用户名: 密码: 验证码:
稻田常用农药对水稻挥发物释放的影响及其生态效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以农药-水稻-害虫(褐飞虱、稻纵卷叶螟)-天敌(稻虱缨小蜂、黑肩绿盲蝽、拟水狼蛛)为研究系统,研究了4种稻田常用农药对水稻植株挥发物释放的影响及其生态效应。结果如下:
     1)研究了新烟碱类杀虫剂吡虫啉、植物源杀虫剂印楝素、有机磷杀虫剂三唑磷以及激素型除草剂二甲四氯钠对稻株挥发物释放的影响。利用固相微萃取法(SPME)捕集水稻挥发物,并用气相色谱和质谱联用(GC-MS)对其进行分离和鉴定。吡虫啉处理的褐飞虱为害稻株中共捕集到挥发物组分40种,其中已定性的25种,包括萜烯类(16种)、醇类(3种)、烷烃类(3种)、酮类(1种)、酯类(1种)以及萘(1种);印楝素处理的褐飞虱为害稻株挥发物组分共25种,其中已定性的14种,包括萜烯类(8种)、醇类(3种)、烷烃类(2种)以及酯类(1种);三唑磷处理的稻纵卷叶螟为害稻株挥发物组分共36种,其中已定性的15种,包括萜烯类(8种)、醇类(3种)、烷烃类(2种)、酯类(1种)以及酮类(1种);二甲四氯钠处理的健康稻株中共捕集到挥发物组分24种,其中已定性的8种,包括萜烯类(6种)、醇类(1种)以及烷烃类(1种)。已定性的组分中,(-)-异喇叭烯、(-)-α-雪松烯、(+)-β-雪松烯、罗汉柏烯、依兰油烯、2,4a,5,6,7,8,9,9a-八氢-3,5,5-三甲基-9-亚甲基-1H-苯并环庚烯、1(10),4-杜松二烯、3,9-杜松二烯、1,2,3,4,6,8a-六氢-1-异丙基-4,7-二甲基萘、雪松烯、2,6,10-三甲基十四烷等11种组分为新报道的水稻挥发物组分。
     无论是农药处理的稻株挥发物还是对照植株(清水处理)挥发物,均以倍半萜类化合物的种类数和相对含量最高。与未施药稻株释放的挥发物相比,药剂处理稻株挥发物中均未有新组分产生,但部分组分的相对含量发生了变化。吡虫啉的浓度(未施药、低浓度、高浓度)、施药天数(1d、3d、5d、7d)及与其他生物因子(水稻品种、褐飞虱为害密度)的互作分别导致20%、85%、90%的组分相对含量显著改变,印楝素的对应作用分别为88.0%、76.0%、96.0%,三唑磷的对应作用分别为13.9%、75.0%、88.9%,二甲四氯钠的对应作用分别为54.2%、45.8%、75%。上述结果表明,印楝素对水稻挥发物释放的影响最大,吡虫啉和三唑磷次之,二甲四氯钠最小,这可能与农药特性以及不同的作用方式有关。不同农药处理的水稻植株挥发物中,水杨酸甲酯、(-)-异喇叭烯、(-)-α-可巴烯、(-)-α-雪松烯、(+)-β-雪松烯、(-)-异石竹烯、(-)-姜烯、雪松醇、正十七烷等9种组分的相对含量常发生变化,说明这些挥发物组分的释放不稳定,较易受农药因子干扰。挥发物组分多样的生物合成途径使其受农药影响的程度各异。
     2)研究了吡虫啉处理稻株的挥发物在稻虱缨小蜂和黑肩绿盲蝽寄主选择行为中的作用。稻虱缨小蜂行为生测采用“Y”型嗅觉仪,黑肩绿盲蝽采用“H”型嗅觉仪。2种天敌均对不同浓度吡虫啉处理稻株的挥发物作出选择。当褐飞虱的密度为10头/稻苗时,与高浓度(37.50 g a.i / hm2)吡虫啉处理稻株挥发物相比,稻虱缨小蜂明显地选择了低浓度(15.00 g a.i /hm2)处理稻株(药后5天除外)。黑肩绿盲蝽对吡虫啉处理稻株挥发物的喜好则表现为未施药稻株>低浓度稻株>高浓度稻株。吡虫啉不同浓度处理后相对含量存在变化的稻株挥发物组分,如水杨酸甲酯、(-)-姜烯、正十六烷等,对稻虱缨小蜂和黑肩绿盲蝽的引诱或驱避作用可能是导致其寄主选择行为的一个原因。不同的施药天数亦影响天敌对吡虫啉处理稻株挥发物的选择性。褐飞虱密度为2头/稻苗时,以低浓度(或高浓度)吡虫啉喷施水稻植株,与施药7d的稻株相比,稻虱缨小蜂明显地选择了施药3d、5d(或1d、5d)的稻株。褐飞虱密度为10头/稻苗时,与高浓度吡虫啉处理1d的稻株相比,稻虱缨小蜂明显地选择了施药3d的稻株。与药后3d、5d、7d的稻株挥发物相比,黑肩绿盲蝽更多地趋向施药1d的稻株挥发物。稻虱缨小蜂和黑肩绿盲蝽均避开药后天数较长的稻株,说明吡虫啉药后7d的稻株挥发物对天敌有驱避作用。
     3)研究了印楝素处理稻株的挥发物在稻虱缨小蜂和拟水狼蛛寄主选择行为中的作用。2种天敌的行为生测均采用“Y”型嗅觉仪。结果表明,当褐飞虱的密度为2头/稻苗时,稻虱缨小蜂和拟水狼蛛对所有成对气味源(低浓度处理稻株与未施药稻株、高浓度处理稻株与未施药稻株、低浓度处理稻株与高浓度处理稻株)未表现出明显的选择性。只有当褐飞虱密度为10头/稻苗时,天敌的选择行为才出现显著差异。与未施药稻株挥发物相比,稻虱缨小蜂明显趋向于高浓度(2.25 L/ hm2)处理(施药1d)稻株挥发物。与高浓度处理(施药1d、3d)的稻株挥发物相比,稻虱缨小蜂明显地喜好低浓度(1.13 L/ hm2)处理稻株挥发物。印楝素处理的水稻植株挥发物对拟水狼蛛的寄主选择行为影响较小。与未施药的稻株挥发物相比,拟水狼蛛明显地趋向高浓度处理(施药3d)的稻株挥发物。施用印楝素的稻株挥发物较未施药稻株更吸引天敌,说明植物源农药对天敌较为安全,有利于更大程度地发挥天敌的生物控制作用。因此,可以通过调整农药的使用,使农药与水稻挥发物协同发挥作用,促进水稻害虫的可持续治理。
     4)测定了农药处理后相对含量较高或改变较大的14种水稻挥发物组分对褐飞虱3种天敌的生物活性。稻虱缨小蜂行为生测采用“Y”型嗅觉仪,黑肩绿盲蝽和拟水狼蛛均采用“H”型嗅觉仪。结果表明,在一定的浓度及观察时间下,对黑肩绿盲蝽起作用的组分是芳樟醇(引诱)、水杨酸甲酯(引诱)、(-)-异喇叭烯(引诱)、(-)-异石竹烯(引诱)、柠檬烯(驱避)、橙花叔醇(驱避)、雪松醇(驱避)等7种,对拟水狼蛛存在生物活性的是水杨酸甲酯(引诱)、(-)-异石竹烯(引诱)、法尼烯(引诱)、橙花叔醇(引诱)、(-)-α-可巴烯(驱避)、正十六烷(驱避)、雪松醇(驱避)等7种,能引起稻虱缨小蜂反应的组分是柠檬烯(驱避)、(-)-异喇叭烯(引诱)2种。其中,黑肩绿盲蝽和拟水狼蛛的共同活性组分是水杨酸甲酯、(-)-异石竹烯、橙花叔醇和雪松醇,除橙花叔醇外作用一致;黑肩绿盲蝽和稻虱缨小蜂的共同活性组分是柠檬烯和(-)-异喇叭烯,且作用一致;拟水狼蛛和稻虱缨小蜂无共同的活性组分。测定的14种组分中,(-)-α-雪松烯、(+)-β-雪松烯、(-)-姜烯和正十七烷等4种组分对3种天敌均无生物活性。生产上可以利用能引诱天敌的挥发物组分,加强天敌对害虫的控制作用。
     5)测定了14种水稻挥发物组分对褐飞虱的生物活性。行为生测(采用“H”型嗅觉仪)中,在一定的浓度及观察时间下,对褐飞虱表现出引诱作用的是柠檬烯、(-)-异喇叭烯、(-)-异石竹烯、法尼烯和雪松醇等5种组分,表现为驱避作用的是芳樟醇、水杨酸甲酯、(-)-α-可巴烯、(-)-α-雪松烯、(+)-β-雪松烯、(-)-异石竹烯、法尼烯和橙花叔醇等8种。值得注意的是,(-)-异石竹烯和法尼烯在不同的浓度下表现出相反的作用。(-)-姜烯、正十六烷和正十七烷等3种组分对褐飞虱无生物活性。触角电位测定(采用EAG反应仪)结果表明,褐飞虱对大部分的倍半萜烯类反应值较大(法尼烯和姜烯除外),其次是单萜及萜类含氧衍生物,对烷烃类化合物反应值较小或者不反应。其中,对(-)-异喇叭烯、(-)-异石竹烯和(-)-α-可巴烯的反应值最大,对(-)-姜烯和正十七烷几乎没有反应,这与褐飞虱的行为反应结果基本一致。以上结果表明,农药处理的稻株挥发物在褐飞虱寻找寄主的过程中起着重要的作用,但挥发物各组分所起的作用存在差异。
The influence of pesticides on rice plant volatiles and its ecological effects were investigated in a system involving pesticides, rice, pests (brown planthopper (BPH), Nilaparvata lugens St?l and the rice leaf folder (RLF), Cnaphalocrocis medinalis Guenee) and their natural enemies (an egg parasitoid, Anagrus nilaparvatae Pang et Wang, a predatory bug, Cyrtorhinus lividipennis Reuter and a predatory spider, Pirata subpiraticus Boes.et str.). The results are as follows:
     1) Volatiles of rice plants treated with 4 pesticides, including imidacloprid (new neonicotinoid insecticide), azadirachtin (botanical insecticide), triazophos (organophosphorus insecticide), MCPA-Na (hormone herbicide), were collected by solid phase microextraction (SPME) and then identified by gas chromatography coupled with mass spectrometry (GC-MS). Forty components were collected from headspace of rice plants infested by BPH under imidacloprid application, 25 of which were identified, including terpenes (16 kinds), alcohols (3 kinds), alkanes (3 kinds), ketones (1 kind), acetates (1 kind) and naphthalene (1 kind); Twenty-five components were collected from headspace of rice plants infested by BPH under azadirachtin application, 14 of which were identified, including terpenes (8 kinds), alcohols (3 kinds), alkanes (2 kinds) and acetates (1 kind); Thirty-six components were collected from headspace of rice plants infested by RLF under triazophos application, 15 of which were identified, including terpenes (8 kinds), alcohols (3 kinds), alkanes (2 kinds), acetates (1 kind) and ketones (1 kind); Twenty-four components were collected from headspace of healthy rice plants under MCPA-Na application, 8 of which were identified, including terpenes (6 kinds), alcohols (1 kind) and alkanes (1 kind). Eleven of the identified components were newly found in rice plants, including (-)-isoledene、(-)-α-cedrene、(+)-β-cedrene、thujopsene、cadina-1(10),4-diene、cadina-3,9-diene、2,4a,5,6,7,8,9,9 a-octahydro- 3,5,5-trimethyl-9-methylene-1H-benzocycloheptene、cedrene、muurolene、1,2,3,4,6,8 a-hexahydro-1-methylethyl-4,7-dimethyl-naphthalene and 2,6,10-trimethyl-tetradecane.
