propagation,2010,58(2):357-366.
    [45] Gelli G, Izzo L. Cyclostationarity-based coherent methods for wideband-signal sourcelocation[J]. IEEE Trans. on Antennas and Propagation,2003,51(10):2471-2482.
    [46] Wax M, Kailath T. Detection of signals by information theoretic criteria [J]. IEEE Trans.on Acoustics, Speech and Signal Processing,1985,33(2):387-392.
    [47] Wax M, Ziskind I. Detection of the number of coherent signals by the MDL principle[J].IEEE Trans. on Acoustics, Speech and Signal Processing,1989,37(8):1190-1196.
    [48] Fishler E, Grosmann M, Messer H. Detection of signals by information theoretic criteria:general asymptotic performance analysis [J]. IEEE Trans. Signal Processing,2002,50(5):1027-1036.
    [49] Fishler E, Poor H V. Estimation of the number of sources in unbalanced arrays viainformation theoretic criteria[J]. IEEE Trans. on Signal Processing,2005,53(9):3543-3553.
    [50] Chao-Ming Cho, Petar M Djurién. Detection and estimation of DOA’s of signals viabayesian predictive densities[J]. IEEE Trans. on Signal Processing,1994,42(11):3051-3060.
    [51] Zhao L C, Krishnaiah P R, Bai Z D. Remarks on certain criteria for detection of numberof signals[J]. IEEE Trans. on Acoustics Speech and Signal Processing,1987,35(2):129-132.
    [52] Wong K M, Zhang Q T, Reilly J P. On information theoretic criteria for determining thenumber of signals in high resolution array processing [J]. IEEE Trans. on Acoustics,Speech, and Signal Processing,1990,38(11):1959-1971.
    [53] Chen W, Wong K M, Reilly J P.Detection of the number of signals:A predictedeigen-threshold approach[J]. IEEE Trans. Signal Processing,1991,39(5):1088-1098.
    [54] Stoica P, Cedervall.Detection tests for array processing in unknown correlated noisefields[J]. IEEE Trans. on Signal Processing,1997,49(5):2351-2362.
    [55] Zhang Q T, Wong K M. Information theoretic criteria for the determination of thenumber of signals in spatially correlated noise[J]. IEEE Trans. on Signal Processing,1993,41(4):1652-1663.
    [56] Wu Y H, Tam K W. Estimation of the number of signals in the presence of unknowncorrelated sensor noise[J]. IEEE Trans. on Signal Processing,1992,40(5):1053-1061.
    [57] Wu Y H, Yang J F, Chen F K. Source number estimators using transformed Gerschgorinradii[J]. IEEE Trans. on Signal Processing,1995,43(6):1325-1333.
    [58]牟建超,高梅国,江长勇.基于修正Hung-Turner投影的快速信源数检测算法[J].电子与信息学报,2010,32(2):350-354.
    [59]牟建超,高梅国,江长勇.基于前后向协方差矩阵投影的信源数估计算法[J].系统工程与电子技术,2010,31(10):2036-2040.
    [60]包志强,韩冰,吴顺君.基于模糊聚类的信源个数检测新算法[J].电子与信息学报,2006,28(10):1761-1765.
    [61] Huang L, Long T, Mao E, etal. MMSE-based MDL method for accurate source numberestimation[J]. IEEE Signal Processing Letters,2009,16(9):798-801.
    [62] Huang L, Long T, Mao E, etal. MMSE-Based MDL method for robust estimation ofnumber of sources without eigendecomposition[J]. IEEE Trans. on Signal Processing,2009,57(10):4135-4142.
    [63] Kritchman S, Nadler B. Non-parametric detection of the number of signals: hypothesistesting and random matrix theory[J]. IEEE Trans. on Signal Processing,2009,57(10):3930-3941.
    [64] Jingmin Xin, Nanning Zheng, Sano A. Simple and efficient nonparametric method forestimating the number of signals without eigendecomposition[J]. IEEE Trans. on SignalProcessing,2007,55(4):1450-1420.
    [65] Zhen J Q, Si X C, Liu L T. Method for determining number of coherent signals in thepresence of colored noise[J]. Journal of Systems Engineering and Electronics,2010,21(1):27-30.
