用户名: 密码: 验证码:
镉污染土壤的电动力学修复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤污染具有隐蔽性、潜伏性和不可逆性等特点,因此,土壤污染一般极难恢复或治理。重金属是最为重要的一类土壤污染物。本文首先介绍了污染土壤修复技术现状,以镉污染土壤为对象,研究了不同条件对土壤中镉解吸行为的影响,污染土壤中镉的电动力学迁移效果,并以铁屑和活性炭构成原电池对土壤中镉进行了电动力学迁移的可行性研究。论文的主要结论包括:
     (1)镉的解吸效果随着pH值的减小和离子强度的增加而增加。当pH小于4.8时,随着pH的增加,镉的解吸率迅速减小。有机酸的加入能够促进土壤中镉的解吸行为。EDTA能够较大的提高土壤中镉的解吸效果,而柠檬酸对镉的解吸效果影响很小。
     (2)污染土壤中镉的电动力学迁移效果随施加电压的增加而增加。镉的迁移效果受pH的影响较大,较低的pH产生较为明显的迁移效果。
     (3)利用铁屑和活性碳构建原电池产生电场驱动土壤中镉的电动力学迁移是可行的。不同电极间距(10 cm,20 cm,30 cm)处理结果表明,镉的迁移效果随电极间距的增加而显著降低。10 cm电极间距土壤中镉的去除率达77.93%,50 cm的电极间距下镉的迁移作用很小。阴极室加入酸性冲洗液如盐酸溶液,柠檬酸溶液等有助于电压的提高,阴极室加入EDTA对镉的迁移效果影响不大。
Soil pollution is lagging, dormant and irreversible, therefore, soil pollution is usually difficult to be remedied and treated. Heavy metal is a kind of important soil pollutant. This paper reviewed the soil remediation technology firstly, used cadmium as a representative heavy metal pollutant, investigated the effect of different factors on desorptions of cadmium, and investigated the electrikinetic movement of cadmium with different conditions. The feasibility of the process to restore Cd-comtaminated soil by an iron (Fe) and carbon (C) primary cell is studied also. The main conclusions of this thesis are as follows:
     (1) The desorption of cadmium increased with the decline of pH and the increase of ionic strength. At pH below 4.8, the desorption of cadmium declinced linearly with the rise of pH. The desorption of cadmium can enhanced by organic acids. EDTA showed excellent enhancement on the desorption of cadmium, however, the desorption of cadmium can not be enhanced by citric acid.
     (2) In the process to restore Cd-comtaminated soil by electrikinetic, the movement of cadmium was greatly increased with the rise of the electric potential. The movement of cadmium was also related to the value of pH. Low pH also has enhancement on the elecromigration efficiency of cadmium.
     (3) The processes to restore Cd-comtaminated soil by an iron (Fe) and carbon (C) primary cell were feasible. A primary cell, with different distances of electrodes, 10 cm, 20 cm, 30 cm and 50 cm respectively, were used to restore Cd-comtaminated soil. The results indicated that the eletromigration efficiencies of Cd declined with the increase of distance. And the eletromigration efficiency was up to 77.93% when the distance of electrodes was 10cm but negligible when the distance of electrodes was 50 cm. The addition of acid eg.HCl and citric acid to cathode compartment could increase the electric potential. The addition of EDTA to cathode compartment had negligible enhancement on the eletromigration efficience of cadmium.
引文
[1]陈怀满.我国污染土壤现状、背景趋势及其对策建议.土壤学进展,1990,18(1):53~57.
    [2]陈志良,仇荣亮.重金属污染土壤的修复技术.环境保护,2002,29(6):21~23.
    [3]钱署强,刘铮.污染土壤修复技术介绍.化工进展,2000,(4):10~15.
    [4]夏汉平.土壤-植物系统中的镉研究进展.应用与环境生物学报,1997,3(3):289~295.
    [5]余贵芬,青长乐.重金属污染土壤治理研究现状.农业环境与发展,1998,15(4):22~24.
    [6]高振民.土壤-植物系统污染生态研究.北京:中国科学技术出版社,1986.
    [7]丁园.重金属污染土壤的治理方法.环境与开发,2000,2(15):25~28.
    [8]夏星辉,陈静生.土壤重金属污染治理方法研究进展.环境科学,1997,18(3):72~76.
    [9]何益波,李立清,曾清如.重金属污染土壤修复技术的进展.广州环境科学,2006,21(4):26~31.
    [10]武晓峰,唐杰,藤间幸久.土壤、地下水中有机污染物的就地处置.环境污染治理技术与设备,2000,4(1):46~51.
