用户名: 密码: 验证码:
大花金挖耳花蕾中萜类成分的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大花金挖耳(Carpesium macrocephalum Franch. Et Sav.)又名香油罐,是菊科(Compositae)天名精属多年生草本植物,具有清热、解毒、消炎、止血、杀虫等功能。近年来韩国和我国兰州大学等地的研究表明其含有单萜、倍半萜、三萜、黄酮、香豆素、甾醇及其甙、苯的衍生物等,其中倍半萜内酯类化合物占多数。大量的研究表明大花金挖耳花蕾中含有高活性的成分,为深度开发和综合利用大花金挖耳资源,本文拟以植物化学理论和现代化学分离分析技术为基础,对该植物进行了以下的研究工作:
     1.利用水蒸气蒸馏法和超临界萃取法对大花金挖耳不同部位(根、茎、叶、花及花托)挥发油含量进行了比较分析,结果表明大花金挖耳花的挥发油含量明显高于其它四个部位;并利用GC-MS对水蒸气蒸馏法得到的五种挥发油进行了成分分析,从大花金挖耳5种挥发油中共鉴定出130种成分,从根、茎、叶、花及花托中分别鉴定出了41、45、60、40和46种化合物,已鉴定挥发油成分占总挥发油的含量分别为86.59%、90.75%、84.43%、87.95%和91.38%。5个部位挥发油化学组成差异较大:根挥发油主要成分为倍半萜类和酯类;茎挥发油主要成分为倍半萜和烯类(包括烯醇、烯酸、烯酮);叶和花挥发油主要成分为烯类(包括烯醇、烯酸、烯酮)和酯类;花托挥发油主要成分为倍半萜类和二萜类。对大花金挖耳根、茎、叶和花托挥发油化学成分的研究为首次报道。
     2.采用紫外分光光度法对大花金挖耳不同部位(根、茎、叶、花及花托)中的甾醇含量进行测定,结果表明:大花金挖耳不同部位甾醇含量相差较大,分布情况为:叶(92.909mg/g)>花(41.154mg/g)>花托(23.735 mg/g)>根(6.179mg/g)>茎(4.935mg/g),根、茎的甾醇含量明显小于其它三个部位。
     3.在大花金挖耳花蕾化学成分系统预试的基础上通过柱层析、薄层制备及重结晶等分离纯化技术,从大花金挖耳花蕾的甲醇提取物和石油醚(60~90℃)-丙酮(6:1)提取物中共分离得到15个化合物,利用现代波谱技术(IR,EI-MS,1HNMR,13CNMR,DEPT,1H-1HCOSY,HSQC,HMBC)鉴定了12个化合物,分别为:β-谷甾醇(H1)、异土木香内酯(H2)、6-甲基-10-亚甲基-1-羟基二环[4.4.0]-癸烷-4-酮(H3)、5α, 6α-环氧-4α,11α-桉烷-12, 8β-内酯(H4)、α-香树酯醇(H5)、β-香树酯醇(H6)、ivalin(H7)、β-胡萝卜甙(H8),特勒内酯(H9)、天名精内酯酮(H10)、天名精内酯醇(H14)、二氢特勒内酯(H15),其中H3和H4为新化合物,H5和H6为首次从该属植物中分离得到。在分离的基础上对特勒内酯的制备进行了初步研究,发现经干法柱层析用氯枋-丙酮(10:1)洗脱可将特勒内酯与天名精内酯酮和有色物质分离开来。并且经西北农林科技大学无公害农药研究中心帮助测试了5个倍半萜内酯化合物对番茄灰霉病菌、烟草赤星病菌、苹果炭疽病菌和玉米大斑病菌孢子萌发的抑制作用,结果表明:五个化合物对供试病菌孢子萌发均具有不同程度的抑制作用。
     4.对分离得到的一个典型桉烷型倍半萜内酯类化合物ivalin的C-2位仲羟基进行结构修饰,主要有乙酰化、丙酰化、丁酰化、苯甲酰化、苯磺酰化和甲醚化,产物经过硅胶柱层析和重结晶得到七个化合物,经过EI-MS和IR鉴确证了其中六个化合物的结构,这些衍生物为进一步的活性研究提供了依据。
     本论文初步明确了大花金挖耳花蕾中萜类成分特征及其杀菌活性。对大花金挖耳不同部位的挥发油含量、成分和甾醇含量进行了初步研究;从大花金挖耳花蕾的甲醇提取物和石油醚(60~90℃)-丙酮(6:1)提取物中共分离得到15个化合物,其中2个为新的化合物,2个为首次从该属植物中分离得到,在此基础上初步评价了5个倍半萜内酯的抑菌活性;并对分离得到的一个典型桉烷型倍半萜内酯类化合物ivalin的C-2位仲羟基进行结构修饰,得到了七个化合物,为进一步的活性研究提供了依据。这些研究丰富了大花金挖耳的研究内容,为进一步认识和合理开发利用该植物资源提供了理论和实验依据,特别6-甲基-10-亚甲基-1-羟基二环[4.4.0]-癸烷-4-酮是一个12个碳骨架的化合物,在天然产物中比较稀有,值得进一步研究。
Carpesium macrocephalum Franch.Et Sav., a perennial grass, belongs to Compositae and Carpesium L.. It has antipyretic, detoxification, anti - inflammation, hemostasis, insecticide and other functions. The researches in Korea, Lanzhou University, and other research institutes showed that it contained monoterpenes, sesquiterpenes, flavonoids, coumarins, sterols, steroidal glycoside and benzene deriveatives, and sesquiterpene lactones is the major constituents. Many evidences indicate that the flower buds of C. macrocephalum Franch. Et Sav contains high active components. In order to provide basis for further development and comprehensive utilization of this important plant resources, based on the theories and principles of phytochemistry, modern chemical separation and purification methods, we carried out studies as follows:
     1. The constituents of the essential oils extract from the root, stem, leaf, flower and receptacle of Carpesium macrocephalum Franch.et Sav. were analyzed by GC-MS. The five essential oils contain 130 components, 41 from the root, providing 86.59% of the corresponding oil; 45 from the stem, providing 90.75%; 60 from the leaf, providing 84.43%; 40 from the flower, providing 87.95%; 46 from the receptacle, providing 91.38%. The constituents of the five essential oils from the five parts are significantly different. The major constituents of root are sesquiterpenes and esters; and the constituents of stem are mainly sesquiterpenes and alkenes (olefinic alcohols, ketenes and olefine acids); the mostly constituents in leaf and flower are alkenes (olefinic alcohols, ketenes and olefine acids) and esters; finally, the receptacle mainly containes sesquiterpenes and diterpenes. The chemical constituents analyzed by GC-MS of the essential oils from the root, stem, leaf and receptacle of C. macrocephalum Franch.et Sav were reported for the first time.