    [66] Wu Y H, Tam K W, Li F. Determination of number of sources with multiple arrays incorrelated noise fields[J]. IEEE Trans. on Signal Processing,2002,50(6):1257-1260.
    [67] Gu J F, Wei P, Tai H M. Detection of the number of sources at low signal-to-noise ratio[J].IET Signal Processing,2007,1(1):2-8.
    [68]张杰,廖桂生,王珏.空间相关色噪声下基于酉变换的信号源数目估计[J].电子学报,2005,33(9):1581-1585.
    [69]白兴宇,姜煜,赵春晖.基于空间虚拟延迟抽头的信源数检测方法[J].兵工学报,2007,28(10):1246-1251.
    [70] Chen V C. DOA estimation for coherent sources in unknown nonuniform noise fields[J].IEEE Trans. on Aerospace and electronics Systems,2007,43(3):1195-1203.
    [71] Liang J L. Joint Azimuth and elevation direction finding using cumulant[J]. IEEESensors Journal,2009,9(4):390-398.
    [72] Zeng W J, Li X L, Zhang X D. Direction-of-arrival estimation based on the jointdiagonalization structure of multiple fourth-order cumulant matrices[J]. IEEE SignalProcessing Letters,2009,16(3):164-167.
    [73] Suwandi Lie, Leyman A R, Yong Huat Chew. Fourth-order and weighted mixed orderdirection-of-arrival estimators[J]. IEEE Signal Processing Letters,2006,13(11):691-694.
    [74] Birot G, Albera L, Chevalier P. Sequential high-resolution direction finding from higherorder statistics[J]. IEEE Trans. on Signal Processing,2010,58(8):4144-4155.
    [75]刘若伦,徐景,王树勋.复杂噪声中的二维DOA估计新方法[J].电子学报,2000,28(12):94-96.
    [76] Charge P, Wang Y. An extended cyclic MUSIC algorithm[J]. IEEE Trans. on SignalProcessing,2003,51(7):1695–1701.
    [77] ZHAO F, CHEN D M, JING T, LI S H. DOA estimation in multipath based onthird-order cyclic moment[J]. The Journal of China Universities of Posts andTelecommunications.2007,14:100–104.
    [78]陈辉,苏海军.强干扰/信号背景下的DOA估计新方法[J].电子学报,2006,34(3):530-534.
    [79] Nagesha V, Kay S. Maximum likelihood estimation for array processing in colorednoise[J]. IEEE Trans on Signal Processing,1996,44(2):169-180.
    [80] Chen C E, Lorenzelli F, Hudson R E, etal. Stochastic maximum-likelihood DOAestimation in the presence of unknown nonuniform noise[J]. IEEE Trans on SignalProcessing,2008,56(7):3038-3044.
    [81] Prasad S, Williams R Y, Mahalanabis A K, etal. A transform-based covariancedifferencing approach for some classes of parameter estimation problems[J]. IEEE Transon Acoustics, Speech and Signal Processing,1988,36(5):631-641.
    [82]齐崇英,王永良,张永顺等.色噪声背景下相干信源DOA估计的空间差分平滑算法[J].电子学报,2005,33(7): l314-1315.
    [83]吴云韬,廖桂生,陈建峰.一种色噪声环境下的DOA估计的新方法[J].电子学报,2001,29(12):1605-1607.
    [84] Wu W T, Hou C H, Liao G S, etal. Direction-of-arrival estimation in the presence ofunknown nonuniform noise fields[J]. IEEE Journal of Oceanic Engineering,2006,31(2):504-510.
    [85] Li M H, Lu Y L. Maximum likelihood DOA estimation in unknown colored noisefields[J]. IEEE Trans. on Aerospace and Electronic Systems,2008,44(3):1079-1090.
    [86] Li T, Nehorai A. Maximum likelihood direction finding in spatially colored noise fieldsusing sparse sensor arrays[J]. IEEE Trans. on Signal Processing,2011,59(3):1048-1062.
    [87] Werner K, Jansson M. DOA estimation and detection in colored noise using additionalnoise-only data[J]. IEEE Trans. on Signal Processing,2007,55(11):5309-5322.