     Both kinds and proportions (percent of total peak area) of the sesquiterpenes were the highest in all treatments (pesticides treated or not). Compared with the CK (water treated plants), the treatments of pesticides did not result in the emission of new compounds, but rather the relative proportions among the compounds in the blend were altered. The proportions of 20% components had significant differences under imidacloprid application at three levels. The proportions of 85% components changed at different days after imidacloprid treatment. Furthermore, the proportions of 90% components were significantly changed due to the interactions between imidacloprid and other factors. The corresponding values of azadirachtin were 88.0%、76.0%、96.0%, triazophos were 13.9%、75.0%、88.9% and MCPA-Na were 54.2%、45.8%、75%, respectively. Therefore, the effect of pesticide on rice volatiles (ordered from high to low) were azadirachtin > imidacloprid > triazophos > MCPA-Na. The botanical insecticide azadirachtin was most effective which maybe have relation with its action mode. Among the changed components, methyl salicylate, (-)-isoledene, (-)-α-copaene, (-)-α-cedrene, (+)-β-cedrene, (-)-isocaryophyllene, (-)-zingiberene, cedrol, n-heptadecane were much easier to be influenced by pesticides treatment. The various biosynthesis pathways were responsible for the different changing trends of volatile components.
     2) Orientation responses of A. nilaparvatae (using Y-tube olfactometer) and C. lividipennis (using H-tube olfactometer) to rice plants treated by imidaclopid were conducted. The results showed that volatiles emitted from rice plants treated by imidacloprid with 3 concentrations had significant effects on the orientation responses of A. nilaparvatae and C. lividipennis. When the density of BPH was 10 females per plant, a majority of the parasitoid were attracted to rice plants treated with low concentration (15.00 g a.i /hm2) of imidacloprid, but not to high concentration (37.50 g a.i / hm2) ones, except at 5 days after treatment (DAT). The attractions of rice plants to the bug were water treated ones (CK) > low concentration treated ones > high concentration treated ones. Volatiles emitted from rice plants at different days after imidacloprid treatment also had significant effects on host searching behaviors of A. nilaparvatae and C. lividipennis. When BPH density was 2 females per plant, the parasitoid exhibited greater preference to rice plant volatiles from 1DAT, 3DAT, 5DAT than those from 7 DAT. When the damage density was 10 females per plant, the parasitoid preferred rice plant volatiles from 3 DAT under high imidacloprid application than those from 1 DAT. The bug preferred volatiles emitted from rice plants at 1DAT than those from 3DAT, 5DAT, 7DAT. The effects (attraction or repellent) of the components changed after imidacloprid treatment, such as methyl salicylate, (-)-isoledene, (-)-α-copaene, (-)-zingiberene, n-heptadecane, thujopsene, n-hexadecane, on the natural enemies maybe one reason of their orientation responses.
     3) Orientation responses of A. nilaparvatae and P. subpiraticus to rice plants treated by azadirachtin at three levels were studied with Y-tube olfactometer. The results indicated that when the BPH density was 2 females per plant, volatiles emitted from rice plants treated by azadirachtin with different concentrations had no effect on the orientation behaviors of the natural enemies. Only when the BPH density was 10 females per plant, host searching behaviors of natural enemies had significant differences. The parasitoid oriented significantly towards the odours emitted from rice plants under high (2.25 L/hm2) azadirachtin application at 1 DAT compared with water treated ones (CK). When compared with rice plants under high azadirachtin application, the parasitoid preferred volatiles from low (1.13 L/hm2) azadirachtin treated ones at 1 DAT and 3 DAT. The behavioral responses of P. subpiraticus to rice plants under azadirachtin application had no significant difference except at 3 DAT between high azadirachtin application plants and the CK plants. The rice plants under azadirachtin application were more attractive to the natural enemies than CK plants, which indicated that the botanical insecticide azadirachtin was safe to natural enemies and was helpful to improve their natural control effect on the pests. And thus, the mediations of pesticide applications should be taken to make full use of the synergism of pesticide and plant volatiles in sustainable management of rice pests.
     4) The biological activities of 14 rice volatile components to 3 natural enemies of BPH were measured in Y-tube olfactometer or H-tube olfactometer. The results demonstrated that under specific concentrations of volatile compounds and hours after releasing insects, the bug could be obviously attracted by linalool, methyl salicylate, (-)-isoledene, (-)-isocaryophyllene and repelled by linalool, nerolidol, cedrol. The spider could be attracted by methyl salicylate, (-)-isocaryophyllene, trans-β-farnesene, nerolidol, and repelled by (-)-α-copaene, n-hexadecane and cedrol. The wasps were attracted by (-)-isoledene and repelled by limonene. methyl salicylate, (-)-isocaryophyllene and cedrol had the same effects on behavioral responses of the bug and the spider, and limonene, (-)-isoledene were common active components of the bug and the parasitoid, while there was no common active compound between the spider and the parasitoid. Among the 14 compounds tested, (-)-α-cedrene, (+)-β-cedrene, (-)-zingiberene and n-heptadecane had no biological activity to all 3 natural enemies. The volatile components that attractting the natural enemies could be used in field to enhance the control of the natural enemies to the pests.
     5) The biological activities of 14 rice volatile components to BPH were studied. H-tube olfactory test showed that under specific concentrations of volatile compounds and hours after releasing insects, BPH could be obviously attracted by limonene, (-)-isoledene, (-)-isocaryophyllene, trans-β- farnesene and cedrol, and repelled by linalool, methyl salicylate, (-)-α-copaene, (-)-α-cedrene, (+)-β-cedrene, (-)-isocaryophyllene, trans-β-farnesene and nerolidol. The issue needing attention was (-)-isocaryophyllene and trans-β-farnesene had opposite influence to BPH at different concentrations. (-)-zingiberene, n-hexadecane and n-heptadecane showed no biological activity to BPH. In electrophysiological responses test, most of the sesquiterpenes (except trans-β-farnesene and (-)-zingiberene) elicited strong responses, and monoterpenoids and terpene oxides elicited moderate responses, while alkanes elicited the lowest or no responses. The EAG responses of BPH to (-)-isoledene, (-)-isocaryophyllene and (-)-α-copaene were the highest, and (-)-zingiberene, n-heptadecane were the lowest, which were almost consistent with the behavioral responses. The results suggested that volatiles from rice plants after pesticide treatment played a vital role in their host-finding behavior, however, each component played on different role.
引文
蔡晓明,孙晓玲,董文霞,等.虫害诱导植物挥发物(HIPVs):从诱导到生态功能[J].生态学报,2008,28(8):3969-3980.
    陈华才.挥发物在水稻—二化螟、稻纵卷叶螟—二化螟绒茧蜂、螟蛉绒茧蜂相互关系中的作用[D].博士学位论文,浙江大学,2002.
    陈华才,娄永根,程家安.二化螟绒茧蜂对二化螟及其寄主植物挥发物的趋性反应[J].昆虫学报,2003a,45(5):617-622.
    陈华才,娄永根,程家安.寄主昆虫及被害水稻挥发物对螟蛉绒茧蜂寄主选择行为的影响[J].浙江大学学报(农业与生命科学版),2003b,29(1):18-23.
    陈荣冰,张方舟.丹桂及名优乌龙茶品种香气特征比较[J].茶叶科学,1998,18 (2):113-118.
    陈再廖,周学杰,林济忠,等.氯虫苯甲酰胺防治水稻二化螟效果及对稻田天敌影响初探[J].中国植保导刊,2009,29(1):43-44.
    陈宗麒,谌爱东,罗开,等.杀虫剂对潜蝇姬小蜂寄生率的影响[J].西南农业学报,2004,17(1):49-51.
    程立超,迟德富,谢兴,等.青杨脊虎天牛对杨树皮挥发物的行为反应[J].生态学杂志,2009,28(1):45-50.
    杜家纬.植物-昆虫间的化学通讯及其行为控制[J].植物生理学报,2001,27(3):193-200.
    杜永均,严福顺.植物挥发性次生物质在植食性昆虫、寄主植物和昆虫天敌中的作用机理[J].昆虫学报,1994,37(2):133-250.
    冯兰萍,张夕林,张建明,等.褐飞虱的主要捕食性天敌及农药对天敌的影响[J].昆虫天敌,1999,21(2):55-60.
    冯绪猛.常用化学农药对对水稻生理生化影响及机理研究[D].硕士学位论文,扬州大学,2004.
    古德就,余明恩,侯任环,等.农药亚致死剂量对菜蚜茧蜂搜索行为影响的研究[J]. 生态学报,1991,11(4):324-329
    郭线茹,原国辉,罗梅浩.黑杨萎蔫叶片挥发性物质的成分分析[J].植物学通报,2002,19(5):595-600.
    韩宝瑜,周成松.茶梢和茶花主要挥发物对门氏食蚜蝇和大草蛉引诱效应[J].应用生态学报,2004,15(4):623-626.
    郝树广,张孝羲,程遐年.稻田节肢动物群落优势功能集团的垂直分布、数量动态及天敌作用估计[J].应用生态学报,2000,11(1):103-107.
    何承苗.几种农药对稻飞虱主要天敌的影响[J].福建农业科技,2000,(4):13-14.
    何含杰,梁朋,施和平.蔗糖和光对三裂叶野葛毛状根生长及次生物质产生的影响[J].生物工程学报,2005,21(6):1003-1008.
    何俊华,陈学新,马百,等.中国水稻害虫天敌名录[M].北京:科学出版社,1991,4-20.
    候照远,严福顺.寄生蜂寄主选择行为研究进展[J].昆虫学报,1997,40(1):94-107.
    胡聪,李蓓蓓,贺达汉,等.低剂量吡虫啉对多异瓢虫捕食蚜虫及繁殖的影响[J] .农业科学研究,2008,29(3):23-25.
    胡飞,孔垂华,陈雄辉,等.不同水肥和光照条件对水稻化感特性的影响[J].应用生态学报,2003,14(12):2265-2268.
    华丘林,郑金土,姚国华,等.吡虫啉防治水稻白背飞虱效果及对水稻、天敌的安全性试验[J].农药,1997,36(11):33-34.
    黄德超,梁广文,曾玲,等.不同耕种稻田昆虫天敌资源调查[J].昆虫天敌,2005,27(4):145-152.