     2. The contents of sterol in different parts (root, stem, leaf, flower and receptacle) of C. macrocephalum were determined by UV method. The results showed that the contents of sterol in different parts were obviously different. The distribution of sterol was as follows: leaf (92.909mg/g) > flower (41.154mg/g) > receptacle (23.735 mg/g) > root (6.179mg/g)> stem (4.935mg/g). The contents of sterol in root and stem are significantly lower than that in other three parts.
     3. Based on the systematical pretest on the chemical constitutents in flower buds of the C. macrocephalum Franch. Et Sav., 21 compounds were isolated from its methanol and petroleum ether (60~90°C)– acetone (6:1) extracts by CC, TLC, recrystallization and so on. 12 of them were identified asβ–sitosterol(H1), isoalantolactone(H2), 6-methyl-10- methylene-7-hydroxy-dicyclo[4,4,0]-decane-4-one(H3), 5α,6α-epoxy-4α, 11α-eudesma-12, 8β- olide(H4),α-amyrin (H5) andβ-amyrin (H6), ivalin (H7),β-daucosterol (H8), telekin (H9), carabrone (H10), carabrol (H14), dihydrotelekin (H15), by modern spectroscopic techniques (IR, EI-MS, 1HNMR, 13CNMR, DEPT, 1H-1HCOSY, HSQC, HMBC). Noticeably, H3, H4 are new compounds, and H5 and H6 are found from this plant for the the first time. The preliminary study of preparating telekin showed that both telekin and carabrone were easily isolated from color substance through chloroform- acetone(10:1) on dry column chromatography. Additionally, H2, H7, H9, H10and H14 can inhibit spores germination of Alternaria longipes,Glomerella cingulata and Exserohilum turcicum in different extent, which were researched at Research and Development Center of Biorational Pesticide, Northwest A&F University.
     4. A typical eudesmane-type sesquiterpene lactones-ivalin was separated from the flower buds of C. macrocephalum Franch.Et Sav.. And the structure was modified on C-2 sec-hydroxyl. These structure modifications are acetylation, Propionylatio, acidylation, benzoylation, benzoylate sulfonylation and methylation. As a result, seven products were separated by CC and recrystallization, six compounds of which were identified. These derivatives provide basis for further activity investigation.
     In this thesis, C. macrocephalum Franch. Et Sav.’s terpenoid characteristics and antifungal activities were displayed. The content and composition of essential oils in its different parts and the content of sterol were also determined. 15 compounds were isolated from its methanol and petroleum ether (60 ~ 90°C) - acetone (6:1) extracts. Noticeably, H3 and H4 are novel compounds, and H5 and H6 are found from this plant for the first time. Then antifungal activities of five sesquiterpene lactones were preliminary assessed. Additionally, a typical eudesmane-type sesquiterpene lactones-ivalin was separated and structure modified, and seven compounds were achieved. These will provide basis for further activity investigation. All the above research enrich the study of chemistry of botanical resource of C. macrocephalum, and provide academic and experimental results for the further identification and rational utilization of the plant resource. Especially, H3 deserves further study, which is a 12 carbon skeleton compounds and rare in nature products.