    [88] Madurasinghe D. A new DOA estimator in nonuniform noise[J]. IEEE Signal ProcessingLetters,2005,12(4):337-339.
    [89]余莉.利用空间平滑差分算法进行DOA估计[J].现代雷达,2008,30(8):87-90.
    [90]周伟,冯大政,刘建强.一种新颖的DOA估计算法[J].电子与信息学报,2005,27(10):1513-1516.
    [91] Hassen S B, Bellili F, Samet A, et al. DOA estimation of temporally and spatiallycorrelated narrowband noncircular sources in spatially correlated white noise [J]. IEEETrans. on Signal Processing,2011,59(9):4108-4121.
    [92] Bernard P. On circularity [J]. IEEE Trans. on Signal Processing,1994,42(12):3473-3482.
    [93] Neeser F D, Massey J L. Proper complex random processes with application toinformation theory [J]. IEEE Trans. on Information Theory,1993,39(4):1293-1302.
    [94] Gounon P, Adnet C, Galy J. Localization angulaire de signaux non circulaires [J].Traitement du signal,1998,15(1):17-23.
    [95] Chargé P, Wang Y, Saillard J. A non-circular sources direction finding method usingpolynomial rooting [J]. IEEE Trans. on Signal Processing,2001,81(6):1765-1770.
    [96] Gao F, Wang Y, Nallanathan A. Improved MUSIC by exploiting both real and complexsources[C].2006IEEE Military Communications Conference,2006:1-6.
    [97] Abeida H, Delmas J P. MUSIC-like estimation of direction of arrival for noncircularsources[J]. IEEE Trans. on Signal Processing,2006,54(7):2678-2690.
    [98] Zoubir A, Chargé P, Wang Y. Non circular sources localization with ESPRIT[C]. The6thEurope Conference Wireless Technology, Munich Germany, October2003.
    [99] Haardt M, Romer F. Enhancements of unitary ESPRIT for non-circular sources[C].IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP2004),2004,2:101-104.
    [100] Romer F, Haardt M. Efficient1-D and2-D DOA Estimation for non-circular sourceswith hexagonal shaped espar arrays[C].2006IEEE International Conference onAcoustics, Speech and Signal Processing(ICASSP2006),2006,4:881-884.
    [101] Delmas J P. Asymptotically minimum variance second-order estimation for noncircularsignals with application to DOA estimation[J]. IEEE Trans. on Signal Processing,2004,52(5):1235-1241.
    [102] Abeida H, Delmas J P. Efficiency of subspace-based DOA estimators[J]. IEEE Trans. onSignal Processing,2007,87(9):2075-2084.
    [103] Xu Y, Liu Z, Cao J. Perturbation analysis of conjugate MI-ESPRIT for single acousticvector-sensor-based noncircular signal direction finding[J]. IEEE Trans. on SignalProcessing,2007,87(7):1597-1612.
    [104] Porat B, Friedlander B. Direction finding algorithms based on high-order statistics[J].IEEE Trans. on Signal Processing,1991,39(9):2016-2023.
    [105] Stoica P, Nehorai A. MUSIC, maximum likelihood and Cramer-Rao bound: furtherresults and comparisons [J]. IEEE Trans. on Acoustics, Speech, and Signal Processing,1990,38(12):2140-2150.
    [106] Stoica P, Nehorai A. Performance comparison of subspace rotation and MUSICmethods for direction estimation[J]. IEEE Trans. on Signal Processing,1991,29(2):446-453.
    [107] Stoica P, Soderstrom T. Statistical analysis of MUSIC and subspace rotation estimatesof sinusoidal frequencies [J]. IEEE Trans. on Signal Processing,1991,38(8):1836-1847.
    [108] Schreier P J, Scharf L L. Second-order analysis of improper complex random vector andprocesses[J]. IEEE Trans. on Radar and Signal Processing,2003,51(3):714-725.
    [109]刘剑.非圆信号波达方向估计算法研究[D].国防科学技术大学博士学位论文,2007:8-18.