    黄寿山,潘丽群,曾玲,等.胜红蓟次生物质对小菜蛾田间种群的控制作用[J].植物保护学报,2001,28(4):357-361.
    江俊起,缪勇,李桂亭,等.江淮地区中稻田害虫和天敌群落动态研究[J].江西农业大学学报,2006,28(3):354-358.
    孔垂华,黄寿山,胡飞.胜红蓟化感作用研究V.挥发油对真菌、昆虫和植物的生物活性及其化学成份[J].生态学报,2001,21(4):584-587.
    李继泉,樊慧,金幼菊,等.光肩星天牛取食后复叶槭挥发物的释放机制[J].北京林业大学学报,2002,24(5/6):170-174.
    李建洪,潘道一,陈常铭.杀虫剂对拟水狼蛛的毒性研究[J].湖南农业大学学报,2000,26(3):196-199.
    李汝铎,丁锦华,胡国文,等主编.褐飞虱及其种群管理[M].上海:复旦大学出版社,1996.
    李琰,王冬梅,姜在民,等.培养基及培养条件对杜仲愈伤组织生长及次生代谢产物含量的影响[J].西北植物学报,2004,24(10):1912-1916.
    李中新,孙绪艮,刘学辉. 2种叶螨对银杏叶的选择性及其挥发物测定[J].林业科学,2007,43(11):170-174.
    凌冰,张茂新,庞雄飞.植物中的昆虫产卵驱避物及其利用.昆虫与环境-中国昆虫学会2001年学术年会论文集(李典谟主编)[C].北京:中国农业出版社,2001,508-517.
    刘芳.挥发物在调节稻飞虱及其天敌种内种间关系中的作用[D].博士学位论文,浙江大学,2001.
    刘芳,娄永根,程家安.稻株挥发物在调节褐飞虱、白背飞虱种内种间关系中的作用[J].中国水稻科学,2002,16(2):162-166.
    刘芳,娄永根,程家安.虫害诱导的植物挥发物:植物与植食性昆虫及其天敌相互作用的进化产物[J].昆虫知识,2003,40(6):481-486.
    刘芳,包善微,卢海燕,等.稻虱缨小蜂对吡虫啉处理的水稻植株挥发物的行为反应[J].植物保护学报,2009,36(1):70-76.
    刘井兰,王美凤,徐建祥,等.农药对水稻体游离氨基酸含量及抗虫性的影响[J].扬州大学学报,2005,26(3):74-78.
    刘雨芳,古德祥,张古忍.稻田生态系统中捕食性天敌节肢动物种类调查分析[J]. 昆虫天敌,2002,24(4):145-153.
    娄永根,程家安.稻虱缨小蜂对水稻品种挥发物的行为反应[J].华东昆虫学报,1996,5(1):60- 64.
    娄永根.信息化合物在稻虱缨小蜂寄主选择行为中的作用[D].博士学位论文,浙江大学,1999.
    娄永根,程家安,庞保平,等.增强稻田天敌作用的途径探讨[J].浙江农业学报,1999,11(6):333-338.
    娄永根,程家安.虫害诱导的植物挥发物:基本特性、生态学功能及释放机制[J].生态学报,2000,20(6):1097-1106.
    娄永根,程家安,平霄飞,等.稻虱缨小蜂对褐飞虱和白背飞虱卵的识别机制[J].昆虫学报,2002,45(6):770-776.
    罗时石,王泽港,冯绪猛,等. 2002.农药对水稻叶片光合产物输出速率影响的示踪动力学研究[J].中国农业科学,35(9):1085-1089.
    毛润乾,古德祥,张古忍,等.稻田飞虱卵寄生蜂群落结构和动态的初步研究[J].昆虫学报,2002,45(3):408 - 412.
    宁眺,樊建庭,方宇凌,等.不同危害状态下寄主萜烯挥发物含量的变化及松墨天牛对其组分的触角电位反应[J].昆虫学报,2006,49(2):179-188.
    彭金英,黄勇平.植食性昆虫诱导的挥发物及其在植物通讯中的作用[J].植物生理学通讯,2005,41(5):679-681.
    任琴,李镇宇,胡永建,等.受害马尾松、湿地松挥发性化学物质的释放[J].生态学报,2005,25(11):2928-2932.
    谌爱东,陈宗麒,罗开,等.杀虫剂对潜蝇姬小蜂田间种群数量和寄生率的影响[J]. 云南农业大学学报,2003,18(3):249-252.
    申继忠.农药对高等植物次生代谢的影响及其生态学意义[J].世界农药,1998,20(1):41-45.
    谭乾开,黎华寿,廖昌庆,等.锐劲特对南亚热带稻区水稻害虫与天敌影响的评价[J].农业环境科学学报,2006,25(增刊):272-275.
    汤德良,王武刚,谭维嘉,等。棉铃虫为害诱导棉花内物质含量变化[J].昆虫学报,1997,40(3):332-333.
    陶曙红,吴凤锷.生态环境对药用植物有效成分的影响[J].天然产物研究与开发,2003,15(12):174-177.
    王香萍,赵露,鲍意.合成植物挥发物对小菜蛾性诱剂诱捕效果影响的研究[J].湖南农业科学,2008,(5):101-102,103.
    王智,颜亨梅,王洪全.低剂量农药对稻田蜘蛛控虫力的影响[J].生态学报,2002,22(3):346-351.
    文言. S3307浸种对冬小麦生理特性及产量的影响[J].麦类作物,1999,19(4):54-56.
    吴进才,刘井兰,沈迎春,等.农药对不同水稻品种品种SOD活性的影响[J].中国农业科学,2002,35(4):451-456.
    吴进才,王爱华,许俊峰,等.两种选择性农药的使用对刺激三化螟产卵及水稻生化的影响[J].中国农业科学,2003a,36(10):1163-1170.
    吴进才,许俊峰,冯绪猛,等.稻田常用农药对水稻3个品种生理生化的影响[J].中国农业科学,2003b,36(5):536-541.
    武予清,郭予元.棉花单宁-黄酮类化合物对棉铃虫的抗性潜力[J].生态学报,2001,21(2):286-289.
    肖汉祥,黄炳超,张扬,等.几种杀虫剂对水稻主要害虫及天敌的影响[J].广东农业科学,2006,5:43-45.
    许宁,陈宗憋,游小清.引诱茶尺镬天敌寄生蜂的茶树挥发物的分离与鉴定[J].昆虫学报,1999,42(2):126-131.
    徐敦明,李志胜,刘雨芳,等.中稻稻田害虫与天敌区系调查[J].西北农林科技大学学报(自然科学版),2003,31(5):101-105.
    徐涛,周强,夏嫱,等.虫害诱导的水稻挥发物对褐飞虱寄主选择行为的影响[J].科学通报,2002,47(11):849-853.
    薛皎亮,贺珺,谢映平.植物挥发物对天敌昆虫异色瓢虫的引诱效应[J].应用与环境生物学报,2008,14(4 ):494-498.
    严善春,杨慧,高璐璐,等.兴安落叶松鞘蛾对寄主挥发物的反应[J].林业科学,2009,45(5):94-101.
    杨世海,刘晓峰,马秀华,等.不同理化因子对甘草愈伤组织生长和黄酮类化合物合成的影响[J].吉林农业大学学报,2006,28(1):47-50.
    余月书,王芳,薛珊,等.吡虫啉等农药对二化螟产卵量的影响[J].江苏农业科学,2007,5:69-71.
    余月书,吴进才,王芳,等.吡虫啉胁迫对水稻可溶性糖、游离氨基酸及钾等矿物元素含量的影响[J].扬州大学学报,2008,29(1):85-89.
    袁树忠,吴进才,徐建祥,等.丁草胺等除草剂对水稻生理生化的影响[J].植物保护学报,2001,28(3):274-278.
    袁树忠,吴进才.稻田除草剂对水稻生长生理影响的初步研究[J].杂草科学,2002,4:12-14.
    张风娟,金幼菊,陈华君,等.光肩星天牛对4种不同槭树科寄主植物的选择机制[J].生态学报,2006,26(3):870-877.
    张玲春.艾蒿对甜菜夜蛾的生物活性及其有效成分研究[D].南京农业大学,硕士学位论文,2003.
    张艳峰,谢映平,薛皎亮,等.茉莉酸甲酯和日本龟蜡蚧诱导柿树挥发物对红点唇瓢虫的吸引[J].林业科学,2009,45(1):90-96.
    张瑛,严福顺.虫害诱导的植物挥发性次生物质及其在植物防御中的作用[J].昆虫学报,1998,41(2):204-213.
    张咏洁,张培毅,刘君,等.红脂大小蠹及油松挥发物对捕食性天敌寄主选择行为的影响[J].林业科学研究,2008,21(2):258-261.
    张征田,彭宇,梁子安,等.除草剂丁草胺对常见稻田蜘蛛毒性的测定及对其生长发育的影响[J].动物学杂志,2008,43(5):110-113.
    赵博光,杨雪云.植物源昆虫拒食剂的研究与应用前景[J].南京林业大学学报,1999,23(5):70-74.
    赵建兴,李咏伟,张芝利,等.蓖麻毒素粗提物杀虫作用研究[J].内蒙古农业大学学报,2001,22(4):78-80.
    赵玲,胡增辉,赵凤君,等.水杨酸甲酯诱抗黑杨对杨扇舟蛾生长发育的影响[J].北京林业大学学报,2005,27(1):75-78.
    周琳,冯俊涛,马志卿,等.雷公藤总生物碱对黏虫的生物活性[J].植物保护学报,2006,33(4):401-406.
    周倩耘,周建民,刘峻,等.诱导子对人参毛状根中皂苷含量的影响[J].南京军医学院学报,2003,25(2):76-78.
    周强,徐涛,张古忍,等.虫害诱导的水稻挥发物对褐飞虱的驱避作用[J].昆虫学报,2003,46(6):739-744.
    祝增荣,程家安,商晗武,等.甲胺磷+溴氰菊酯对稻田褐飞虱及其捕食性天敌种群动态的影响[J].植保技术与推广,1998,18(4):28-31.
    Agelopoulos N G, Chamberlain K, Pickett J A, et al.. Factors affecting volatile emissions of intact potato plants, Solarium tuberosum: variability of quantities and stability of ratios[J]. J. Chem. Ecol. 2000, 26(2): 497-511.
    Agrawal A A, Colfer R. Consequences of thrips-infested plants for attraction of conspecifics and parasitoids[J]. Ecol.Entomol, 2000, 25: 493-496.
    Ali M B, Hahn E J, Paek K Y. CO2-induced total phenolics in suspension cultures of enzymes[J]. Plant Physiology and Biochemistry, 2005, 43: 449- 457.
    Alborn H T, Turlings T C J, Jones T H, et al.. An elicitor of plant volatiles from beet armyworm oral secretion[J]. Science, 1997, 276(9) : 945-949.
    Alborn H T, Brennan M M, Tumlinson J H. Differential activity and degradation ofplant volatile elicitors in regurgitant of tobacco hornworm (Manduca sexta) larvae[J]. Journal of Chemical Ecology, 2003, 29, 1357-1372.