引文
[1] 中国科学院中国植物志编委会. 中国植物志[S]. 北京: 科学出版社, 1 989, 75: 296-298.
    [2] 谢宗万, 余友尊. 全国中草药名鉴[M]. 上海: 人民卫生出版社, 1996: 756.
    [3] 江苏新医学院. 中药大辞典(上册)[S]. 上海科学技术出版社, 1997: 698.
    [4] 肖根培. 新编中药志[S]. 化学工业出版社. 2002: 791.
    [5] 徐任生. 天然产物化学[M]. 科学出版社. 2003.
    [6] Chao Yang, Yan-Ping Shi, Zhong-jian jia. Sesquiterpene Lactone Glycosides from Carpesium macrocephalum[J]. Chinese chemical letters, 2002, Vol.13, No.3,247-248
    [7] ChaoYang, Yan-Ping Shi, Zhong-jian jia. Sesquiterpene Lactone Glycosides, Eudesmanolides, and Other Constituents from Carpesium macrocephalum[J]. Planta Med, 2002, 68: 626-630.
    [8] Chao Yang, Yan-Ping Shi, Zhong-jian jia. A New Eudesmanoilde from Carpesium macrocephalum[J]. Chinese chemical letters, 2002, 13(9): 855-856.
    [9] 董云发,丁云海. 天名精倍半萜内酯化合物[J]. 植物学报,1988, 30(1): 71-75.
    [10] Yang Chao, Wang Xing, Shi Yanping, Jia Zhongjian. Chemical constituents of the aerial parts of Carpesium cernuun[J]. Journal of Lanzhou University, 2002, 38(.4): 61-67.
    [11] Masao Maruyama, Sonoe Omura. Carpesiolin from Carpesium abrotanoides[J]. Phytochemistry, 1977, 16: 782-783.
    [12] ChaoYang, Cheng shanYuan, Zhong jian jia. Xanthanolides, Germacranolides, and Other Constituents from Carpesium longifolium[J]. J. Nat.Prod, 2003, 66:1554-1557.
    [13] Masao Maruyama, Fumiko Shibata. Stereochemistry of granilin Isolated from Carpesium abrotanoides[J]. Phytochemistry, 1975, 14: 2247-2248.
    [14] Topcu G, Oksuz S, Shieh HL, et al. Cytotoxic and antibacterialsesquiterpenes from Inula graveolens[J]. Phytochemistry, 1993, 33: 407-410.
    [15] Su BN, Takaishi Y, Yabuuchi T, et a. Sesquiterpenes and monoterpenes from the barks of Inula macrophylla[J]. J Nat Prod, 2001, 64: 466-471.
    [16] Cantrell CC, Abate L, Fronczek FR, et al. Antimycobacterial eudesmanolides from Inula helenium and Rudbeckia subtomentosa[J]. Planta Med, 1999, 65: 351-355.
    [17] Glyzina. GS, Komissarenko NF. Flavonoids of Hedysarum gmelini[J]. Khim prir soedin, 1967, 3(2): 138-9.
    [18] Nikonov GK, Artamonova NA, Sinitsina VG, et al. Variability of contents and composition of sesquiterpene lactones in the roots of I.Macrophylla[J]. Kar. et Kir. Rastit. Resur, 1991, 27 (4): 49- 55 ( Russian).
    [19] Oksuz S, Topcu G. A eudesmanolide and other constituents from Inula graveolens[J]. Phytochemistry, 1991, 31(1): 195-197.
    [20] Jeske F, Huneck S, Jakupovic J. Further sesquiterpene lactones from Inula salsoloides[J]. Phytochemistry, 1996, 41: 1539-1542.
    [21] Fu B, Su BN, Takaishi Y, et al. A bis-sesquiterpene and sesquiterpenolides from Inula macrophylla[J]. Phytochemistry, 2001, 58: 1121-1128.
    [22] Park EJ, Kim J. Cytotoxic sesquiterpene lactones from Inula Britannica[J]. Planta Med, 1998, 64:752-754.
    [23] Oksuz S, Topcu G, Krawiec M, et al. Eudesmanolides and other constituents of Inula thapsoides[J]. Phytochemistry, 1997, 46: 1131-1134.
    [24] Vajs V, Jeremic D, Milosavljevic S, et al. Sesquiterpene lactones from Inula helenium[J]. Phytochemistry, 1989, 28: 1763-1764.