    [110] Roy R, Kailath T. ESPRlT-a subspace rotation approach to estimation of parameters ofcissoids in noise[J]. IEEE Trans. on Acoustics Speech and Signal,1986,34(10):1340-1342.
    [111]苏力,施家添.圆口径天线的近场分析[J].云南大学学报(自然科学版),2005,27(5A):140-142.
    [112]文光华,张祖荫,郭伟等.微波辐射特性测试场的设计[J].华中理工大学学报,1995,23(8):117-120.
    [113] Wu H T, Yang J F, Chen F K. Source number estimator using gerschgorin disks[J]. IEEETrans. on Acoustics Speech Signal Processing,1994,4(4):261-264.
    [114] Cozzens J H, Sousa M J. Source enumeration in a correlated signal environment[J].IEEE Trans. on Acoustics Speech and Signal Processing,1994,42(2):304-317.
    [115] Chen W, Reilly J P. Detection of the number of signals in noise with banded covariancematrices[J]. IEEE Trans. on Signal Processing,1992,42(5):377-380.
    [116]彭巧乐,司锡才,李利.阵元间互耦与通道幅度不一致性条件下的信源数估计[J].系统工程与电子技术,2009,31(5):1097-1100.
    [117] Abr amovich Y I, Spencer N K, Gorokhov A Y. Detection of more uncorrelatedGaussian sources than sensors using fully augmentable sparse antenna arrays[J]. IEEETrans. on Signal Processing,2003,51(6):1492-1507.
    [118]张杰,廖桂生,王珏.对角加载对信号源数检测性能的改善[J].电子学报,2004,32(12):2094-2097.
    [119]谢纪岭,司锡才.基于协方差矩阵对角加载的信源数估计方法[J].系统工程与电子技术,2008,30(1):46-49.
    [120]李京华,周海燕,许家栋等.基于MDL比值的战场目标个数盲估计算法[J].西北工业大学学报,2008,26(6):712-716.
    [121]李京华,许家栋,李红娟.战场多目标混合声信号源数盲估计算法研究[J].兵工学报,2008,29(5):596-600.
    [122]刘君.色噪声背景中信源数检测方法研究[D].西安电子科技大学硕士学位论文,2004:33-35.
    [123] Calson B D. Covariance matrix estimation errors and diagonal loading in adaptivearrays[J]. IEEE Trans.on Aerospace and Electronics Systems,1988,24(7):397-401.
    [124] Chen Y M, Lee J H, Yeh C C. Two-dimensional angle-of-arrival estimation for uniformplanar arrays with sensor position errors[J]. Radar and Signal Processing, IEEProceedings F,1993,140(1):37-42.
    [125] Chen F J, Kwong S, Kok C W. ESPRIT-like two-dimensional DOA estimation forcoherent signals[J]. IEEE Trans. on Aerospace and Electronic Systems,2010,46(3):1477-1484.
    [126] Zhang X F, Gao X, Xu D Z. Multi-invariance ESPRIT-based blind DOA estimation forMC-CDMA with an antenna array[J]. IEEE Trans. on Vehicular Technology,2009,58(8):4686-4690.
    [127]梁军利,刘丁,张军英.基于ESPRIT方法的近场源参数估计[J].系统工程与电子技术,2009,31(6):1299-1302.
    [128] Tayem N, Kwon H M. Conjugate ESPRIT (C-SPRIT)[J]. IEEE Trans. on Antennas andPropagation,2004,52(10):2618-2624.
    [129] Jean-Pierre Delmas. Comments on “Conjugate ESPRIT (C-SPRIT)”[J]. IEEE Trans. onAntennas and Propagation,2007,55(2):511.
    [130] Tayem N, Kwon H M. Rely to Comments on “Conjugate ESPRIT (C-SPRIT)”[J]. IEEETrans. on Antennas and Propagation,2007,55(2):512-513.
    [131] Schmidt R. Multiple emitter location and signal parameter estimation[J]. IEEETransactions on Antennas and Propagation,1986,34(3):276-280.
    [132] Kaveh M, Barabell A. The statistical performance of the MUSIC and theminimum-norm algorithm in resolving plane waves in noise[J]. IEEE Transactions onAcoustics, Speech, and Signal Processing,1986,34(2):331-341.
