用户名: 密码: 验证码:
GAP基含能热塑性弹性体研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统硝化纤维素粘结剂能量高但受热、机械、冲击波、射流等刺激易发生燃烧转爆轰,降低武器装备的生存能力。发射药用惰性热塑性弹性体粘结剂虽具有良好的力学性能但能量低,聚叠氮缩水甘油醚(GAP)是侧链带叠氮基的新型含能粘结剂,兼具高能量和低敏感性特点,是发展新一代发射药的关键组份之一。GAP预聚物虽具有较高的能量但其强极性的叠氮侧链,使主链柔软性恶化,力学性能变差。本文借鉴惰性热塑性聚氨酯弹性体的设计、合成方法,针对发射药用粘结剂高能量、高强度要求,结合共混技术,开展了发射药用含能热塑性弹性体的设计、合成工艺及力学性能研究,获得了未见文献报道的DEG扩链GAP-TPE和硝化棉(NC)/GAP-TPE共混物,为发展高能量、高强度发射药提供粘结剂方面的理论和应用基础,并研究了GAP-TPE与NC/GAP-TPE共混物的热分解动力学,为评估高分子材料的热稳定性和预测材料的使用寿命提供依据。主要开展以下几方面工作:
     通过对含能热塑性弹性体(ETPE)结构分析和分子设计,选择相对分子质量为3000的GAP为软段,MDI和BDO为硬段,合成了一类GAP-TPE,对合成工艺进行了研究,当采用预聚体法,R值为0.98,预聚反应时间为2小时,得到的弹性体的力学性能较佳;降温扩链法合成的GAP-TPE力学性能较好,并改善了升温扩链法合成体系粘度大、出料困难和DMF难排除等问题;随硬段质量分数的增加,BDO扩链GAP-TPE的拉伸强度增大,而断裂伸长率减小。
     为保证含能粘结剂有尽可能高的能量,同时也具有良好的力学性能,以35%的硬段质量分数为前提,研究了具有HO(CH2CH2)nOH结构的几种扩链剂,如EDO、BDO和HDO对GAP-TPE性能的影响。用FTIR、GPC、元素分析、真密度、DMA和SEM等分析手段对弹性体的结构和性能进行了表征,合成的样品具有聚氨酯结构和一定的微相分离,BDO扩链GAP-TPE具有较好的综合性能,其密度为1.35 g·cm-3,数均相对分子质量为76630,拉伸强度(σb)为13.4 MPa,断裂伸长率(εb)为362%,玻璃化温度(Tg)为-22.3℃,储能模量(E',T=50℃)为22.6 MPa,合成的GAP-TPE具有较均一的断面形貌。
     选择结构规整且含有内旋转柔性醚键的DEG为扩链剂,合成了GAP-TPE,与结构为HO(CH2CH2)nOH的扩链剂合成的弹性体相比较,DEG扩链GAP-TPE(硬段质量分数35%)的氢键密度增大,微相分离程度增强,力学性能提高。数均相对分子质量为84530,密度为1.37 g·cm-3,σb为14.6MPa,εb为414%,Tg为-24.9℃,储能模量(E’,T=50℃)为69MPa。
     由于GAP-TPE的高温模量低影响发射药的高温力学性能,用扩链共混熟化的方法制备了NC/GAP-TPE共混物。XRD、真密度分析显示随着NC含量的增加,共混物的密度增大,促进了GAP-TPE硬段微区结晶;DMA分析显示5/95、10/90(质量比,下同)的NC/GAP-TPE只有一个玻璃化转变温度,20/80、40/60、60/40和80/20的NC/GAP-TPE试样有两个玻璃化转变峰且向中间靠拢,表明共混物为部分相混体系;σb由NC/GAP-TPE(5/95)的10.4MPa提高到NC/GAP-TPE(20/80)的20.4MPa,εb由NC/GAP-TPE(5/95)的264%降为NC/GAP-TPE(20/80)的139%;随着NC含量的增加,高温储能模量(E’,T=50℃)也增加,当NC/GAP-TPE的质量比为5/95、10/90、20/80、40/60、60/40和80/20时,储能模量E'分别为14、16、42、236、1747和2650 MPa;通过共混的方法可以制备性能互补的NC/GAP-TPE复合含能粘结剂,发挥NC高能量、高强度和GAP-TPE良好韧性的优点,通过调节其配比满足能量性能和力学性能的不同要求。
     采用TG/DTG法,研究了DEG扩链GAP-TPE和质量比为20/80的NC/GAP-TPE的热分解过程和机理,根据DTG曲线的特点分峰,Kissinger法和Ozawa法求得活化能基本一致,GAP-TPE三个阶段分解的活化能分别是223,235和57kJ·mol-1, NC/GAP-TPE三个明显阶段的热分解活化能分别是163,166和292 kJ·mol-1,叠氮基的分解活化能下降,硬段氨基甲酸酯的分解活化能有所提高;Coats-Redfern积分法求得GAP-TPE的三个阶段的机理函数的积分式分别为[-ln(1-α)]1/3、-ln(1-α)和-ln(1-α), NC/GAP-TPE热分解的三个阶段的机理函数积分式都是G(α)=α2。
High energy and low vulnerability is being the trend of gun propellant development. Traditional Nitrocellulose (NC) binder based gun propellants has high energy, however the survival ability of weapon system is strongly affected by the vulnerability of the gun propellants, which has the possibility of deflagration-to-detonation upon stimulation such as heat, mechanical force, blast wave and efflux jet. Gun propellants which are based non energetic binders (such as cellulose, crosslinking or thermoset binder, and thermoplastic elastomer) have satisfactory mechanical properties but give relatively low energy. Glycidyl azide polymer (GAP) is a novel