    [25] Kaur B, Kalsi PS. Stereostructures of inunal and isoalloalantolactone, two biologically active sesquiterpene lactones from Inula racemosa[J]. Phytochemistry, 1985, 24: 2007-2010.
    [26] Jeske F, Huneck S, Jakupovic J. Secoeudesmanolides from Inula japonica[J]. Phytochemistry, 1993, 34: 1647-1649.
    [27] Zhou BN, Bai NS, Lin LZ, et al. Sesquiterpene lactones from Inula Britannica[J]. Phytochemistry, 1993, 34: 249-252.
    [28] Masao M., Karure A. and Sato K.. Sesquiterpene lactones from Carpesium abrotanoides[J]. Phytochemistry, 1983, 22(12): 2273-2274.
    [29] Zee, O. P., Kim, D. K., Choi, S. U., Lee, C. O., & Lee, K. R.. A new cytotoxic acyclic diterpene from Carpesium divaricatum[J]. Archives of pharmacal research, 1999, 22(2): 225-227.
    [30] Masao Maruyama. Sesquiterpene lactones from Carpesium divaricatum[J]. Phytochemistry, 1990, 29(2): 547-550.
    [31] Kim M., Suh B., Kim J., Kim Y., Kim D., Moon D.. Sesquiterpene lactone from Carpesium triste var. manshuricum[J]. Phytochemistry, 1999, 52: 113-115.
    [32] Cao Jian-xin, Pan Yuan-jiang, Xu Chong-yang. A new germacranolide from Carpesium cernuum[J]. J. Zhejiang Univ SCI, 2005, 6A(7): 640-642.
    [33] Lin,Y. L., Ou, J.C., Kuo,Y.H., Lin,J.K., & Lee, K.H.. Four new sesquiterpene lactones from Carpesium nepalense[J]. J. Nat. Prod., 1996, 59: 991-993.
    [34] Shi Y. P, Guo W, jia Z. J. Germacranolides from Carpesium lipskyi[J]. Planta Medica, 1999, 65: 94-96.
    [35] Maruyama M. Watanabe K, Kwakami T, Nozoe S, Ohta T. Ineupatorolides from Carpesium glossophyllum[J]. Planta Medica, 1995, 61: 388-389.
    [36] Kim D.K, Baek NI, Choi SU, Lee KR, Zee OP. Four new cytotoxic germacranolides from Carpesium divaricatum[J]. J. Nat. Prod., 1997, 60: 1199-1202.
    [37] Kim Dae Keun, Kang Ro Lee and Ok Pyo Zee. Sesquiterpene lactones from Carpesium divaricatum[J]. Phytochemistry, 1997, 46(7): 1245-1247.
    [38] Bloszyk E, Budesinsky M, Daniewski WM, et al. Terpenes. CCCⅡ. Sesquiterpenicla ctones of I. Aschersoniana Jankavar. Aschersoniana species[J]. Collect. Czech. Chem. Commum, 1990, 55(6): 1562-7.
    [39] Jeske F, Huneck S, Jakupovic J. Further sesquiterpene lactones from I.salsoloides[J]. phytochemistry, 1996, 41(6): 1539-42.
    [40] Ravindranath KR, Raghavan R, Paknikar SK, et al. Structure and stereochemistry of inunolide, dihydroinunolide and neoalantolactone[J]. Indian J. Chem. Sect. B, 1978, 16B(1): 27-3 1.
    [41] Baruah NC, Baruah RN, Sharma RP, et al. Germacranolides of I.eupatorioides. 2. Absolute configuration of the ineupatorolides[J]. J. Org. Chem, 1982, 47(1): 137-40.
    [42] Dhaneshwar NN, Bhat UG, Nagasampagi BA, et al. Structure of inuolide, C22H32O9(a cis-cisgermacranolide from I.indica). Acta crystallogr., Sect. C: cryst[J]. Struct. Commun, 1983, 39(4): 462-4
    [43] Zhou BN, Bai NS, Lin LZ, et al. Sesquiterpene lactones from I.salsoloides[J]. Phytochemistry, 1994, 36 (3): 72 1-4.
    [44] Bohlmann F, Ates N, Grenz M. Naturally occurring terpene derivatives. Part 405. New germacranolides from I.heterolepis[J]. Phyrochemistry, 1982, 21(5): 1166-8(English).
    [45] Nagasampagi BA, Bhat UG, Bohlmann F, et al. A germacranolide from I.indica[J]. phytochemistry, 1981, 20(8): 2031-3.
    [46] Paknikar SK, Sardesai LG. Stereochemistry of inunolide and dihydroinunolide[J]. Planta Med, 1988, 54(2): 186-7.
    [47] Baruah RN, Sharma RP, Thyagarajan G, et al. Unusual germacranolides from I.eupatorioides[J]. J Org Chem., 1980, 45(24): 4838-43.
