用户名: 密码: 验证码:
现代电力系统电能质量评估体系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先依据当代电力系统的运行状态及电能质量特点,对现代电能质量的内容提出了新的分类方法,即连续型和事件型,其中连续型包括谐波、电压不平衡、电压偏差、频率偏差以及电压波动与闪变,事件型包括电压暂升、暂降、暂时或瞬态过电压和长、短时间电压中断和。电能质量评估体系是建立在此基础上的。
     然后,本文系统化地定义了电能质量的各种评估方式,包括:单项评估、综合评估、监测点评估、系统评估、规划评估、兼容评估、指标量化评估和定性等级评估,并从电力用户需求出发,首次给出了电能质量定制评估和公众评估的定义。在分析这些评估方式之间的关系基础上,建立了一个不同视觉的分层电能质量评估体系架构。专业技术层评估是基于监测记录的实测数据,从纵向流程上,按电能质量的指标内容、空间层次和不同结果形式进行技术性评估。应用服务层评估是将技术性评估结果映射到与电力市场实体发生关系的应用服务上。
     在建立的体系架构下,本文从评估流程、时间组合、相数组合和指标定义四个评估基本要素出发,分别建立和完善了包括谐波电压、谐波电流、电压不平衡、电压偏差和频率偏差五个连续型电能质量评估模型。
     依据事件型电能质量的共同特征以及它们对用户影响的类似性,提出了事件型电能质量评估模型,包括提出的四类电压暂降(含短时间中断)评估指标和完善的长时间电压中断评估指标(传统供电可靠性指标),并提出了事件型电能质量综合评估指标,即供电可靠率修正指标RS*,以评估现代电能质量两大主要问题,电压长时间中断和暂降。
     最后,在对电能质量单项指标评估研究的基础上,本文根据综合评价的不同应用环境,提出了依据限值水平的基于短板效应的量化指标和定性等级的电能质量综合评估模型。量化综合指标值是限值或协约值的百分比,便于电力调度和规划部门及时发现问题的严重程度,提供控制措施和治理决策的基础数据。基于设备试验水平、规划水平、兼容水平和特殊低干扰水平,将电力扰动发射域分为五个等级,评估的电能质量等级适合电能质量的多层次需求、定价与交易,激励电力用户和电力公司共同改善和维护良好的电磁环境,最终减少全社会因电能质量问题造成的巨大能源损失和经济损失。
     建立的一个体系架构和七个评估模型构成了一个较完整的电能质量评估体系。本文还以多方式多地点的电能质量实地监测数据为基础,进行了评估算例分析,结果显示,提出的评估体系能够有效地实现现代电能质量的全面考量。
According to the power quality (PQ) characteristics of modern power system, a novel classifying method was presented, succession type and event type of PQ. The succession type includes harmonics, voltage unbalance, voltage deviation, power frequency deviation and flicker. The event type includes voltage sags, swells, short duration interruption, sustained interruption and transient over-voltage.
     The definition of custom assessment and public assessment of PQ were presented for the need of electric customers. The relationship of single assessment, comprehensive assessment, sites assessment, system assessment, planning assessment, compatibility assessment, quantifying assessment, qualitative assessment, custom assessment and public assessment of power quality were analyzed. Based on it, an infrastructure of power quality assessment system (PQESI) was built from different views. It has two layers. On the technology layer PQ assessment can be made according to quality contents, net circumstances, the forms of outcomes. The results of assessments on the technology layer can be mirrored to the application layer, which faces the entities of electricity market, utilities and power customers. Under the PQESI, from the assessment process, time aggregation, phase aggregation and indices definition, five assessment models of succession type PQ were built, including the assessment models of voltage harmonics, current distortion, voltage unbalance, voltage deviation, and power frequency deviation. Based on the analysis of event-type PQ common characteristics and the influence on end-users caused by them, the assessment model of event-type PQ was proposed. Under the model four-type indices of voltage sags were proposed, 1) event times, 2) economic equivalent interruption hours of events, 3) sag energy, 4) cost of event, and then the comprehensive index of event-type PQ, the corrected reliability index RS*, was represented.