    An Y, Shen Y B, Wu L J, et al. A change of phenolic acids content in poplar leaves induced by methyl salicylate and methyl jasmonate[J]. Journal of Forestry Research, 2006, 17: 107-110.
    Arimura G, Ozawa R, Shimoda T, et al. Herbivory-induced volatiles elicit defence genes in lima bean leaves[J]. Nature, 2000, 406, 512-515.
    Arimura G, Ozawa R, Nishioka T, et al.. Herbivore-induced volatiles induce the emission of ethylene in neighboring lima bean plants[J]. Plant Journal, 2002, 29(1): 87-98.
    Armelle V, Hainan G, Silvia D. How rainfall, relative humidity and temperature influence volatile emissions from apple trees in situ[J]. Phytochemistry, 2005, 66: 1540-1550.
    Avdiushko S A, Brown G C, Dahlman D L, et al. Methyl jasmonate exposure induces insect resistance in cabbage and tobacco[J]. Physiol Chem Ecol, 1997, 26: 642-654.
    Baker D A, Allen J R F. Physiology and Biochemistry of Cytokinin in Plants [M]. The Netherlands: SBP Academic Publishing, 1992, 225-228.
    Bernasconi M L, Turlings T C J, Ambrosetti L, et al. Herbivore-induced emissions of maize volatiles repel the corn leaf aphid, Rhopalosip hummaidis[J]. Entomol Exp Appl, 1998, 87: 133- 142.
    Bertschy C, Turlings T C J, Bellotti A C et al. The role of mealybug-induced cassava plant volatiles in the attraction of the encyrtid parasitoids aenasius vexans and apoanagyrus diversicornis[J]. Joural of Insect Behavior, 2001, 14(3) : 363-371.
    Blaakmeer A, Gervliet J B F, Van Loon J J A, et al. Comparative headspace analysis of for in-flight cabbage plants damaged by two species of Pieris caterpillars: Consequences host location by Cotesia parasitoids[J]. Ent.Exp.Appl., 1994, 73: 175-182.
    Boerjan W, Genetello C, Montagu M V. New bioassay for auxins and cytokinins[J]. Plant physiol, 1992, 99(3): 1090-1098.
    Bolter C J, M. Dicke J J A, van Loon, et al. Attraction of Colorado potato beetle to herbivore-damaged plants during herbivory and after its termination[J]. J. Chem. Ecol.1997, 23(4): 1003-1023
    Brenner M L, Cheikh N. In: Plant Hormones, Physiology, Biochemistry and Molecular Biology [C], 2nd Edition, London: Kluwer Academic Publishers, 1995, 649-671.
    Bruin J, Dicke M, Sabelis M W. Plants are better protected against spider-mites after exposure to volatiles from infested conspecifics[J]. Experientia, 1992, 48: 525-529.
    Bruin J, Sabelis M W, Dicke M. Do plants tap SOS signal from their infested neighbors[J]? Tree, 1995, 10(4): 167-170.
    Buffer U, Wegmann K. Diurnal variation of monoterpene concentrations in open-top chambers and in the Welzhem forest air[J]. Atoms Environ., 1991, 25A: 251-256.
    D′Alessandro M, Turlings T C J. Advances and challenges in the identification of volatiles that mediate interactions among plants and arthropods[J]. The Royal Society of Chemistry, 2006, 131, 24-32.
    Davey M P, Bryant D N, Cummins I, et al. Effects of elevated CO2 on the vasculature and phenolic secondary metabolism of Plantago maritime[J]. Phytochemistry, 2004, 65: 2197-2204.
    De Moraes C M, Lewis W J, ParéP M, et al.. Herbivore-infested plants selectively attract parasitoids[J]. Nature, 1998, 393: 570-572.
    De Moraes C M, Mescher M C, Tumlinson J H. Caterpillar-induced nocturnal plant volatiles repel conspecific females[J]. Nature, 2001, 410: 577-580.
    Degenhardt J, Gershenzon J, Baldwin I T, et al. Attracting friends to feast on foes: engineering terpene emission to make crop plants more attractive to herbivore enemies[J]. Plant Biotechnology, 2003, 14, 169-176.
    Dercks W, Creasy L L, Lucaka-Bayles C J. Stilbene phytoalexin and disease resistance in Vitis [M], In: Handbook of phytoalexin metabolism and action. New York, 1995: 287-316.
    Dicke M, Sabelis M W, Takabayashi J, et al. Plant strategies of manipulating predator-prey interactions through allelochemicals: prospects for application in pest control[J]. J Chem Ecol, 1990, 16(11): 3091- 3118.
    Dicke M, van Baarlen P, Wessels R, et al. Herbivory induces systemic production of plant volatiles that attract predators of the herbivore: extraction of endogenous elicitor. J.Chem.Ecol., 1993, 19: 581-599.
    Dicke M. Local and systemic production of volatile herbivore-induced terpenoids: their role in plant-carnivore mutualism[J]. Journal of plant Physiology, 1994, 143: 465-472.
    Dicke M. Induced indirect plant defense: Communication and exploitation in multitrophic context[J]. Mitt Dtsch. Ges. Allg. Angew. Ent. 1998, 11: 453-464.
    Dicke, M. Specificity of herbivore-induced plant defences [M]. In: D. J. Chadwick & J. Goode (eds.) Insect-Plant Interactions and Induced Plant Defence. Wiley, Chicester (Novartis Foundation Symposium 223), 1999, pp. 43-59.
    Dicke M. Chemical ecology of host-plant selection by herbivorous arthropods: A multitrophic perspective[J]. Biochem.Syst.Ecol., 2000, 28: 601-617.
    Dicke M, van Loon J J A. Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context[J]. Entomol.Exp.Appl., 2000, 97: 237-249.
    Ding H, Lamb J, Ames N. 2000. Inducible production of phenolic acids in wheat and antibiotic resistance to Sitodiplosis mosellana[J]. Journal Chemical Ecology, 26 (4): 969-985.
    Dong W X, Zhang Z N, Fang Y L. Response of parasitoid Microplitis mediator to plant volatiles in an olfactometer[J]. Entomol Sin, 2000, 7(4): 344-350.
    Douillet-Breuil A C, Jeandet P. Change in the phytoalexin content of various Vitis spp. In response to ultraviolet C elicition[J]. .J.Agric.Food Chem. 1999, 47: 4456-4461.
    Erbilgin N, Raffa K R. Effects if host tree species on attractiveness of tunneling pine engravers, Ips pini, to conspecifics and insect predators[J]. J.Chem.Ecol., 2000, 26( 4) : 823-840.
    Erelli M C, Ayres M P, Eaton G K. Altitudinal patterns in host suitability for forest insects[J]. Oecologia, 1998, 117: 133- 142.
    Feng J C, Zhang Y J , Zhang Q J , et al. The effects of drough t stress and anti2transp iration agent treatment on some physio logical indexes of Camp totheca acum inata and its camp to thecin content[J]. J. Henan. Agr.Univ., 2002, 36: 138-142.
    Feng M, Mao X W, Chen Q. The influences of different light quality and medium composition on t he glucoside content in Digitalis purpurea leaves in vitro culture[J]. Journal of Shaoguan University (Natural Science), 1994, 15 (4) : 70-731.
    GouinguenéS, Degen T, Turlings T C J. Variability in herbivore-induced odour emissions among maize cultivars and their wild ancestors (teosinte) [J]. Chemoecology,2001, 11: 9-16.
    GouinguenéS P, Turlings T C L. The effects of abiotic factors on induced volatile emissions in corn plants[J]. Plant Physiol, 2002, 129 (3): 1296-1307.
    Gueds R N C, Magalhaes L C, Cosme L V. Stimulatory sublethal response of a generalist predator to permethrin: hormesis, hormoligosis, or homeostatic regulation [J] . Ecotoxicology, 2009, 102 (1): 170-176.
    Guerrieri E, Poppy G. M, Powell W, et al. Plant-to-plant communication mediating in-flight orientation of Aphidius ervi[J]. J.Chem.Ecol., 2002, 28(9): 1703-1715.
    Hadwiger L A, Schwochau M E. Ultra-violet light-induced formation of pisatin and phenylalanine ammonia lyase[J]. Plant Physiol, 1971, 47: 346-351.
    Halitschke R, Keler A, Kahl A, et al. Ecophysiological comparison of direct and indirect defenses in Nicotiana attenuate[J]. Oecologia, 2000, 124: 408-417.
    Harari A R, Yakir D B, Rosen D. Mechanism of aggregation behavior in Maladera matrida Argaman (Coleoptera: Scarabeidae) [J]. J. Chem. Ecol, 1994, 20: 361-371.
    Harborne J B.生态学化学导论[M].北京:科学出版社,1998.
    Hartmann T. Diversity and variability of plant secondary metabolism: a mechanistic view[J]. Ent. Exp. Appl., 1996, 80: 177-188.
    Hassan S A, Bigler F, Bogenschutz H, et al. Results of the sixth joint pesticide testing programme of the IOBC/WPRSW-working group, pesticides and beneficial organisms[J]. Entomophaga, 1994, 39(1): 107-119.
    Heyworth C J, Iason G R, Temperton V, et al. The effect of elevated CO2 concentration and nutrient supply on carbon-based plant secondary metabolites in Pinus sylvestris L[J]. Oecologia, 1998, 115: 344-350.
    Hoballah M E R, Tamo C, Turlings T C J. Differential attractiveness of induced odors emitted by eight maze varieties for the parasitoid Cotesia marginiventris: is quality or quantity important[J]? J.Chem.Ecol., 2002, 28(5): 951-968.
    Hsiao T H. Feeding behavior [M]. In: Comprehensive Insect Physiology, Biochemistry and Pharmacology (ed. By Kerkut G A and Gilberi L I) 9: 471-512. Pergamon Press.
    Hu M Y, Zhong G H, WU Q S, et al. Studies on the biological activities of yellow azalea, Rhododendron molle G. Don against the vegetable leafminer, Liriomza sativae[J]. Entomologia Sinica, 2000, 7(1): 65-70.
    Hu Z H, Yany D, Shen Y B. Difference in volatiles of poplar induced by various damage[J]. Journal of Forestry Research, 2004, 15: 280-282.
    Huckaba R M, Cable H D, Vand J W. Joint effects of acifluorfen applications and soybean thrips feeding on soybean [J]. Weed Sci, 1988, 36: 667-670.
    Itai C, Birnbaum H. Plant Roots [M]. New York: Marcel Dekker Inc, 1991, 163-177.
    James D G. Field evaluation of herbivore induced plant volatiles as attractants for beneficial insects: Methyl salicylate and the green lacewing, Chrysopa nigricornis[J]. J Chem Ecol, 2003, 29 (7): 1601-1609.
    Kalberer N M, Turlings T C J, Rahier M. Attraction of a leaf beetle ( Oreina cacaliae) to damaged host plants[J]. J. Chem. Ecol. 2001, 27(4): 647-661.
    Karban R, Baldwin L T, Baxter K J, et al. Communication between plants: induced resistance in wild tobacco plants following clipping of neighboring sagebrush[J]. Oecologia, 2000, 125: 66-71.