    [48] Bohlmann F, Baruah RN, Jakupovic J. new melampolides from I.germanica[J]. planta Med, 1985, (3): 261-2.
    [49] Bolmann F, Singh P, Jakupovic J. Naturally occurring terpene derivatives. Part 379. further ineupatorolide-lide germacranolides from I.cuspidata[J]. phytochemistry, 1982, 21(1): 157-60.
    [50] Goswami AC, Baruah RN, Sharma RP, et al. Germacranolides from I.cappa[J]. phytochemistry, 1984, 23(2): 367-72.
    [51] Vals V, Jeremic D, Milosavljevic S, et al. Two-dimensional NMR spectra of sesquiterpenes. I.NOESY study of caryophyllenes from I.spiraeifolia[J]. Magn. Reson. Chem., 1987, 25(10): 889-91.
    [52] Jeremic D, Milosavljevic S,Vajs V. Novel trioxygenated caryophyllenes from I.spiraefolla[J]. Tetrahedron Lett., 1982, 23(9): 1009-12.
    [53] Mi-Ran Kim, Chang-Soo Kim, Kyung, H-Yeong Park, Seoung-Soo Hong, Jong-Keun Son,and Dong-Cheul Moon. Isolation and Structures of Guaianolides from Carpesium macrocephalum[J]. J. Nat. Prod., 2002, 65: 583-584.
    [54] Lee, J., Min, B.,Lee, S.,Na, M., Kwon, B., & Lee, C. et al.. Cytotoxic sesquiterpene lactones from Carpesium abrotanoides[J]. Planta medica, 2002, 68(8): 745-747.
    [55] Chao Yang, Meng Chun YE, Zhong jian-jia. A New Xanthanolide from Carpesium longifolium[J]. Chinese chemical letters, 2003, 14(5): 483-484.
    [56] Mi-Ran Kim, Seung-Kyu Lee, Chang-Soo Kim, and Dong-Cheul Moon. Phytochemical Constituents of Carpesium macrocephalum FR. Et SAV. [J]. Arch Pharm Res, 2004, 27(10): 1029-1033.
    [57] Topcu G, Oksuz S, Shieh HL, et al. Cytotoxic and antibacterial sesquiterpenes from I.graveolens[J]. Phytochemistry, 1993, 33(2): 407-10.
    [58] Oksuz S, Topcu G. A eudesmanolide and other constituents from I.graveolens[J]. Phytochemistry, 1992, 31(1): 195-7.
    [59] Topcu G, Oksuz S, Herz W, et al. Structurally related guaianolides from I.thapsoides[J]. phytochemistry, 1995, 40(6): 1717-22.
    [60] Makhmudov MK, Tashkhozhaev B, Zhonkhozhaeva FB, et al. Pseudoguaianolides of I.aspera[J]. Steric structure of erigeronlide. Khim. Prir. Soedin., 1993, (2): 232-7(Russian).
    [61] Topcu G, Oksuz S. Guaianolides from I.anatolica[J]. Phytochemistry, 1990, 29(11): 3666-7.
    [62] Zhang RW, in YY, Qi YF, et al. Studies of the anticancer constituents of Inula helianthusaguatica[J].Nat Prod Res Dev, 1998, 10(1): 31-33.
    [63] Ito K, Iida T. Seven sesquiterpene lactones from I.britannica var. chinensis[J]. Phytochemistry, 1981, 20(2): 271-3.
    [64] Papano G, Malakov P, Bohlmann F. 8β-Hydroxydihydroeremanthin: a new guaianolides from I.aschersoniana[J]. Phytochemistry, 1980, 19(1): 152(German).
    [65] Jeske F, Huneck S, Jakupovic J. Secoeudesmanolides from I.japonica[J]. Phytochemistry, 1993, 34(6): 1647-9.
    [66] Yang C, Wang CM, Jia ZJ. Sesquiterpenes and other constituents from the aerial parts of I.japonica[J]. Planta Medica, 2003, 69(7): 662-6.
    [67] Mahmoud ZF, Salam NAA, Sarg TM, et al. Naturally occurring terpene deriveatives. Part 309. A carotene deriveative and a eudesmanolide from I.crithmoides[J]. Phytochemistry, 1981, 20(4): 735-8.
    [68] Ferdinand Bohlmann and Christa Zdero. Caryophyllene derivatives and a hydroxyisocomene from Pulicaria dysenterica[J]. Phytochemistry, 1981, 20(11): 2529-2534.
    [69] Ferdinand Bohlman, Maniruddin Ahmed and Jasmin Jakupovic. Caryophyllane deriveative from pulicaria scabra[J]. Phytochemistry, 1982, 21(7): 1659-1661.
    [70] Arturo S. F., Manuel M., Marina G., et al. sesquitepenoids and phenolics of pulicaria paludosa[J]. Phytochemistry, 1989, 28(10): 2717-2721.