     Finally, the comprehensive assessment model of PQ was proposed, including quantifying comprehensive index (QCI) and comprehensive hierarchy evaluation (CHE). All of them are based on the cask effect theory and the limited level of the PQ standards. The value of the QCI is a measure of how much a disturbance type exceeds a maximum acceptable value. The expression of QCI conveniently gives some intuitive judgment and control-decision assistance to the operators. The PQ grade of CHE with limited number of grades is more adaptable to market operation.
     An assessment system of PQ (PQAS) was made up of One PQESI and seven assessment models of PQ (PQAMs). Many cases studies based on actual monitored data of PQ showed that the PQAS could effectively test the actual levels of modern PQ.
引文
[1]肖湘宁编著.电能质量分析与控制.北京:中国电力出版社, 2004年
    [2] Primen Study, The cost of power disturbances to industrial and digital economy companies, June, 2001
    [3] Blevins J., Von Dollen D., McGranaghan M., Reliability and quality of supply for the grid of the future understanding the economics(CEIDS)PowerCon 2004 on Power System Technology, Singapore,2004. Vol.1, 254~259
    [4]郭永基.电力系统可靠性分析.北京:清华大学出版社, 2003年
    [5] Roger C.Dugan, Surya Santoso, Mark F. McGranaghan, et al.Electrical power systems quality, New York: McGraw-Hill,2002
    [6] Carpinelli, G., Caramia, P., Russo, A., et al.New system harmonic indices for power quality assessment of distribution networks, Universities Power Engineering Conference, 2004. UPEC 2004. 39th International 6-8 Sept. 2004 ,Vol. 2, 973 - 977
    [7] Brooks D L, Dugan R C, Waclawiak M.Indices for assessing utility distribution system RMS variation performance.IEEE Trans. Power Delivery,1998,13(1):254-259.
    [8] Bollen M.H.J., Sabin D.D., Voltage-sag indices—recent developments in IEEE P1564 Task force, CIGRE/IEEE PES International Symposium,Canada, 2003, 34-41.
    [9]刘颖英智能化电能质量综合评估方法分析与比较研究[硕士学位论文]北京:华北电力大学,2007
    [10]江辉,彭建春,欧亚平等.基于概率统计和矢量代数的电能质量归一量化与评价.湖南大学学报,2003,(30)1:66~70
    [11]丁立,赵成勇.物元分析在电能质量综合评估中的应用.第三届电能质量(国际)研讨会论文集.北京:中国标准出版社,2006.
    [12]赵霞,赵成勇,贾秀芳等.基于可变权重的电能质量模糊综合评价.电网技术,2005,29(6):11~16
    [13] Pramod Parihar, Edwin Liu, Power Quality Services Technologies and Strategies for Energy Providers in the Deregulated Market, The Electricity Journal, 12(9), 79-84
    [14] Joint Working Group CigréC4.07 /CIRED, Power Quality Indices And Objectives, Final WG Report, Jan. 2004
    [15] George J. Wakileh著徐政译.电力系统谐波——基本原理、分析方法和滤波器设计北京:机械工业出版社2003
    [16] ANSI/IEEEC57.110/D7-February 1998, ANSI/IEEE Recommended Practice for Establishing Transformer Capability when Supplying Nonsinusoidal Load Currents, Institute of Electrical and Electronics Engineers, Inc., New York, NY, 1998.
    [17] Carpinelli G., Caramia P., DiVito, E. et al . Probabilistic evaluation of the economical damage due to harmonic losses in industrial energy system, Power Delivery, IEEE Transactions on, 11(2), 1021– 1031
    [18] Cavallini D, Fabiani G, Mazzanti G, et al. Models for Degradation of Self-healing Capacitors Operating under Voltage Distortion and Temperature, Proceedings of The 6th International Conference on Properties and Applications of Dielectric Materials June 21-26.2000, Xi'an Jiaotong University, Xi'an, China
    [19] J. Arrillaga, N R Waston , S Chen. Power System Quality Assessment, England: JOHN WILEY & SONS, 2001
    [20] E G. G. De Buck, A Simple but Reliable Loss Model for Inverter-Supplied Induction Motors, IEEE Trans. on Industry Applications, Vol. 20, 190-202,1984.