    Kato H, Kodama O, Akatsuka T. Characterization of an inducible p450 hydroxylase involved in the rice diterpene phytoalexin biosynthetic pathway[J]. Arch Biochem Biophys, 1995, 316(2): 702- 712.
    Keisey R, Vance N. Taxol and cephalomannine concetrations in the foliage and bark of shade and sun-exposed[J]. J Nat Prod, 1992, 55(7): 912-917.
    Kessler A, Baldwin I T. Defensive function of herbivore-induced plant volatile emissions in nature[J]. Science, 2001, 292: 2 141-2 144.
    Kinney K K, Lindroth R L, Jung S M, et al. Effects of CO2 and NO3 availability on deciduous trees: phytochemistry and insect performance[J]. Ecology, 1997, 78: 215-230.
    Kishimoto K, Matsui K, Ozawa R, et al. Volatile C6-aldehydes andallo-ocimene activate defense genes and induce resistance against Botrytis cinerea in Arabidopsis thaliana[J]. Plant Cell Physiology, 2005, 46: 1093-1102.
    Kranthi S, Kranthi KR, Wanjari RR. Influence of semilooper damage on cotton host-plant resistance to Helicoverpa armigera (Hub) [J]. Plant Science, 2003, 164(2): 157-163.
    Krips O E, Willems P E L, Gols R, et al. Comparison of cultivars of ornamental crop Gerbera jamesonii on production of spider mite-induced volatiles, and theirattractiveness to the predator[J]. J.Chem.Ecol., 2001, 27(7):1355-1372
    Kumarasinghe S P W, Karunaweera N D, Ihalamulla R L, et al. Larvicidal effects of mineral turpentine, low aromatic white spirits, aqueous extracts of Cassia alata, and aqueous extracts, ethanolic extracts and essential oil of betel leaf ( Piper betle ) on Chrysomya megacephala[J]. International Journal of Dermatology, 2002, 41: 877-880.
    Lavola A, Julkunen-Tiitto R. The effect of elevated carbon dioxide and fertilization on primary and secondary metabolites in birch, Betula pendula (Roth). Oecologia, 1994, 99: 315-321.
    Leal W S, Uchida K. Application of GC-EAD to the determination of mosquito repellents derived from a plant, Cymbopogon citrates[J]. Journal of Asia-Pacific Entomology, 1998, 1(2): 217-221.
    Lewis W J, Takasu K. Use of learned odours by a parasitic wasp in accordance with host and food needs[J]. Nature, 1990, 348: 635-636.
    Linus H W, Conny E, Marc J M H. Relation between primary and secondary metabolism in plant cell suspensions[J]. Plant Cell, Tissue and Organ Culture, 1995, 43: 111-116.
    Liu Z. Drought-induced in vivo synthesis of camp to thecin in Camp totheca acum inata seedlings[J]. Physiol Plantarum, 2000, 110: 483- 488.
    Llusia J, Penuelas J. Emission of volatile organic compounds by apple trees under spider mite attack and attraction of predatory mites[J]. Experimental and Applied Acarology, 2001, 25: 65-77.
    Lou Y G, Cheng J A. Role of rice volatiles in the foraging behaviour of Cyrtorhinus lividipennis Reuter[J]. Entomologia Sinica, 2001, 8(3): 240-250.
    Lou Y G, Ma B, Cheng J A. Attraction of the parasitoid Anagrus nilaparvatae to rice volatile induced by the rice brown planthopper Nilaparvata lugens[J]. Journal of Chemical Ecology, 2005a, 31(10): 2357-2372.
    Lou Y G, Du M H, Turling T C J, et al. Exogenous application of jasmonic acid induces volatile emissions in rice and enhances parasitism of Nilaparvata lugens eggs by the parasitoid Anagrus nilaparvatae[J]. Journal of Chemical Ecology, 2005b, 31(9): 1985-2002.
    Loughrin J H, Manukian A, Heath R R, et al. Diurnal cycle of emission of inducedvolatile terpenoids by herbivore-injured cotton[J]. Proceedings of National Academy Science of the United States of America, 1994, 91, 11836-11840.
    Loughrin J H, Manukian A, Heath R R, et al. Volatiles emitted by different cotton varieties damaged by feeding beet armyworm larvae[J]. J.Chem.Ecol., 1995a, 21( 8): 1217-1227.
    Loughrin J H, Potter D A, Hamilton-kenp T R, et al.. Volatile compounds induced by herbivory act as aggregation kairomones for the Japanese beetle ( Popillia japonica Newmen) [J]. J.Chem.Ecol., 1995b, 21(10): 1457-1467.
    Ma J F, Zheng S J, Matsumoto H, Hiradate S. Detoxifying aluminum with buck wheat[J]. Nature, 1997, 390: 569-570.
    Ma J F, Taketa S, Yang Z M. Aluminum tolerance genes on the short arm of chromosome 3R are linked to organic acid release in triticale[J]. Plant Physiol, 2000, 122: 687-694.
    Ma Z, Miyasaka S C. Oxalate exudation by taro in response to Al[J]. Plant Physiol, 1998, 118: 861-865.
    Maeda T, Takabayashi J, Yano S, et al. Factors affecting the resident time of the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae) in a prey patch[J]. Appl.Entomol.Zool., 1998, 33( 4) : 573-576.
    Maeda T, Takabayashi J, Yano S, et al. Response of the predatory mite, Amblyseius womersleyi (Acari: Phytoseiidae), toward herbivore-induced plant volatiles: variation in response between two local populations[J]. Appl.Entomol.Zool., 1999, 34(4): 449-454.
    Maeda T, Takabayashi J, Yano S, et al. 2000. Effects of light on the tritrophic interaction between kidney bean plants, two-spotted spider mites and predatory mite, Amblyseius womersleyi (Acari: Phytoseiidae) [J]. Exp Appl Acar, 24: 415-425.
    Maeda T, Takabayashi J. Production of herbivore-induced plant volatiles and their attractiveness to Phytoseius persimilis ( Acari: phytoseiidae) with changes of Tetranychus urticae (Acari: Tetranychidae) density on a plant[J]. Appl.Entomol.Zool., 2001, 36(1): 47-52.
    Markham K R, et al. An encrease in the luteolin apigenin ratioin Marchantia polymorpha on UV-B enhancement[J]. Phytochemistry, 1998, 48: 791-794.
    Matsui K, Kurishita S, Hisamitsu A, et al. A lipid-hydrolysing activity involved inhexenal formation[J]. Biochemical Society Transactions, 2000, 28, 857-860.
    Mattiacci L, Dicke M, Posthumus M.β-glucosidase: an herbivore-induced plant odor that attracts host-searching parasitic wasps[J]. Proc.Natl.Acad.Sci. USA, 1995, 2036-2040.
    Miller B, Madilao LL, Ralph S, et al. Insect-induced conifer defense: White pine weevil and methyl jasmonate induce traumatic resinosis, de novo formed volatile emissions, and accumulation of terpenoid synthase and putative octadecanoid pathway transcrip ts in sitka sp ruce[J]. PlantPhysiology, 2005, 137: 369-382.
    Minocha R, Long S, Magill A H, et al.. Foliar free polyamine and inorganic ion content in relation to soil and soil solution chemistry in two fertilized forest stands at the Harcard Forest, Massa chusetts[J]. Plant Soil, 2000, 222: 119- 137.
    Mirjalili N, Linden L C. Gas phase composition effects on suspension cultures of Taxus cuspidata[J]. Biotechnol Bioeng, 1995, 48: 123-132.
    Neveu N, Grandgirard J, Nenon J P, et al. Systemic release of herbivore-induced plant volatiles by turnips infested by concealed root-feeding larvae Delia radicum L[J]. J. Chem.Ecol., 2002, 28(9): 1717-1732.
    Pallini A, Janssen A, Sabelis M W. Odour-mediated responses of phytophagous mites to conspecific and heterospecific comptitors[J]. Oecologia, 1997, 110: 179-185.
    Pallini A. Odour-mediated indirect interactions in an arthropod food web [D]. Ph.D Thesis. 1998, University of Amsterdam.
    ParéP W, Tumlinson J H. Induced synthesis of plant volatiles[J]. Nature, 1997, 385: 30-31.
    ParéP W, Tumlinaon J H. Cotton volatiles synthesized and released distal to the site of insect damage[J]. Phytochemistry, 1998, 47(4): 521-526.
    Pellet D M, Grunes D L, Kochian LV. Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.) [J]. Planta, 1995, 196: 788-795.
    Pitasawat B, Champakaew D, Choochotea W, et al. Aromatic plant -derived essential oil: an alternative larvicide for mosquito control[J]. Fitoterapia, 78: 205-210.
    Potting R P J, Vet L E M, Dicke M. Host mictohabitat location by stem-borer parasitoid Cotesia flavipes: The role of herbivore volatiles and locally and systemically induced plant volatiles[J]. J. Chem.Ecol., 1995, 21(5): 525-539.
    Qiu Z H, Wu J C, Dong B, et al. Tow-way of pesticide on zeatin riboside content both rice leaves and roots[J]. Crop Protection, 2004, 23: 1131-1136.
    Quiroz A, Pettersson J, Pickett J A. Semiochemicals mediating spacing behavior of bird cherry-oat aphid, Rhopalosiphum padi feeding on cereals[J]. J.Chem.Ecol., 1997, 23(11): 2599-2607.
    Rapusas H R, Bottrell D G, Coll M. 1996. Intraspecific variation in chemical attraction of rice to insect predators[J]. Biol control, 6: 394-400.
    Rodriguez-Saona C, Crafts-Brandner S J, Pare W P et al., 2001. Exogenous methyl jasmonate induces volatile emissions in cotton plants[J]. J Chem. Ecol., 27(4): 679-95.
    Rojas J C. Influence of host plant damage on the host finding behavior of Mamestra brassicae[J]. Eviron.Entomol., 1999, 28: 588-593.
    R?se U S R, Manukian A, Heath R R, et al. Volatile semiochemicals released from undamaged cotton leaves[J]. Plant Physiology, 1996, 111: 487-495.
    R?se U S R, Tumlinson J H. Volatiles released from cotton plants in response to Helicoverpa zea feeding damage on cotton flower buds[J]. Planta, 2004, 824-832.
    Saber N, Abdel-Moneim A, Barakat S. Role of organic acids in sunflower tolerance to heavy metals[J]. Biol Plant, 1999, 42: 65-73.
    Sachs E S, Benedict J H. Pyramiding cryⅡinsecticidal protein and terpenoids in cotton to resist tobacco budworm (Lepidoptera: Noctuidae) [J]. Journal of Environmental Entomology, 1996, 25(6): 1257-1266
    Samsoe P L. Effects of 67 herbicides and plant growth regulators on the rove beetle Aleochara bilineata (Col: Staphylinidae) in the laboratory[J]. Entomophaga, 1995, 40(1): 95-104.
    Schmelz E A, Carroll M J, LeClere S, et al. Fragments of ATP synthase mediate plant perception of insect attack[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8894-8899.