energetic binder being considered as the key component of gun propellants due to its insensitivity and high energy. The pendant azide group of GAP main chain results in low mechanical properties of gun propellants. So it is necessary to improve the mechanical properties of GAP binder. In this paper, a series of energetic thermoplastic elastomers with GAP prepolymer were synthesized and characterized for improving the micro domain of crystallization and then the mechanical properties of the binders. A novel blend with NC and GAP-TPE is further prepared to modify the GAP-TPE's drawback of modulus decreasing as temperature increasing. At last, the thermal decomposition kinetics of GAP-TPE and NC/GAP-TPE blends was thoroughly studied. The main work is as follows:
     Energetic thermoplastic polyurethane elastomer is synthesized using GAP with number averaged molecular weight of 3000 as soft segment,4,4'-diphenylmethane diisocyanate (MDI) and 1,4-butanediol (BDO) as hard segments. The results showed that GAP-TPE synthesized by melt-prepolymerization has better mechanical properties, having the -NCO/-OH mole ratio (R) of 0.98 and reacting for 2h. The mechanical properties of GAP-TPE are better when reducing the chain extension temperature. The bulk viscosity of the mixture decreased as the reaction temperature of the chain extension decreased. Using BDO as chain extender, the GAP-TPE showed higher tensile strength and elongation at break at higher content of the hard segment.
     In order to improve the mechanical properties of GAP-TPE, GAP-TPEs were synthesized with different chain extenders while the hard segment content was fixed as 35%. The studied chain extenders included EDO, BDO and HDO, having the structure of HO(CH2CH2)n OH. FTIR, GPC, Elemental analysis, DMA and Density are applied to characterize the synthesized elastomers. The elastomers have the same structure characteristic of polyurethane. The GAP-TPE using BDO as chain extender has better mechanical properties, tensile stress (σb) of 13.4 MPa, elongation at break (εb) of 362%, storage modulus (E',T=50℃) of 22.6 MPa. Its density is 1.35 g·cm-3. the number averaged molecular weight is 76630, and the glass-transition temperature (Tg) is -22.3℃. SEM photographs showed the homogeneous microstructure of the GAP-TPE.
     Further using DEG as chain extender, the synthesized GAP-TPE with hard segment of 35% has better properties than those of HO (CH2CH2)n OH extended GAP-TPE. DEG extended GAP-TPE has a density of 1.37 g·cm-3, number averaged molecular weight of 84530,σb, of 14.6 MPa,εb of 414%, storage modulus (E',T=50℃) of 69MPa, and Tg of -24.9℃. DEG extended GAP-TPE also has higher degree of hydrogen bonding and micro-phase separation.