    [133] Ferreol A, Larzabal P, Viberg M.Statistical analysis of the MUSIC algorithm in thepresence of modeling errors, taking into account the resolution probability[J]. IEEETransactions on Signal Processing,2010,58(8):4156-4166.
    [134]刁鸣,陈超,杨丽丽.四阶累积量阵列扩展的传播算子测向方法[J].哈尔滨工程大学学报,2010,31(5):652-656
    [135] Kundu D. Modified MUSIC algorithm for estimating DOA of signals [J]. SignalProcessing,1996,48(1):85-90.
    [136] Liu F G, Diao M. A novel algorithm for DOA estimation [C].2nd InternationalSymposium on Information Science and Engineering, ISISE2009,2010:488-492.
    [137] Young-Soo Kim, Young-Su Kim. Improved resolution capability via virtual expansionof array [J]. Electronics Letters,1999,35(19):1596-1597.
    [138] Shan Z L, Yum T S P. A conjugate augmented approach to direction-of-arrivalestimation [J]. IEEE Transactions on Signal Processing,2005,53(11):4104-4109.
    [139]刘剑,于红旗,黄知涛等.二阶共轭增强MUSIC算法[J].信号处理,2008,24(3):411-413.
    [140]刘剑,于红旗,黄知涛等.基于二阶预处理的共轭扩展MUSIC算法[J].系统工程与电子技术,2008,30(1):57-60.
    [141]陈永倩,肖先赐.基于混沌寻优的DOA估计[J].电子与信息学报,2005,27(3):388-391.
    [142]邹恩,陈建国,李祥飞.一种改进的变尺度混沌优化算法及其仿真研究[J].系统仿真学报,2006,18(9):2426-2428.
    [143] Zhou C G, Haber F, Jaggard D L. The resolution threshold of MUSIC with unkownspatially colored noise[J]. IEEE Trans. on Signal Processing,1993,41(1):511-516.
    [144] Hansen P C, Jensen S H. Prewhitening for rank-deficient noise in subspace methods fornoise reduction[J]. IEEE Trans. on Signal Processing,2005,53(1):3718-3726.
    [145]余岩,王宏远,谢雨翔.一种在未知噪声下的快速波达方向估计方法[J].系统工程与电子技术,2010,32(4):707-711.
    [146] Sinath H, Reddy U V. Analysis of MUSIC algorithm with sensor gain and phasepreturbations [J]. IEEE Trans. on Signal Processing,1991,23:245-256.
    [147] Chen Y H, Lin Y S. Fourth-order cumulant matrices for DOA estimation[J]. IEEProceedings of Radar, Sonar and Navigation,1994,141(3):144-148.
    [148] Goransson B, Ottersten B. Direction estimation in partially unknown noise field [J].IEEE Trans. on Signal Processing,1999,47(9):2375-2384.
    [149]刘兆霆,阮谢永,刘中.色噪声背景下基于声矢量阵列孔径扩展的相干目标波达方向估计[J].兵工学报,2011,32(3):257-263.
    [150]艾名舜,马红光,刘刚.基于噪声子空间解析形式的快速DOA估计算法[J].电子与信息学报,2010,32(5):1071-1076.
    [151] Bernard P. Second-order statistics of comple signals [J]. IEEE Trans. on SignalProcessing,1997,45(2):411-420.
    [152]冯大政,郑春弟,周伟.一种利用信号特点的实值MUSIC算法[J].电波科学学报,2007,22(2):331-335.
    [153]郑春弟,冯大政,周祎等.基于非圆信号的实值ESPRIT算法[J].电子与信息学报,2008,30(1):130-133.
    [154]史文涛,黄建国,侯云山.基于非圆信号的波束域共轭MUSIC方法[J].系统工程与电子技术,2009,31(10):2317-2319.
    [155]史文涛,黄建国,侯云山.基于非圆信号的MIMO阵列方位估计方法[J].系统工程与电子技术,2010,32(8):1596-1599.
    [156] Chevalier P, Albera L, Ferreol A, et al. On the virtual array concept for higher orderarray processing[J]. IEEE Trans. on Signal Processing,2005,53(4):1254-1271.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700