    Schreier P. Chromatographic studies of biogenesis of plant volatiles [M]. New York: Huthig, 1984.
    Silverman F P, Assiamah A A, Bush D S[J]. Planta, 1998, 205: 23-31.
    Sun J H, Miao Z W, Zhang Z, et al. Red turpentine beetle, Dendroctonus valens LeConte (Coleop tera: Scolytidae), response to host semiochemicals in China[J].Environ Entomol, 2004, 33 (2): 206-212.
    Tabata M, Yamamoto H, Hirakoa H, et al. Regulation of nicotine production in tobacco tissue culture by plant growth regulation[J]. Phytochemistry, 1971, 10: 23-729.
    Tabata M, Mizukami H, Hiraoka N, et al. Pigment formation in callus cultures of lithormun erythrorhizon[J]. Phytochemistry, 1974, 13: 927-932.
    Takabayashi J, Dicke M, Kemerink J, et al. Environmental effects on production of a plant synomones that attracts predatory mites[J]. Symp Biol Hung, 1990, 39: 541-542.
    Takabayashi J, Dicke M, Posthumus M A, et al. Variation in composition of predator-attracting allelochemicals emitted by herbivore-infested plants: relative influence of plant and herbivore[J]. Chemoecology, 1991, 2: 1-6.
    Takabayashi J, Dicke M, Posthumus M A. Volatile herbivore-induced terpenoids in plant-mite interactions: variation caused by biotic and abiotic factors[J]. J Chem Ecol, 1994, 20: 1329-1354.
    Takabayashi J, et al. Developmental stage of herbivore Pseudaletia separate affects production of herbivore-induced synomone by corn plants[J]. J.Chem.Ecol., 1995, 21: 273-287.
    Takabayashi J, Dicke M. Plant-carnivore mutualism through herbivore-induced carnivore attractants[J]. Trends Plant Sci, 1996, 1: 109-113.
    Titayavan M, Altieri M A. Synomone-mediated interactions between the parasitoid Diaeretiella rapae and Brevicorynt brassicae under field conditions[J]. Entomophaga, 1990, 35(4): 499-507.
    Toft S, Jensen A P. No negative sublethal effects of two insecticides on prey capture and development of a spider [J]. Pestic Sci, 1998, 52: 223-228.
    Turlings T C J, Loughrin J H, McCall P J, et al. How caterpillar-damaged plants protect themselves by attracting parasitic wasps[J]. Proceedings of National Academy Science of the United States of America, 1995, 92, 4169-4174.
    Turlings T C J, Bernasconi M, Bertossa R, et al. The induction of volatile emissions in maize by three herbivore species with different feeding habits: possible consequences for their natural enemies[J]. Biological Control, 1998, 11: 122-129.
    Turlings T C J, Fritzsche M E. Attraction of parasitic wasps by caterpillar-damaged plants[J]. Novartis Found Symposium, 1999, 23: 21-31.
    Vet L E M, Dicke M. Ecology of infochemicals use by natural enemies in a tritrophic context[J]. Ann Rev Entomol, 1992, 37: 142-172.
    Vet L E M. From chemical to population ecology: infochemical used in an evolutionary context[J]. J. Chem. Ecol., 1999, 25( 1) : 31-49.
    Wang S L, Wang Z Y, An H, et al. Influences of ecological conditions on the effect of medical life form[J]. TCM Res, 2001, 14 (5): 64- 65.
    Weseloh R M. Orientation behavior and effect of experience and laboratory rearing on responses of Cotesia Melanoscela (Ratzeburg) (Hymenoptera: Braconidae) to gypsy moth silk kairomone[J]. Journal of Chemical Ecology., 1987, 13: 1493-1502.
    Wu J C, Xu J X, Liu J L, et al. Effects of herbicide on rice resistance and on multiplication and feeding of brown planthopper (BPH), Nilapavarta lugens (St?l) (Homopetra: Delphacidae) [J]. International Journal of Pest Management, 2001a, 47: 153-159.
    Wu J C, Xu J X, Yuan S Z, et al. Pesticide-induced susceptibility of rice to brown planthopper Nilapavarta lugens[J]. Entomol Exp Appl, 2001b, 100: 119-126.
    Wu J C, Qiu H M, Yang G Q, et al. Effective duration of pesticide-induced susceptibility of rice to brown planthopper (Nilapavarta lugens St?l, Homopetra:Delphacidae), and physiological and biochemical changes in rice plants following pesticide application[J]. International Journal of Pest Management, 2004, 50 (1): 55-62.
    Zanuncio T V, Serrao J E, Zanuncio J C, et al. Premethrin-induced hormesis on the predator Supputius cincticeps ( Stal, 1860) ( Heteroptera : Pentatomidae ) [J]. Crop Protection, 2003, 22 (7): 941-947.
    Zheng S J, Ma J F, Matsumoto H. Continuous secretion of organic acids is related to aluminum resistance during relatively long-term exposure to aluminum stress[J]. Physiol Plant, 1998, 103: 209-214.
    程遐年,吴进才,马飞.褐飞虱研究与防治[M].北京:中国农业出版社,2003.
    冯立国,孟祥申,周力,等.白玉兰与望春玉兰花香成分和含量的比较研究[J].山东农业大学学报,2009a,40(3):377-380.
    冯立国,生利霞,陶俊,等.不同种源野生玫瑰鲜花芳香成分的比较研究[J].扬州大学学报,2009b,30(4):90-94.
    刘芳,娄永根,程家安.稻株挥发物在调节褐飞虱、白背飞虱种内种间关系中的作用[J].中国水稻科学,2002,16(2):162-166.
    娄永根,程家安,平霄飞,等.稻虱缨小蜂对褐飞虱和白背飞虱卵的识别机制[J].昆虫学报,2002,45(6):770-776.
    马波,娄永根,程家安.几种生物因子对褐飞虱诱导的水稻挥发物活性的影响[J]. 浙江大学学报(农业与生命科学版),2004,30(6):589-595.
    宁眺,樊建庭,方宇凌,等.不同危害状态下寄主萜烯挥发物含量的变化及松墨天牛对其组分的触角电位反应[J].昆虫学报,2006,49(2):179-188.
    任琴,李镇宇,胡永建,等.受害马尾松、湿地松挥发性化学物质的释放[J].生态学报,2005,25(11):2928-2932.
    吴进才,王爱华,许俊峰,等. 2003a.两种选择性农药的使用对刺激三化螟产卵及水稻生化的影响[J].中国农业科学,36(10):1163-1170.
    吴进才,许俊峰,冯绪猛,等. 2003b.稻田常用农药对水稻3个品种生理生化的影响[J].中国农业科学,36(5):536-541.
    吴蕾,马凤鸣,刘成,等.大豆与玉米、小麦、高粱根系分泌物的比较分析[J].大豆科学,2009,28(6):1021-1030.
    徐涛,周强,夏蔷,等.虫害诱导的水稻挥发物对褐飞虱寄主选择行为的影响[J].科学通报,2002,47(11):849-853.
    薛皎亮,贺珺,谢映平.植物挥发物对天敌昆虫异色瓢虫的引诱效应[J].应用与环境生物学报,2008,14(4):494-498.
    余月书,王芳,薛珊,等.吡虫啉等农药对二化螟产卵量的影响[J].江苏农业科学,2007,5:69-71.
    余月书,吴进才,王芳,等.吡虫啉胁迫对水稻可溶性糖、游离氨基酸及钾等矿物元素含量的影响[J].扬州大学学报,2008,29(1):85-89.
    张长波.新株型水稻潜在姜烯合成酶基因的克隆、表达和序列分析[D].硕士学位论文,浙江大学,2007.
    周强,徐涛,张古忍,等.虫害诱导的水稻挥发物对褐飞虱的驱避作用[J].昆虫学报,2003,46(6):739-744.
    Argyropoulou C, Daferera D, Tarantilis PA, et al. Chemical composition of the essential oil from leaves of Lippia citriodora HBK (Verbenaceae) at two developmental stages[J]. Biochemical Systematics and Ecology, 2007, 35: 831-937.
    Buffin D. Imidacloprid. Pesticides News, 2003, 62:22-23 Accessed July 24, 2006 at http://www.pan-uk.org/pestnews/Actives/imidaclo.htm
    Cheng A X, Xiang C Y, Li J X, et al. The rice (E)-β-caryophyllene synthase (OsTPS3) accounts for the major inducible volatile sesquiterpenes[J]. Phytochemistry, 2007, 68: 1632- 1641.
    Coelho E, Rocha S M, Barros A S, et al. Screening of variety and prefermentationrelated volatile compounds during ripening of white grapes to define their evolution profile[J]. Analytica Chimica Acta, 2007, 597: 257-264.
    Dunford N T, Hiziroglu S, Holcomb R. Effect of age on the distribution of oil in Eastern redcedar tree segments[J]. Bioresource Technology, 2007, 98: 2636-2640.
    Flamini G, Cioni PL, Morelli I. Composition of the essential oils and in vivo emission of volatiles of four Lamium species from Italy: L. purpureum, L. hybridum, L. bifidum and L. amplexicaule[J]. Food Chemistry, 2005, 91: 63-68.
    GouinguenéS P, Turlings T C L. The effects of abiotic factors on induced volatile emissions in corn plants[J]. Plant Physiol, 2002, 129 (3): 1296-1307.
    Hidelisa P, Hernandez, Thomas C Y, et al. Foliage Volatiles of Two Rice Cultivars[J]. Phytochemistry, 1989, 28 (11): 2959-2962.
    Lou Y G, Cheng J A. Role of rice volatiles in the foraging behaviour of Cyrtorhinus lividipennis Reuter[J]. Entomologia Sinica, 2001, 8(3): 240-250.
    Lou Y G, Ma B, Cheng J A. Attraction of the parasitoid Anagrus nilaparvatae to rice volatile induced by the rice brown planthopper Nilaparvata lugens[J]. Journal of Chemical Ecology, 2005a, 31(10): 2357-2372.
    Lou Y G, Du M H, Turling T C J, et al. Exogenous application of jasmonic acid induces volatile emissions in rice and enhances parasitism of Nilaparvata lugens eggs by the parasitoid Anagrus nilaparvatae[J]. Journal of Chemical Ecology, 2005b, 31(9): 1985-2002.
    Lou Y G, Hua X Y, Turlings T C J, et al. Differences in induced volatile emissions among rice varieties result in differential attraction and parasitism of Nilaparvata lugens eggs by the parasitoid Anagrus nilaparvatae in the field[J]. Journal of Chemical Ecology, 2006, 32: 2375-2387.
    Karban R, Baldwin I T. Induced responses to herbivory[M]. Chicago: University of Chicago Press, 1997, 67-90.
    Kranthi S, Kranthi K R, Wanjari R R. Influence of semilooper damage on cotton host-plant resistance to Helicoverpa armigera (Hub) [J]. Plant Science, 2003, 164(2):157-163.
    Maeda T, Takabayashi J, Yano S, et al. Effects of light on the tritrophic interaction between kidney bean plants, two-spotted spider mites and predatory mite, Amblyseius womersleyi (Acari: Phytoseiidae) [J]. Experimental and Applied Acarology. 2000, 24: 415-425.