    [21] Gallo D., Langella R., Testa A., On the effects on MV/LV component expected life of slow voltage variations and harmonic distortion Harmonics and Quality of Power, 2002. 10th International Conference on Vol.2, 737– 742
    [22] Caramia P., Carpinelli G., Verde, P., et al. An approach to life estimation of An approach to life estimation of electrical plant components in the presence of harmonic distortion Harmonics and Quality of Power, 2000. Proceedings. Ninth International Conference on Vol.3, 887– 892
    [23] Mazzanti G., Passarelli G., Russo A., et al.The effects of voltage waveform factors on cable life estimation using measured distorted voltages, Power Engineering Society General Meeting, 2006. IEEE Page(s):8.
    [24] Cavallini A., Fabiani D., Mazzanti G., et al.Voltage endurance of electrical components supplied by distorted voltage waveforms Electrical Insulation, 2000. Conference Record of the 2000 IEEE International Symposium on 2-5 April 2000, 73– 76
    [25] Montanari G.C., Fabiani D., The effect of nonsinusoidal voltage on intrinsic aging of cable and capacitor insulating materials, Dielectrics and Electrical Insulation, IEEE Transactions on [see also Electrical Insulation, IEEE Transactions on, 6(6), 798– 802
    [26] Thomas H. Ortmeyer, Chairman, The Effects of Power System Harmonics on Power System Equipment and Loads, IEEE Transactions on Power Apparatus and Systems Volume PAS-104(9), 2555– 2563
    [27]林海雪,电力系统的三相不平衡讲座第一讲—第六讲供用电,1997年8月-1998年10月
    [28] Filho de Anesio, L.F.; de Oliveira, M.A.; Pinto Marcos G. da, S.; A Computational Tool to Analyze, Quantify and Classify Voltage Imbalance in Electrical PowerSystems Transmission & Distribution Conference and Exposition: Latin America, 2006. TDC '06. IEEE/PES Aug. 2006,1– 6
    [29] Siddique A., Yadava G.S., Singh B., Effects of voltage unbalance on induction motors Electrical Insulation, Conference Record of the 2004 IEEE International Symposium on, Page(s):26 - 29
    [30] Chen T.-H., Evaluation of line loss under load unbalance using the complex unbalance factor, Generation, Transmission and Distribution, IEE Proceedings, 142(2), 173– 178
    [31] Siddique A., Yadava G.S., Singh B., Effects of voltage unbalance on induction motors Electrical Insulation, Conference Record of the 2004 IEEE International Symposium, 26– 29
    [32] Mamo X., Javerzac J., Power quality indicators, Paper accepted for presentation at IEEE Porto Power Tech Conference, 2001, Porto, Portugal, Page(s):4.
    [33] Buxton R., Protection from voltage dips with the dynamic voltage restorer, IEE Half Day Colloquium on, 11 Feb. 1998, 3/1 - 3/6
    [34] Neumann, E.; Burke, J. Status of distribution reliability and power quality in the United States Rural Electric Power Conference, 2003, B3-1-B3-10
    [35] Gomez J C,Morcos M M.Voltage sag and recovery time in repetitive events.IEEE Trans. Power Delivery,2002,17(4): 1037-1043.
    [36] Thallam R.S., Heydt G.T., Power acceptability and voltage sag indices in the three phase sense, Power Eng. Soc. Summer Meeting, 2000. IEEE, Vol. 2, 905– 910
    [37] Clark Gellings, Are we at the threshold of a new era of DC power system, EPRI DC Power Production, Delivery and Use Workshop Reports, Jun.1-2.2006
    [38] IEEE std 1250-1995 IEEE Guide for Service to Equipment Sensitive to Momentary Voltage Disturbances
    [39] IEEE Std 1100-1999 IEEE recommended practice for powering and grounding electronic equipment
    [40] IEEE Std 446-1995 IEEE Recommended Practice For Emergency And Standby Power Systems For Industrial And Commercial Applications
    [41] Herath H.M.S.C., Gosbell V.J., Perera S., Benchmarking utilities for the impact of voltage sags on customers, Harmonics and Quality of Power, 2004. 11th International Conference 2004, 425– 429
    [42] Heine P, Pohjanheimo P, Lehtonen M, et al.A method for estimating the frequency and cost of voltage sags.IEEE Trans.Power Systems,2002 ,17(2): 290-296.