     To improve the storage modulus of GAP-TPE at high temperature, NC/GAP-TPE blends are prepared by the step of chain extension, blending and aging. XRD and density analysis show that the densities of NC/GAP-TPE blends increase with the increase of NC content. The DMA analysis shows that NC/GAP-TPE (9/95,10/90, mass ratio, the same as follows) owns only one glass transition temperature, while two glass transition temperatures of NC/GAP-TPE (20/80,40/60,60/40,80/20) are observed and they shift closer to each other with the increase of NC content, implying that the blend was partially miscible. Theσb andεb of NC/GAP-TPE (20/80) are 20.4MPa and 139% whereas theσb andεb of NC/PEG-TPE (5/95) are 10.4MPa and 264%, respectively. When the mass ratio are 5/95,10/90,20/80,40/60, 60/40 and 80/20 for NC/PEG-TPE, the storage modulus (E', T=50℃) are 14,16,42,236, 1747 and 2650 MPa, respectively. Thus, the composite energetic binder, NC/GAP-TPE, combined the high modulus of NC with the good toughness of GAP-TPE, having the potential to adjust the properties of NC/GAP-TPE by changing the mass ratio of NC and GAP-TPE.
     Thermogravimetric analysis (TG) and derivative thermogravimetry (DTG) are employed to evaluate the thermal decomposition behaviors of GAP-TPE and NC/GAP-TPE. The peak separation is performed to separate the thermal decomposition peak of GAP-TPE into several stages according to the characteristic of the experimental differential mass loss curve. The activation energy calculated with Ozawa methods for each decomposition stage has good agreement with the result calculated with Kissinger method. The activation energy of GAP-TPE in the three stages are 223,235 and 57 kJ·mol-1, respectively. The activation energy of NC/GAP-TPE in the three stages are 163,166 and 292 kJ·mol-1. The thermal decomposition activation energy of pendant azide group decreased and the hard segment carbamate increased after blending. In addition, the three stage's mechanism functions of GAP-TPE calculated by the Coats-Redfen method are [-ln(1-α)]1/3、-ln(1-α) and -ln(1-α), respectively. The mechanism functions of NC/GAP-TPE in three stages calculated by the Coats-Redfen method are all a2.
引文
[1]BEAUPRE F., MELANCON J., NICOLE C., et al. Insensitive propellant formulations containing energetic copolyurethane thermoplastic elastomers [P]. EP1186582A1,2002, 03.
    [2]何吉宇,谭惠民.推进剂用热塑性聚氨酯弹性体的合成及表征[J].推进技术,2004,25(3):271-273.
    [3]Ramdas S. Damse, Amarjit Singh, Harihar Singh. High Energy Propellants for Advanced Gun Ammunition Based on RDX, GAP and TAGN Compositions [J]. Propellants, Explosives, Pyrotechnics,2007,32 (1):52-60.
    [4]李再峰,冯国增.端羟基叠氮缩水甘油醚(GAP)聚氨酯某些性能的研究[J].弹性体,1996,6(4):25-27.
    [5]Ampleman G, Desilets S., Marois A.. Energetic thermoplastic elastomers based on glycidyl azide polymers with increased functionality [C],27th ICT,1996.
    [6]Volkov E.N., Paletsky A.A., Tereshchenko A.G.. Molecular-Beam Mass- Spectrometric Study of the Flame Structure of Composite Propellants Based on Nitramines and Glycidyl Azide Polymer at a Pressure of 1 MPa [J]. Combustion, Explosion and Shock waves,2006,42(6):663-671.
    [7]Volkov E.N., Paletsky A.A., Tereshchenko A.G.. Synthesis and Characterization of Deuterated Glycidyl Azide Polymer (GAP) [J]. Propellants, Explosives, Pyrotechnics, 2006,131(2):131-138
    [8]李上文,赵凤起.国外固体推进剂研究与开发的趋势[J].固体火箭技术,2002,25(2):36-42.