    Obata T, Koh H-S, Kim M, et al. Constituents of Planthopper Attractant in Rice Plant[J]. Appl.Ent.Zool, 1983, 18 (2): 161-169.
    ParéP W, Tumlinson J H. Plant volatiles as a defense against insect herbivores[J]. Plant Physiol, 1999, 12 1(2): 325-398.
    Rapusas H R, Bottrell D G, Coll M. Intraspecific variation in chemical attraction of rice to insect predators[J]. Biological control, 1996, 6: 394- 400.
    Rodriguez-Saona C, Crafts-Brandner S J, Pare W P, et al. Exogenous methyl jasmonate induces volatile emissions in cotton plants[J]. Journal of Chemical Ecology, 2001, 27(4): 679-95.
    Rohloff J, Bones, Atle M. Volatile profiling of Arabidopsis thaliana-Putative olfactory compounds in plant communication[J]. Phytochemistry, 2005, 66: 1941-1955.
    Takabayashi J, Dicke M, Posthumus M A, et al. Variation in composition of predator-attracting allelochemicals emitted by herbivore-infested plants: relative influence of plant and herbivore[J]. Chemoecology, 1991, 2: 1-6.
    Takabayashi J, Takahashi S, Dicke M, et al. Devolopmental stage of herbivore Pseudaletia separata affects production of herbivore-induced synomone by corn plants[J]. Journal of Chemical Ecology, 1995, 21 (3): 273-287.
    Turlings T C J, Bernasconi M, Bertossa R, et al. The induction of volatile emissions in maize by three herbivore species with different feeding habits: possible consequences for their natural enemies[J]. Biological Control, 1998, 11: 122-129.
    Turlings T C J, Ton J. Exploiting scents of distress: The prospect of manipulating herbivore-induced plant odours to enhance the control of agricultural pests[J]. Current Opinion in Plant Biology, 2006, 9: 421-427.
    杜孟浩.褐飞虱危害诱导的水稻挥发性互益素释放机制研究[D].博士学位论文,浙江大学,2004.
    刘芳.挥发物在调节稻飞虱及其天敌种内种间关系中的作用[D].博士学位论文,浙江大学,2001.
    王曰营,庄小花,侯有明.高效氯氟氰菊酯、丁硫克百威及印楝素对十字花科蔬菜上海青中游离氨基酸的影响[J].农药学学报,2008,10(4):423-430.
    徐德进.印楝素对水稻褐飞虱的生物活性及安全性评价[D].扬州大学硕士论文,2005.
    徐汉虹,张志祥,查友贵.中国植物性农药开发前景[J].农药,2003,42(3):1-5.
    Heyde V D J, Saxena R C, Schmutterer H. In: Schmutterer H, Ascher K R S (eds.), Natural Pesticides from the Neem Tree and Other Tropical Plants[C]. Proc. 2nd Int. Neem Conf. Rauischholzhausen, Eschborn GTZ, 1984, 377-390.
    Krishnaiah N V, Kumar K M, Lingaiah T, et al. Effect of neem formulations on feeding of Nilaparvata lugens, Sogatella furcifera and Nephotettix virescens of rice[J]. Pesticide research Journal, 2001, 13 (2): 235-238.
    Kumar K M, Krishnaiah N V, Lingaiah T, et al. Effect on neem formulations on reproduction and oviposition of rice hoppers Nilapavata lugens, Sogatella furcifera and Nephotettix virescens[J]. Pesticide Research Journal, 2001, 13 (1): 48-52.
    Latha S, Daniel M. Allelopathic effects of social forestry trees, neem and Meliaon rice[J]. Geobios, 2003, 30 (2-3): 137-142.
    Nathan S S, Kalaivani K. Efficacy of nucleopolyhedrovirus and azadirachtin on Spodoptera litura Fabricius (Lepidoptera: Noctuidae) [J]. Biological Control, 2005, 34: 93-98.
    Nathan S S, Choi M Y, Paik C H, et al. The toxic effects of neem extract and azadirachtin on the brown planthopper, Nilaparvata lugens (Sta?l) (BPH) (Homoptera:Delphacidae). Chemosphere, 2007, 67: 80-88.
    Nathan S S, Choi M Y, Seo H Y, et al. Effect of azadirachtin on acetylcholinesterase (AChE) activity and histology of the brown planthopper Nilaparvata lugens (Sta? l) [J]. Ecotoxicology and Environmental Safety, 2008, 70(2): 244-250.
    Rharrabe K, Amri H, Bouayad N, et al. Effects of azadirachtin on post-embryonic development, energy reserves andα-amylase activity of Plodia interpunctella Hubner (Lepidoptera: Pyralidae) [J]. Journal of Stored Products Research, 2008, 44: 290– 294.
    Saxena R C, Justo H D, Epino P B. Evaluation and utilization of neem cake against the brown planthopper, Nilaparvata lugens (Homoptera: Delphacidae) [J]. Econ.Entomol, 1984, (77): 502-507.
    Seljasen R, Meadow R. Effects of neem on oviposition and egg and larval development of Mamestra brassicae L: Dose response, residual activity, repellent effect and systemic activity in cabbage plants[J]. Crop Protection, 2006, 25: 338– 345.
    Tran D X, Tsuzuki E, Terao H, et al. Evaluation on phytotoxicity of neem (Azadirachta indica A. Juss) to crops and weeds[J]. Crop Protection, 2004, 23 (3): 335-345.
    冯绪猛.常用化学农药对对水稻生理生化影响及机理研究[D].硕士学位论文,扬州大学,2004.
    贺红武.有机磷农药产业的现状与发展趋势[J].世界农药,2008,30(6):29-30.
    胡荣利,徐蕾,周福才,等.沿江稻区第4代稻纵卷叶螟的成灾机制[J].植物保护学报,2005,32(4):392-396.
    刘建利.有机磷农药降解酶的研究进展[J].广东农业科学,2010,1:60-64.
    娄永根,程家安,平霄飞,等.稻虱缨小蜂对褐飞虱和白背飞虱卵的识别机制[J].昆虫学报,2002,45(6):770-776.
    沈向红,张晶,周晓萍,等.浙江省部分地区蔬菜、水果中有机磷残留分析[J].中国公共卫生,2005,21(2):207-208.
    唐红枫,孙茜.三唑磷对小白菜中可溶性蛋白质及SOD、CAT、Ca2+-ATPase和Mg2+-ATPase活性的影响[J].生物学通报,2009,44(5):46-48.
    吴进才,许俊峰,冯绪猛,等.稻田常用农药对水稻3个品种生理生化的影响[J].中国农业科学,2003a,36(5):536-541.
    肖惠萍,成水平,吴振斌.三唑磷胁迫对美人蕉生长发育及生理生化的影响[J].河南师范大学学报,2008,36(3):82-85.
    张一宾,孙晶.国内外有机磷农药的概况及对我国有机磷农药发展的看法[J].农药,1999,38(7):1-3.
    周群喜,姜海洲,王泉章,等. 20 %三唑磷乳油田间防治水稻纵卷叶螟试验[J].农药,1994,33(4):57.
    Turlings T C J, Bernasconi M, Bertossa R, et al. The induction of volatile emissions in maize by three herbivore species with different feeding habits: possible consequences for their natural enemies[J]. Biological Control, 1998, 11: 122-129.
    陈平,余土元,孙启忠. 2,4-D、二甲四氯对沟叶结缕草草坪中天胡荽部分生理特性的影响[J].中国草地,2002:24(4):37- 40.
    房艳.促进秋季茭白早熟的研究[D].硕士学位论文,扬州大学,2006.
    高扬帆,崔乘幸,于翔,等.二甲四氯对不同小麦品种生长及生理指标的影响[J].安徽农业科学,2006,34(13):2962,2965.
    刘井兰,吴进才,袁树忠,等.经除草剂处理的水稻对褐飞虱体内几种酶及水稻受褐飞虱为害程度的影响[J].中国水稻科学,2001,15(4):303-308.
    刘井兰,王美凤,徐建祥,等.农药对水稻体游离氨基酸含量及抗虫性的影响[J].扬州大学学报,2005,26(3):74-78.
    王家官,王鑫.二甲四氯与尿素混用对小麦光合速率及产量的影响[J].安徽农学通报,2006,12(9):80-82.
    袁树忠,吴进才,徐建祥,等.丁草胺等除草剂对水稻生理生化的影响[J].植物保护学报,2001:28(3):274-278.
    袁树忠,吴进才.稻田除草剂对水稻生长生理影响的初步研究[J].杂草科学,2002,4:12-14.
    张学友,沈俊明,冒宇翔,等,几种复配除草剂在盘育秧田的应用效果[J].杂草科学,1998,2:17-18.
    Dicke M. Local and systemic production of volatile herbivore-induced terpenoids: their role in plant-carnivore mutualism [J]. Journal of plant Physiology, 1994, 143: 465-472.
    Turlings T C J, Bernasconi M, Bertossa R, et al. The induction of volatile emissions in maize by three herbivore species with different feeding habits: possible consequences for their natural enemies [J]. Biological Control, 1998, 11: 122-129.
    Wu J C, Xu J X, Liu J L, et al. Effects of herbicide on rice resistance and on multiplication and feeding of brown planthopper (BPH), Nilapavarta lugens (St?l) (Homopetra: Delphacidae) [J]. International Journal of Pest Management, 2001a, 47: 153-159.
    Wu J C, Xu J X, Yuan S Z, et al. Pesticide-induced susceptibility of rice to brown planthopper Nilapavarta lugens [J]. Entomol Exp Appl, 2001b, 100: 119-126.
    陈华才,娄永根,程家安.二化螟绒茧蜂对二化螟及其寄主植物挥发物的趋性反应[J].昆虫学报,2002,45(5):617-622.
    陈建明,程家安,何俊华.黑肩绿盲蝽的国内外研究概况[J].昆虫知识,1992,29(6):370-373.
    陈美艳,陈君,李昆同,等.吡虫啉对金银花绿原酸含量影响的初步研究[J].中医药现代化,2006,8(6):54-57.
    丁金英.低剂量吡虫啉对多异瓢虫捕食及繁殖的影响[J].安徽农业科学,2008,36(3):1109-1110,1218.
    付立新,朱艰,吴国星,等.吡虫啉灭虫签对烟株、烟蚜、烟蚜茧峰的影响[J].云南大学学报,2008,30(S1):190-195.
    何承苗.几种农药对稻飞虱主要天敌的影响[J].福建农业科技,2000,4:13-14.
    姜运涛,马德英,杨保环,等. 20%吡虫啉SL不同施药方式对棉田天敌数量动态影响的比较[J].农药,2009,48(8):586-590.
    刘爱芝,杨艳春.吡虫啉拌种对小麦种子萌发和生长效应的影响[J].河南农业科学,2009,11:84-86.
    刘芳,娄永根,程家安.稻株挥发物在调节褐飞虱、白背飞虱种内种间关系中的作用[J].中国水稻科学,2002,16(2):162-166.