    [43] Samotyj M J, Mielczarski W, Wasiluk-Hassa M M.Electric power for the digital age.10th International Conference on Harmonics and Quality of Power,Brazil, 2002,1:276–282.
    [44]张鹏,郭永基.电压骤降的可靠性评估新方法.电力系统自动化,2002,26(8):20-24.
    [45] Prudenzi A, Quaia S, Zaninelli D.Surveying PQ aspects in Italian industrial customers.Transmission and Distribution Conference and Exposition,IEEE PES,Dallas,2003,1:211-216.
    [46] D.S. Dorr, M.B. Hughes, T.M. Gruzs, et al. Interpreting recent power quality surveys to define the electrical environment, IEEE Trans. on Industry Applications, 33(3):480- 1487
    [47] Billinton R,Kumar S, Chowdhury N, et al.A reliability test system for educational purposes-basic data.IEEE Trans.Power Systems,1989,4(3):1238 -1244.
    [48]陶顺.电压暂降对配电系统可靠性影响及其评估指标的研究[硕士学位论文]北京:华北电力大学,2005
    [49]刘晓娟,肖湘宁,陶顺.基于EMTDC电压暂降随机预估的仿真研究现代电力2005,22(5):13 -17.
    [50]陈瑞,肖湘宁,陶顺.配电网电压暂降随机预估的仿真分析中国国际供电会议(CICED2006)北京2006
    [51]宋云亭,郭永基,张瑞华.电压骤降和瞬时供电中断概率评估的蒙特卡罗仿真.电力系统自动化,2003,27(18):47-51.
    [52]项目技术报告.配电系统电压暂降监测与评估软件开发北京:华北电力大学. 2006年
    [53] Math H. J. Bollen, Understanding Power Quality Problems, Voltage Sags and Interruption, New York: IEEE PRESS, 2000.
    [54] Dugan R.C., Brooks D.L., McDermott T.E., etal Using voltage sag and interruption indices in distribution planning, Power Engineering Society 1999 Winter Meeting, IEEE, Vol.(2): 1164- 1169
    [55] Sabin D.D., Extracting value from large power quality monitoring databases Quality and Security of Electric Power Delivery Systems, 2003. CIGRE/PES 2003. CIGRE/IEEE PES International Symposium, 8-10 Oct. 2003 Pages: 219– 224
    [56]唐会智,彭建春.基于模糊理论的电能质量综合量化指标研究.电网技术,2003,27(12)
    [57]贾清泉,宋家华等.电能质量及其模糊方法评价.电网技术2000,24(6):46~49
    [58] Gosbell V.J., Perera B.S.P.etal, Unified power quality index (UPQI) for continuous disturbances, 10th International Conference on Harmonics and Quality of Power, Rio de Janeiro, Brazil, 2002. Vol.1.316 ~321
    [59] Elphick S., Gosbell, V. and Barr R., Reporting and Benchmarking Indices for Power Quality Surveys Proc. AUPEC(1) 04, September 2004, Brisbane, Australia, Paper 132.