    [9]徐复铭.21世纪先进发射药(1):低敏感高能发射药-新材料和新实验技术[J].南京理工大学学报,2003,27(5):551-560.
    [10]徐复铭.21世纪先进发射药(2):低敏感高能发射药-新配方、装药、点火和理论模拟技术[J].火炸药学报,2003,26(4):1-4.
    [11]Kirshenbaum M. S., Avrami L., Strauss B.. Sensitivity Characterization of Low Vulnerability (LOVA) Propellants [R]. Large Caliber Weapon Sustens Labortory, USARDC/AMCCOM, COVER, NJ,1983.
    [12]陈荣盛,郑剑,熊中年.化学交联型PU弹性体网络结构参数的理论计算方法[J].火炸药,1996,1:35-42.
    [13]Rodney Willer, Richard Biddle. Characterization of Commercial TPE for LOVA Gun Propellant [C].21th International Annual Conference of ICT,1990.
    [14]吴晓青,萧忠良,王环,等.几种粘结剂在低易损发射药中的应用[J].火炸药学报,2003,26(2):41-42.
    [15]俞国星,范晓东,张翔宇,龚彦.高能固体推进剂用粘合剂的研究进展[J],中国胶黏剂,2006,15(8):37-41,50.
    [16]Yano S. S., Danish E.H., Hsia Y.E., et al. Transient methemoglobinemia with acidosis in infants [J]. Journal of Pediatric Hematology/Oncology,1982,100(3):415-418.
    [17]Beardell J.A. LOVA propellant-An Overview [C]. Third International Gun propellant Symposium, Picatinny Arsenal, NJ,1984,10.
    [18]Rose A., Pesce-Rodriquez, Frederick J. S., et al. Pyrolysis GC-FTIR Studies of a LOVA Propellant Formulation Series [R]. AD- A448242,1991.
    [19]Kimura I. J., Arisawa H., Shimidzu T.. Propellant response to cook-off, bullet impact and spall impact monitored by pressure in a closed vessel [J]. Kayaku Gakkashi,57:28-34, 1996.
    [20]Arisawa H. Investigation of Burning Characteristics of Gun Propellant by Rapid Depressurization Extinguishment [C]. Proceeding of 17th International Sympo- siumon Ballistic,1998.
    [21]Pillai A.G.S., Joshi M.M., Barve A.M., et al. Cellulose Acetate Binder-based LOVA Gun Propellant for Tank Guns [J]. Defence Science Journal,1999,49(2):141-149.
    [22]王泽山.含能材料概论[M],哈尔滨:哈尔滨工业大学出版社,2005,12.
    [23]何吉宇,刘所恩,边小国,等.热塑性聚氨酯弹性体在改性双基推进剂中的应用[J].火炸药学报,2005,28(2):21-22.
    [24]冯增国,侯竹林.少烟复合改性双基推进剂力学性能研究[J].推进技术,1994,12(6):83-87.
    [25]Miller J. R.. Study of Advanced Antenna Techniques for Aerospace Vehicle Doppler Velocity Sensors [C]. Hughes Aircraft Culver City Calif,1963.
    [26]包华,张志平,应圣康.羧酸型聚氨酯脲乳液的微相分离结构研究[J].合成橡胶工业,1996,19(5):281-283.
    [27]张宝艳.固体推进剂用热塑性聚氨酯弹性体的合成、性能及应用研究[D].北京理工大学,1996.
    [28]FU-TAI CHEN, YING-QUAN DUO. Novel segmented thermoplastic polyurethane elastomers based on tetrahydrofuran ethylene oxide copolymers as high energetic propellant binders [J]. Propellants, Explosives, Pyrotechnics,2003,28(1):7-11.
    [29]多英全,陈福泰,罗运军,等.热塑性聚氨酯弹性体及推进剂生成焓的估算[J].推 进技术.2000,21(6):79-82.
    [30]罗善国,陈福泰,谭惠民,等.多种谱学方法研究环氧乙烷/四氢呋哺共聚醚的热氧降解[J].分析化学,2001,29(5):516-521.
    [31]陈福泰,多英全,李晓盟,等.IPDI基热塑性聚醚聚氨酯弹性体的形态结构与性能[J].北京理工大学学报,2001,21(2):260-265.