    [71] Jaber S. M, llias M, Farouk S, et al. Bisabolene and guaiane sesquiterpene from pulicaria glutinosa[J]. Phytochemistry, 1992, 31(2): 575-8.
    [72] A. Rustaiyan, Z Habibi, M Saberi, et al. A nor-guaianolide and A glaucolide like eudesmanolide from Pulicaria undulate[J]. Phytochemistry, 1991, 30(7): 2405-6.
    [73] Hocine D, Samir B, Fadila B., et al. sesquiterpene lactones from pulicaria crispa[J]. Phytochemistry, 2000, 71: 373-8.
    [74] Wang, X., Zhang, Q., Jia, Z. A new tricycleic-alpha, beta-unsaturate ketone and a new delta-hexano lactone glycolside from adenocaulon himalaicum[J]. Natural product research, 2007, 21(2): 161-166.
    [75] Sanz JF, Ferrando C, Marco JA. Oxygenated nerolidol esters and eudesmane acids from I.viscosa[J]. Phytochemistry, 1991, 30(11): 3653-5.
    [76] Vajs V, Jeremic D, Milosavl J.S., et al. Sesquiterpene lactones from I.helenium[J]. phytochemistry, 1989, 28(6): 1763-4.
    [77] 李玉平,冯俊涛,邵红军,等. 25 种菊科植物提取物对 3 种植物病原菌的药效试验[J]. 西北农林科技大学学报(自然科学版). 2003, 31(4): 123-126.
    [78] Manez S, Recio MDC, Gil, et al. A glycosyl analogue of diacylglycerol and other anti-inflammatory constituents from Inula.viscosa[J]. J Nat Prod, 199, 62: 601-604.
    [79] Schmidt T J, Brun R, Willuhn G, et al. Anti-trypanosomal activity of helenalin and some structurally related sesquiterpene lactones[J]. Planta medica, 2002, 68(8): 750-1.
    [80] Bernal-Morales E, De vivar AR, Sanchez B, et al. Inhibition of oxygen evolution by ivalin[J]. Canadian journal of Botany, 1994, 72(2): 177-181.
    [81] Jodynis-liebert J, Murias M, Bloszyk E. Effect of several sesquiterpene lactones on lipid peroxideation and glutathione level[J]. Plant medica, 1999, 65(4): 320-4.
    [82] 宋晓凯, 潘福娟. 小白菊内酯的生物活性与 NF-kappaB 通道抑制[J]. 中国老年学杂志, 2003, 23(12): 892-893.
    [83] 宋晓凯, 吴立军, 屠鹏飞. 观光木树皮的生物活性成分研究[J]. 中草药, 2002, 33(8): 676-678.
    [84]Zhao Aihua, Wei Junxian. Advanced of sesquiterpenoids bioactivity[J]. Natural Product Research and Development, 1995,Vol.7, No.4, 65-70.
    [1] 姚新生. 天然药物化学[M]. 北京: 人民卫生出版社(第 4 版), 2003.
    [2] Maruzzella J C, Balter J. The action of essential oils on phytopathogenic Fungi[J]. Plant Disease Report, 1959, 43(15): 1143-1147.
    [3] Jain S R, Jain M R. Evaluation of the essential oil[J]. Plant Media, 1973, 24(2): 128-132.
    [4] 谢慧玲, 李树人, 袁秀云, 等. 植物挥发油分泌物对空气微生物杀灭作用的研究[J]. 河南农业大学学报, 1998, 20(1): 67-74.
    [5] 刘鹏岩, 傅承光. 中草药挥发油的分析及应用[J]. 河北大学学报(自然科学版), 1993, 13(1): 86-92.
    [6] 苏克曼,刘玲,郁威.超临界 CO2 流体萃取连翘-金银花挥发油中蜡质成分的分析[J].华东理工大学学报,2003,(29)4:392~394.
    [7] 张定安,陆志禹,时均.超临界流体及超临界萃取(Ⅰ)(Ⅱ)[J].南京化工学院学报,1992,14(2):79~93.
    [8] 高锦明.植物化学[M]. 科学出版社, 2003: 250.
    [9] 丛浦珠. 质谱学在天然有机化学中的应用[M]. 科学出版社, 1987.
    [10] Endo K, Taguchi T, Taguchi F, et al. Antiinflammatory principles of Atractylodes rhizomes[J]. Chem pharm Bull, 1979, 27(12): 2954.
    [11] 陈能煜, 翟建军, 潘惠平, 等. 三种风毛菊属植物精油化学成分研究[J]. 云南植物研究, 1992, 14(2): 203-210.
    [12] 王俊儒. 天然产物提取分离与鉴定技术[M]. 陕西: 西北农林科技大学出版社. 2004: 53-55.