    [60]徐义工业企业的电能质量问题电气时代2005年第2期pp.101~102
    [61] Shih-An Yin, Chan-Nan Lu, Liu, E., etal; A survey on high tech industry power quality requirements, Transmission and Distribution Conference and Exposition, 2001 IEEE/PES 28 Oct.-2 Nov. 2001, Vol.(1):548– 553
    [62] Draft recommended practice for the establishment of voltage sag indices, IEEE Std1564 Draft 6,June 2004
    [63] Sullivan, M.J.; Noland Suddeth, B.; Vardell, T.; Vojdani, A.; Interruption costs, customer satisfaction and expectations for service reliability, IEEE Transactions on Power Systems, 1996,11(2): 989– 995
    [64]袁季修.防御大面积停电广域保护和紧急控制.北京:中国电力出版社, 2007
    [65] IEC 61000-2-1技术报告(国标GB/Z 18039.5-2003等同采用)公用供电系统预期可能出现的干扰现象,瑞士,1990年
    [66] IEC 61000-2-2国际标准(国标GB/T 18039.3-2003等同采用IEC 61000-2-2:1990)公用低压供电系统低频传导干扰及信号传输的兼容水平,瑞士,2002年
    [67] IEC 61000-2-4国际标准(国标GB/T 18039.4-2003等同采用IEC 61000-2-2:1994)工厂低频传导干扰的兼容水平,瑞士,2002年
    [68] IEC 61000-2-8技术报告公共供电系统电压暂降和短时间中断统计监测结果,瑞士,2002年
    [69] IEC 61000-2-12国际标准,公用中压供电系统低频传导干扰及信号传输的兼容水平,瑞士,2003年
    [70] IEC 61000-3-2国际标准(GB 17625.1等同采用IEC61000-3-2:2001)低压设备每相输入电流≤16A的谐波电流发射限值,瑞士,2005年
    [71] IEC 61000-3-3国际标准公共低压电网单相电流小于16A的设备的电压波动与闪变限值,瑞士,2005年
    [72] IEC 61000-3-4技术报告(国标GB/Z 17625.6-2003等同采用)对额定电流大于16A的设备在低压供电系统中产生的谐波电流限制,瑞士,1998年
    [73] IEC 61000-3-5技术报告公共低压电网单相电流大于16A的设备的电压波动与闪变限值,瑞士,1994年
    [74] IEC 61000-3-6技术报告(国标GB/Z 17625.4-2000等同采用)中、高压电力系统中畸变负荷发射限值的评估,瑞士,1996年
    [75] IEC 61000-3-7技术报告(国标GB/Z 17625.5-2000等同采用)中高压电网波动性负荷的发射限值评估,瑞士,1996年
    [76] IEC 61000-4-7国际标准(GB/T17626.7-1998等同采用IEC61000-4-7 1991)供电系统及相连设备的谐波、间谐波的测量和测量仪器的导则(0-2500Hz 50th),瑞士,2002年
    [77] IEC 61000-4-15国际标准闪变仪测试技术,瑞士,2003
    [78] IEC 61000-4-30国际标准电能质量测量方法,瑞士,2003年
    [79] IEEE std 519电力系统中谐波控制推荐实施细则与要求,纽约,1992年
    [80] IEEE std 1159监测电能质量的推荐执行导则,纽约,1995年
    [81] IEEE std 1366配网可靠性指标,纽约,2001年
    [82] IEEE std 493 [IEEE Gold Book]工商业电力系统可靠性设计,纽约,1997年
    [83] IEEE std 1346电力系统与电力电子生产线设备的兼容性评估,纽约,1998年
    [84]欧洲电工技术标准委员会EN 50160欧洲标准公共供电系统电压特征,比利时布鲁塞尔,1999年,
    [85]中华人民共和国国家标准GB/T 14549-93电能质量公用电网谐波
    [86]中华人民共和国国家标准GB 12326-2000电能质量电压波动和闪变
    [87]中华人民共和国国家标准GB/T 15543-1995电能质量三相电压允许不平衡度
    [88]中华人民共和国国家标准GB 12325-2003电能质量供电电压允许偏差
    [89]中华人民共和国国家标准GB/T 18481-2001电能质量暂时过电压和瞬态过电压
    [90]中华人民共和国国家标准GB/T 15945-1995电能质量电力系统频率允许偏差
    [91]中华人民共和国国家标准GB 17626.7-1998供电系统及所连设备谐波、间谐波的测量和测量仪器导则
    [92] Characteristics and target values of the voltage supplied by the Hydro-Québec medium and low voltage systems, June 5, 2001
    [93]电力协会EA G5/4工程推荐标准英国谐波电压畸变及非线性设备接入输电系统和配电网的规划水平,2001年
    [94] Kjell Sand, Knut Samdal, Helge Seljeseth Quality Of Supply Regulation– Status And Trends Nordic Distribution and Asset Management Conference, 2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700