    [11] Tokunagas, Hakutat. Acid washing and stabilization of an artificial arsenic-contaminated soil. Chemosphere, 2002, 46(1): 31~38.
    [12] Alammgm, Tokunagas, Maekawa T. Extraction of arsenic in a synthetic arsenic contaminated soil using phosphate. Chemosphere, 2001, 43(8): 1035~1041.
    [13]周国华,黄怀曾,何红蓼等.北京市东南郊自然土壤和模拟污染影响下Cd赋存形态及其变化.农业环境科学学报,2003,22(1):25~27.
    [14]王建林.水稻根际中铁的形态转化.土壤学报,1992,29(4):358~363.
    [15]蔡信德,仇荣亮.微生物在镍污染土壤修复中的作用.云南地理环境研究,2005,17(3):9~12.
    [16]耿春女.菌根生物修复技术在沈抚污水灌区的应用前景.环境污染治理技术与设备,2002,3(7):51~55.
    [17]黄会一.木本植物对土壤镉的吸收、积累、耐性.中国环境科学,1989,9(5):323~330.
    [18] Tang S, Huang C, Zhu Z. A hyper accumulator of copper. J. Zhejiang Agric. Univ, 1997, 23(2): 228~235.
    [19] Casagrande L. The application of electro-osmosis to practical problems in foundations and earthworks. Builiding Tech Pap, No.30, H.M.S.O, London.
    [20] Alshawabkeh A. N, Yeung A. T, Brika M. R. Practical aspects of in-situ electrokinetic extraction. J. Environ Eng, 1999, 125(1): 27~35.
    [21] Maini G, Shrman A. K, Sunderland G, et al. An integrated method incorporating sulfur-oxidizing bacteria and electrokinetics to enhance of copper from contaminated soil. Environ. Sci Techno, 2000, 34(6): 1081~1087.
    [22] Virkutyte J, Sillanpaa M, Latostenmaa P. Electrokinetic soil remediation-critical overview. Sci. Total Environ, 2002, 289(22): 97~121.
    [23] Mattson E. D, Bowman R. S, Lindgren E. R. Electrokinetic remediation using surfactant-coate ceramic casings. J. Environ Eng, 2000, 126(6): 534~540.
    [24] Ribeiro A. B, Mexia J. T. A dynamic model for the electrokinetic removal of copper from a polluted soil. J. Hazard Mater, 1997, 56: 257~271.
    [25] Acar Y. B, Alshawabkeh A. N. Principles of electrokinetic remediation. Environ. Sci Technol, 1993, 27(13): 2638~2647.
    [26] Diana C. G, Joseph T, Swartzbaugh, et al. The use of electrokinetics for hazardous waste site remediation. Air Waste Manage Assoc. 1990, 40: 1670~1676.
    [27] Paul C. H,周祖康译.胶体与表面化学原理,第一版.北京:北京大学出版社,1986.3.
    [28]于天仁.土壤电化学性质及其研究方法,第二版.北京:科学出版社,1975.5.
    [29] Leland M. V, Gwen M. Z. Effect of aqueous phase properties on clay particle zeta potential and electro-osmotic permeability: Implications for electrokinetic soil remediation processes. J. Hazard Mater, 1997, 55(1-3): 1~22.
    [30] Raymoud S. L, Loretta Y. L. Enhancement of electrokinetic extraction fromLead-spiked soils. Environ.Engrg, ASCE. 2000, 26(9): 849~857.
    [31] Probstein R. E, Hicks R. E. Removal of contaminants from soils by electricfields. Chemosphere, 1993, 260: 498~503.
    [32] Hamed J, Acar Y. B. Gale R. J. Pb (Ⅱ) removal from kaolinite by electrokinetics. Geotech Eng, 1991, 117(2): 241~271.
    [33]钱署强,金卫华,刘铮.从土壤中去除Cu2+电修复过程.化工学报,2002,53(3):236~240.
    [34] Sah J. G, Chen J. Y. Study of the electrokinetic process on Cd and Pb spiked soils. J. Hazard Mater, 1998, 58: 301~315.
    [35] Rahner D, Ludwig G, Rohrs J. Electrochemically induced reactions in soils-a new approach to the in-site remediation of contaminated soils. Electrochimica Acta, 2001, 47(9): 1395~1403.
    [36] Li Z. M, Yu J. W, Neretnieks I. Removal of Pb(Ⅱ),Cd(Ⅱ) and Cr(Ⅲ) form sand by electromigration. J. Hazard Mater, 1997, 55(8): 295~304.