    [13] 徐任生. 天然产物化学[M]. 北京: 科学出版社, 2004.
    [14] Saxena V K, Mondal S K. A xanthanolide from Xanthium Strum arium [J]. Phytochemistry, 1994, 35(4): 1080-1082.
    [15] 阎建辉, 唐课文, 许友, 等. GC/MS 法分析花椒挥发油的化学成分[J]. 质谱学报, 2003, 24(2): 326-311.
    [16] 江继武. 植物药有效成分手册[M]. 北京: 人民卫生出版社, 1986: 668, 832-833.
    [17] Zee OP, Kim DK, Lee KR. Thymol derivatives from Carpesium divaricatum.[J]. J Nat Prod. 1998, 21(5): 618-20.
    [18] 冯俊涛, 苏祖尚, 王俊儒, 等. 大花金挖耳花蕾中精油的化学组成及其杀菌活性研究[J]. 西北植物学报, 2007, 27(1): 156-62.
    [19] 谢宗万, 余友芩. 全国中草药名鉴[M]. 上海: 人民卫生出版社, 1996: 756.
    [20] 彭少麟, 南蓬. 高等植物中的倍半萜类化合物及其在生态系统中的作用[J]. 生态学杂志, 2002, 21(3): 33-38.
    [21] 于欣源, 杨晓虹, 周小平. 菊科植物化学成分及药理作用的研究进展[J]. 吉林大学学报(医学版), 2005, 31(1): 159-162.
    [1] 谢文磊. 粮油化工产品化学与工艺学 [M]. 北京: 科学出版社, 1998: 180.
    [2] Swern D. Bailey’s Industrial Oil and Fat Products, Vol.1, 4th ed. [M]. New York: John Wiley & Sons,1979. 53-69.
    [3] Holman R T, Lundberg W O, Malkin T. Progress in the Chemistry of Fats and Other Lipids, Vol.1 [M]. London: Pergamon Press Ltd, 1952. 18-69.
    [4] Abidi S L, List G R, Rennick K A. Effect of Genetic Modification on the Distribution of Minor Constituents in Canola Oil [J]. Journal of the American Oil Chemists’ Society, 1999, 76(4): 463-467.
    [5] Ling W H, Jones P J H. Minireview Dietary Phytosterols: A Review of Metabolism, Benefits and Side Effects [J]. Life Science, 1995, 57(3): 195-206.
    [6] Moghadasian M H, Frohlich J J. Effects of Dietary Phytosterols on Choleaterol Metabolism and Atherosclerosis: Clinical and Experimental Evidence [J]. Am. J. Med., 1999, 107(6): 588-594.
    [7] 许文林, 王雅琼, 鲁萍. 脱臭馏出物中植物甾醇的回收与精制 [J]. 过程工程学报, 2002, 2(2): 167-170.
    [8] 许文林, 王雅琼, 黄一波. 重结晶法精制植物甾醇的溶剂选择 [J]. 杨州大学学报, 2002, 5(1): 167-170.
    [9] 高瑜莹, 裘爱泳, 潘秋琴, 等. 植物甾醇的分析方法[J]. 中国油脂, 2001, 26(1): 25-28.
    [10] 吴国欣, 欧敏锐, 林跃鑫, 等. 白芥子β-谷甾醇的分离与测定[J]. 海峡药学, 2002, 14(3): 40-41.
    [11] Careri M, Elviri L, Mangia A. Liquid chromatography-UVdetermination and liquid chromatography-atmospheric pressurechemical ionization mass spectrometric characterization of sitosterol and stigmasterol in soybean oil [J]. J ChromatogrA, 2001, 935(1-2): 249-257.
    [12] 王强. 中药分析学[M]. 福州: 福建科学技术出版社, 1996. 219.
    [13] 刘蕾, 陈星, 李晓丽, 等. 分光光度法测定大豆总甾醇含量的研究[J]. 中国油脂, 2005, 30(4): 45-46.
    [14] 吴筱丹, 李士敏, 王思平. 粗吻海龙中总甾体的含量测定[J]. 中草药, 2002, 33(7): 613-615.
    [15] 马敬中, 张友德. 甾体化合物的分光光度法测定[J]. 分析化学, 2000, 28(3): 390-391.
    [1] 中国科学院中国植物志编委会.中国植物志[S]. 北京:科学出版社, 1989, 75:295-296.
    [2] 谢宗万, 余友芩. 全国中草药名鉴[M], 上海: 人民卫生出版社,1996: 756.
    [3] 李玉平,龚宁, 江志利, 张兴.大花金挖耳杀菌活性的进一步研究[J]. 西北农林科技大学学报(自然科学版), 2004, 32(2): 35-38.
    [4] 李玉平, 慕小倩, 冯俊涛,等.几种菊科植物杀菌活性的初步研究[J]. 西北农林科技大学学报(自然科学版), 2002, 30 (1),68- 72.