    刘芳,包善微,宋英,等.吡虫啉对稻虱缨小蜂的致死和亚致死效应研究[J].扬州大学学报,2009,30(4):80-84.
    娄永根.信息化合物在稻虱缨小蜂寄主选择行为中的作用[D].博士学位论文,浙江大学,1999.
    娄永根,程家安,平霄飞,等.稻虱缨小蜂对褐飞虱和白背飞虱卵的识别机制[J].昆虫学报,2002,45(6):770-776.
    孙定炜,苏建亚,沈晋良,等.杀虫剂对褐飞虱捕食性天敌黑肩绿盲蝽的安全性评价[J].中国农业科学,2008,41(7):1995-2002.
    汤方,李生臣,孔祥波,等.吡虫啉等杀虫剂对温室白粉虱及其两种天敌的选择毒力[J].农药学学报,2007,9(1):88-91.
    徐志英,刘芳,宋英,等.扑虱灵和吡虫啉对稻虱缨小蜂寄生率的影响[J].昆虫知识,2006,43(6):789-793.
    于晶,周峰,陈美艳,等.吡虫啉对枸杞子多糖含量的影响[J].解放军药学学报,2010,26(1):77-82.
    张怡,孙海霞,赵金霞,等.吡虫啉对枸杞蚜虫及小十三星瓢虫各虫态的选择性毒力研究[J].宁夏农林科技,2006,5:10-11.
    张雪梅,陈雁君,谷昊明,等.吡虫啉对生菜多酚氧化酶活性的影响[J].中国卫生检验杂志,2008,18(3):549-550.
    Khan Z R, Saxena R C. Effect of steam distillate extracts of resistant and susceptible rice cultivars on behavior of Sogatella furcifera (Homoptera: Delphacidae) [J]. Journal of Economic Entomology, 1986, 79: 928-935.
    Lou Y G, Cheng J A. Role of rice volatiles in the foraging behaviour of Cyrtorhinus lividipennis Reuter [J]. Entomologia Sinica, 2001, 8(3): 240-250.
    Lou Y G, Ma B, Cheng J A. Attraction of the parasitoid Anagrus nilaparvatae to rice volatile induced by the rice brown planthopper Nilaparvata lugens [J]. Journal of Chemical Ecology, 2005a, 31(10) : 2357-2372.
    Lou Y G, Du M H, Turling T C J, et al. Exogenous application of jasmonic acid induces volatile emissions in rice and enhances parasitism of Nilaparvata lugens eggs by the parasitoid Anagrus nilaparvatae [J]. Journal of Chemical Ecology, 2005b, 31(9): 1985-2002.
    Lou Y G, Hua X Y, Turlings T C J, et al. Differences in induced volatile emissions among rice varieties result in differential attraction and parasitism of Nilaparvata lugens eggs by the parasitoid Anagrus nilaparvatae in the field [J]. J Chem Ecol, 2006, 32: 2375-2387.
    Rapusas H R, Bottrell D G, Coll M. Intraspecific variation in chemical attraction of rice to insect predators [J]. Biological Control, 1996, 6: 394-400.
    Tanaka K, Endo S, Kazano H. Toxicity of insecticides to predators of rice planthoppers: Spiders, the mired bug and the drinid wasp [J]. Appl. Entomol. Zool., 2000, 35: 177-187.
    Teramoto T, Yokomizo K. Effect of Cyrtorhinus lividipennis on the increase of the brown planthopper, Nilaparvata luges [J]. Proc. Assoc. Pl. Prot. Kyushu., 1992, 38: 57-62 (in Japanese).
    Wang H Y, Yang Y, Su Jian Y. Assessment of the impact of insecticides on Anagrus nilaparvatae (Pang et Wang) (Hymenoptera: Mymanidae), an egg parasitoid of the rice planthopper, Nilaparvata lugens (Hemiptera: Delphacide) [J]. Crop Protection, 2008, 27: 514-522.
    查友贵,徐汉虹.印楝及印楝生物农药[J].世界农药,2003,25(4):29-34.
    冯兰萍,张夕林,张建明,等.褐飞虱的主要捕食性天敌及农药对天敌的影响[J].昆虫天敌,1999,21(2):55-60.
    毛润乾,古德祥,张古忍,等.稻田飞虱卵寄生蜂群落结构和动态的初步研究[J].昆虫学报,2002,45(3):408 - 412.
    张志祥,程东美,田永清,等.印楝、印楝杀虫剂与生态环境[J].科技导报,2004,(2):56-59.
    Longley M,Jepson P C. Effects of honeydew and insecticide residues on the distribution of foraging aphid parasitoids under glasshouse and field conditions [J]. Entomol. Exp. Appl., 1996a, 81: 189-198.
    Longley M,Jepson P C. The influence of insecticide residues on primary parasitoids and hyperparasitoid foraging behaviour in the laboratory [J]. Entomol. Exp. Appl., 1996b, 81: 259-269.
    Longley M A. A review of pesticide effects upon immature aphid parasitoids within mummified hosts [J]. Int. J. Pest Manage., 1999, 45 (2): 139-145.
    Mansour P A, Ascher K R S. Plant-derived insect antifeedants, problems and prospects [J]. International Pest, Control, 1987, 29(6): 131-133.
    Punzo F. Effects of Azadirachtin on Mortality, Growth, and immunological function in the wolf spider, Schizocosa episina (Araneae: Lycosidae) [J]. Bull Environ Contam Toxicol, 1997, 58: 415-421.
    Rao A, Vinson S B, Gilstrap F E, et al. Response of an aphid parasitoid, Aphelinus asychis to its host, palnt, host-plant complex, and to malathion [J]. Entomologia Experimentalis et Applicata, 1999, 91: 449-456.
    Stapel J O, Cortesero A M, Lewis W J. Disruptive Sublethal effects of insecticides on biological control: altered foraging ability and life span of a parasitoid after feeding onextrafloral nectar of cotton treated with systemic insecticides [J]. Biological Control, 2000, 17: 243-249.
    Stark J D. Comparison of the impact of a neem kernel extract for mulaiton Margosan-O and chlorpyrifos on non-target invertebrates inhabiting turf grass [J]. Pesticide Science, 1992, (3): 293-299.
    Umoru P A, Powell W, Clark S J. Effect of pirimicarb on the foraging behaviour of Diaeretiella rapae (Hymenoptera: Braconidae) on host-free and infested oilseed rape plants [J]. Bull. Entomol. Res., 1996, 86 (2): 193-201.
    Baldwin I T, Preston C A. The ecophysiological complexity of plant responses to insectherbivores [J]. Planta, 1999, 208: 137-145.
    Degenhardt J, Gershenzon J, Baldwin I T, et al. Attracting friends to feast on foes: engineering terpene emission to make crop plants more attractive to herbivore enemies [J]. Plant Biotechnology, 2003, 14, 169-176.
    De Moraes C M, Lewis W J, ParéP M, et al.. Herbivore-infested plants selectively attract parasitoids [J]. Nature, 1998, 393: 570-572.
    De Moraes C M, Mescher M C, Tumlinson J H. Caterpillar-induced nocturnal plant volatiles repel conspecific females [J]. Nature, 2001, 410: 577-580.
    James D G. Field evaluation of herbivore induced plant volatiles as attractants for beneficial insects: Methyl salicylate and the green lacewing, Chrysopa nigricornis [J]. J Chem Ecol, 2003, 29 (7): 1601-1609.
    Kessler A, Baldwin I T. Defensive function of herbivore-induced plant volatile emissions in nature [J]. Science, 2001, 292: 2 141-2 144.
    ParéP W, Tumlinson J H. Induced synthesis of plant volatiles [J]. Nature, 1997, 385: 30-31.
    ParéP W, Tumlinson J H. Plant volatiles as a defense against insect herbivores [J]. Plant Physiol, 1999, 121: 325-331.
    陈荣冰,张方舟.丹桂及名优乌龙茶品种香气特征比较[J].茶叶科学,1998,18 (2):113-118.
    韩宝瑜,周成松.茶梢和茶花主要挥发物对门氏食蚜蝇和大草蛉引诱效应[J].应用生态学报,2004,15(4):623-626.
    薛皎亮,贺珺,谢映平.植物挥发物对天敌昆虫异色瓢虫的引诱效应[J].应用与环境生物学报,2008,14(4):494-498.
    阎凤鸣.化学生态学[M].北京:科学出版社,2003,240.
    张艳峰,谢映平,薛皎亮,等.茉莉酸甲酯和日本龟蜡蚧诱导柿树挥发物对红点唇瓢虫的吸引[J].林业科学,2009,45(1):90-96.
    杜永均,严福顺.植物挥发性次生物质在植食性昆虫、寄主植物和昆虫天敌中的作用机理[J].昆虫学报,1994,37(2):133-250.
    付晓伟,郭线茹,罗梅浩,等.两近缘种夜蛾对低浓度烟草挥发物的触角电位反应[J].生态学报,2009,29(6):2962-2970.
    郝德君,马凤林,王焱,等.松墨天牛对不同生理状态黑松挥发物的触角电生理和行为反应[J].应用生态学报,2006,17(6):1070-1074.
    胡国文,梁天锡,刘光杰,等.抗白背飞虱水稻品种挥发性次生物质的提取、组分鉴定与生测[J].中国水稻科学,1994,8(4):223-230.
    刘芳,娄永根,程家安.稻株挥发物在调节褐飞虱、白背飞虱种内种间关系中的作用[J].中国水稻科学,2002,16(2):162-166.
    娄永根,程家安.虫害诱导的植物挥发物:基本特性、生态学功能及释放机制[J].生态学报,2000,20(6):1097-1106.
    宁眺,樊建庭,方宇凌,等.不同危害状态下寄主萜烯挥发物含量的变化及松墨天牛对其组分的触角电位反应[J].昆虫学报,2006,49(2):179-188.
    徐涛,周强,夏嫱,等.虫害诱导的水稻挥发物对褐飞虱寄主选择行为的影响[J].科学通报,2002,47(11):849-853.
    周强,徐涛,张古忍,等.虫害诱导的水稻挥发物对褐飞虱的驱避作用[J].昆虫学报,2003,46(6):739-744.
    Dicke M. Chemical ecology of host-plant selection by herbivorous arthropods: A multitrophic perspective [J]. Biochem.Syst.Ecol., 2000, 28: 601-617.
    Khan Z R, Saxena R C, Rueda B P. Responses of rice-infesting and grass-infesting populations of Nilaparvata lugens (Homoptera: Delphacidae) to rice plant and Leersia grass to their steam distillate extracts [J]. Entomological Society of America, 1988, 81(4): 1079-1088.
    郭予元.棉铃虫的研究[M].北京:中国农业出版社,1998,118-120.
    Lou Y G, Ma B, Cheng J A. Attraction of the parasitoid Anagrus nilaparvatae to rice volatile induced by the rice brown planthopper Nilaparvata lugens [J]. Journal of Chemical Ecology, 2005a, 31(10): 2357-2372.
    Turlings T C J, Tumlinson J H. Do parasitoids use herbivore-induced plant chemical defenses to locate hosts [J]? Florida Entomoligist, 1991, 74(1): 42-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700