    [37] Puppala S. K, Alshawabkeh A. N, Acar Y. B, et al. Enhanced electrokinetic remediation of high sorption capacity soil. J. Hazard Mater, 1997, 55: 203~220.
    [38] Li Z. M, Yu J. W, Neretnieks I. Electroremediation: Removal of heavy metals from soil by using cation selective membrance. Environ. Sci Technol. 1998, 32: 394~397.
    [39] Ottosen L. M, Hasen H. K, Laursen S. L, et al. Electrodialytic remediation of soil polluted with copper from wood preservation industry. Environ. Sci Technol, 1997, 31(6): 1711~1715.
    [40] Wong S. H, Hicks R. E, Probstein R. F. EDTA-enhanced electroremediation of metal contaminated soils. J. Hazard Mater, 1997, 55: 61~79.
    [41] Ko S, Schlautman M. A, Carraway E. R. Cyclodextrin enhanced electrokinetic removal of phenanthrene from a modelclay soil. Environ. Sci Technol, 2000, 34 (8): 1535~1541.
    [42]罗启仕,张锡辉,钱易等.土壤酚类污染物在电动力学作用下的迁移及其机理.中国环境科学,2004,24:134~138.
    [43]周东美,邓昌芬.重金属污染土壤电动修复的研究进展.农业环境科学学报,2003,22(4):505~508.
    [44] Lageman R. Electroreclamation: applications in the Netherlands. Environ. Sci Technol, 1993, 27: 2648~2650.
    [45] Cox C. D, Shoesmith M. A, Ghosh M. M. Electrokinetic remediation of mercury-contaminated soils using iodine/ iodide lixiviant. Environ. Sci Technol, 1996, 30: 1933~1938.
    [46] Wu L. H, Luo Y. M, Christi P, et al. Effects of EDTA and low molecular weight organic acids on soil solution properties of heavy metal polluted soil. Chemosphere, 2003, 50: 819~822.
    [47]张桂银,董元彦,李学垣.土壤对镉的吸附及影响因素.迈向21世纪的土壤与植物营养科学-第六界全国青年土壤暨首届全国青年植物营养科学工作者学术讨论会论文集.北京:中国农业出版社,1997.107~111.
    [48]中国科学院南京土壤研究所.土壤理化分析(第一版).上海:上海科学技术出版社,1978.
    [49] ISO 11260-1997.土质用钡氯溶液测定有效阳离子交换能力和基本饱和水平.
    [50]李学垣.土壤化学与实验指导.北京:中国农业出版社,1997.
    [51] Srivastava P, Singh B, Angove M. Competitive adsorption behavior of heavy metals on kaolinite. J. Colloid Inter. Sci, 2005, 290: 28~38.
    [52]王正烈,周亚平,李松林.物理化学.第四版.北京:高等教育出版社,2001.
    [53] Kim S. O, Kim J. J, Yun S. T, et al. Numerical and experimental studies on cadmium (II) transport in kaolinite clay under electrical field. Water Air Soil Pollut, 2003, 150: 135~162.
    [54] Phillips I. R, Lamb D. T, Warker D. W, et al. Effect of pH and salinity on copper, lead, and zinc sorption rates in sediments from moreton bay, Australia. Bull. Environ. Contam. Toxical, 2004, 73: 1041~1048.
    [55]何宏平.粘土矿物与金属离子作用研究.北京:石油工业出版社,2001.
    [56] Gidarakos E, Giannis A. Chelate agents enhanced electrokinetic remediation for removal cadmium and zinc by conditioning catholyte pH. Water air soil Pollut, 2006, 172: 295~312.
    [57] Ravera M, Ciccarelli C, Gastaldi D, et al. An experiment in the electrokineticremoval of copper from soil contaminated by the brass industry. Chemosphere, 2006, 63(6), 950~955.
    [58] Kari F. G, Giger W. Speciation and fate of ethylenediame-tetaacetate (EDTA) in municipal wastewater treatment. Water Res, 1996, 30(1): 122~134.
    [59]武汉大学主编.分析化学.第四版.北京:高等教育出版社,2004.
    [60] Saichek R. E, Reddy K. R. Effect of pH control at the anode for the electrokinetic removal of phenanthrene from kaolin soil. Chemosphere, 2003, (51): 273~287.
    [61] Yuan S. H, Wu C, Wan J. Z, et al. Electromigration of cadmium in soils by a primary cell. J. Hazard Mater, In press.
    [62] Yuan S. H, Wan J. Z, Wu C, et al. In situ remediation of copper-contaminated sediments by a galvanic cell. Chemosphere, In press.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700