    [5] 杨晓虹, 周小平. 大花金挖耳提取物的血小板聚集作用[J]. 人参研究, 2000, 12(1): 20-21.
    [6] Saxena V K, Mondal S K. A xanthanolide from Xanthium Strum arium[J]. Phytochemistry, 1994, 35(4): 180-108.
    [7] 李玉平, 龚宁, 江志利, 等. 大花金挖耳杀菌活性的进一步研究[J]. 西北农林科技大学学报(自然科学版), 2004, 32(2): 35-38.
    [8] 李玉平, 慕小倩, 冯俊涛, 等. 几种菊科植物杀菌活性的初步研究[J]. 西北农林科技大学学报(自然科学版), 2002, 30(1): 68-72.
    [9] 方中达. 植病研究方法(第 3 版)[M]. 北京: 中国农业出版社, 1998: 119.
    [10]海力茜,梁鸣,赵玉英,等. 多序岩黄芪化学成分研究[J]. 中国中药杂志,2002, 27(11): 843.
    [11]刘国声.云木香挥发油中异土木香内酯的分离和鉴定[J]. 中药通报, 1981, 6(5): 49.
    [12]Appendino,G.,P. Gariboldi and G.M. Nano.Isomeric hydroperoxyeudesmanolides fromArtemisia umbelliformis[J]. Phytochemistry, 1983, 22, 2767-2772.
    [13]Mi-Ran Kim, Seung-Kyu Lee, Chang-Soo Kim, and Dong-Cheul Moon. Phytochemical Constituents of Carpesium macrocephalum FR. Et SAV.[J]. Arch Pharm Res, 2004, 27(10): 1029-1033.
    [14]Masao M., Karure A. and Sato K.. Sesquiterpene lactones from Carpesium abrotanoides[J]. Phytochemistry, 1983, Vol. 22, No.12, 2273-2274.
    [15]董云发,丁云海. 天名精倍半萜内酯化合物[J]. 植物学报, 1988, 30(1): 71-75.
    [16] 韦松,梁鸣,赵玉英, 等. 怀牛膝中化合物的分离鉴定[J]. 中国中药杂志,1997,22(5):293.
    [17] Lamchouri, F., A.settaf, et al. In vitro cell-toxicity of Peganum harmala alkaloids on cancerous cell-lines. [J] Fitoterapia, 2000, 71(1): 50-54.
    [18] Mohto SB, Kundu AP. 13CNMR spectr of pentacyclic triterpenoids-A compilation and some Salient feature[J]. Phytochemistry, 1994, 37: 1517-57.
    [19] Meng Zh W, He L W. Studies on constituents of Prunella vulgaris L[J]. J China pharma Univ, 1995, 26(6): 329-31.
    [20] Chao Yang, Yan-Ping Shi, Zhong-jian jia. Sesquiterpene Lactone Glycosides, Eudesmanolides, and Other Constituents from Carpesium macrocephalum [J]. Planta Med, 2002, 68, 626-630.
    [1] 乐海洋. 菊科杀虫植物的化学及毒理学[J]. 农药译丛, 1997, 19(3): 32-38.
    [2] 彭少麟, 南蓬. 高等植物中的倍半萜类化合物及其在生态系统中的作用[J]. 生态学杂志, 2002, 21(3): 33-38.
    [3] 于欣源, 杨晓虹, 周小平. 菊科植物化学成分及药理作用的研究进展[J]. 吉林大学学报(医学版), 2005, 31(1): 159-162.
    [4] 赵爱华, 魏均娴. 倍半萜类化合物生理活性研究进展[J]. 天然产物研究与开发, 1995, 7(4): 65-70.
    [5] 王玉珠, 周淑兰. 用分子轨道法对倍半萜类抗癌剂构效关系的研究[J]. 药学学报, 1983, 18(1): 25.
    [6] H. Wagner and P. Wolff. New natural products with pharmacyological et al, biological of therapeutic activeity[J]. New York, 1977: 157-168.
    [7] Lee, J., Min, B.,Lee, S.,Na, M., Kwon, B., & Lee, C. et al.. Cytotoxic sesquiterpene lactones from Carpesium abrotanoides[J]. Planta medica, 2002, 68(8): 745-747.
    [8] Schmidt T J, Brun R, Willuhn G, et al. Anti-trypanosomal activity of helenalin and some structurally related sesquiterpene lactones[J]. Planta medica, 2002, 68(8): 750-1.
    [9] Bernal-Morales E, De vivar AR, Sanchez B, et al. Inhibition of oxygen evolution by ivalin[J]. Canadian journal of Botany, 1994, 72(2): 177-181.
    [10] 刘河. (十)-单乙酰大花旋覆花内酯衍生物研究(Ⅱ)(D). 河北师范大学, 1998: 4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700