    [32]陈福泰,多英全,罗运军.新型热塑性聚氨酯弹性体粘合剂的合成与表征[J].导弹与航天运载技术,2001,3:33-37.
    [33]多英全,陈福泰,周贵忠,等.热塑性推进剂用聚氨酯弹性体的的合成及表征[J].北京理工大学学报,2000,20(4):504-507.
    [34]菅晓霞,肖乐勤,周伟良,徐复铭PMMA/PEG-TPE半互穿网络聚合物的力学性能[J].固体火箭技术,2008,(31)4:377-380.
    [35]Robert B. Wardle, Jerald C. Hinshaw, William W. Edwards. Synthesis of ABA triblock polymers and AnB star polymers from cyclic ethers [P]. USP:4952644,1990.
    [36]Manser G E, Fletcher R W. Nitramine oxetanes and polyethers formed therefrom [P]. USP:4707540.1987.
    [37]Nair J K, Setpute R S, Police B G, et al. Synthesis and characterization of bis-azido methyl oxetane and its polymer and copolymer with tetrahydrofuran[J]. Defence Science Journal,2002,52(2):147-156.
    [38]何利明,肖忠良,张续柱,等.国外火药含能粘结剂研究动态[J].含能材料,2003,11(2):99-102.
    [39]Desai H. J., Cunliffe A. V., Hamid J., et al. Synthesis and characterization of α,ω-hydroxy and nitrato telechelic oligomers of 3,3-(nitratomethy1)methyl oxetane(NIMMO) and glycidyl nitrate(GLYN) [J]. Polymer,1996,37(15):3461-3469.
    [40]Desai H. J., Cunliffe A. V., Lewis T., et al. Synthesis of narrow molecular weight α,ω-hydroxyl telechlic poly(glycidyl nitrate) and estimation of theoretical heat of explosion[J]. Polymer,1996,37(15):3471-3476.
    [41]吴晓青,马忠亮,萧忠良,等.一种低易损发射药燃烧性能的研究[J],华北工学院学报,2001,22(1):4-7.
    [42]范红杰,王宇飞,关大林.GAP包覆硼对硼固体推进剂燃烧特性的影响[J],推进技术,2002,23(3):262-264.
    [43]Shyu I. M., Liu T. K.. Combustion characteristics of GAP-coated boron particles and the fuel rich solid propellants [J]. Combustion and Flame,1995,100(4):634-644.
    [44]Norbert E., Horst H. K., Achim P., et al. Burning behavior of gas generators with high boron content [J]. Propellants, Explosives, Pyrotechnics,1992,17(4):161-163.
    [45]周红萍,庞海燕,温茂萍,等.3种粘结剂材料的力学性能对比研究[J].材料导论,2009,23(12):34-36,52.
    [46]姚楠,王江宁,刘子如,等.热塑性弹性体对高固体含量改性双基推进剂力学性能的影响[J].含能材料,2008,16(2):196-200.
    [47]廖昕,杨文宝,黄振亚,等.低易损发射药配方用粘结剂与力学性能关系探索研究[J],火炸药学报,2001,4:36-38.
    [48]马卿,李金山,李洪珍.含能粘结剂聚缩水甘油硝酸酯的合成与表征[J].合成化学,2008,16(6):628-631.
    [49]张续柱,经德齐.聚NIMMO的合成及其在火药中的应用[M].含能材料,2002,10(4):189-191.
    [50]Arthur Provatas. Energetic polymers and Plasticiser for Explosive Formulations- A Review of Recent Advances [R]. DSTO-TR-0966,2000.
    [51]王庆法,米镇涛,张香文,等.硝酸酯类含能粘合剂绿色合成研究进展[J].化学推进剂与高分子材料,2008,6(2):11-15.
    [52]韩涛,甘孝贤,邢颖,等.3-硝酸甲酯基-3-甲基氧杂环丁烷及其均聚物的合成与性能[J].火炸药学报,2006,(5):72-75.
    [53]Mostafa A. H. Talukder, Geoffrey A. Lindsay. Synthesis and the preliminary analysis of block copolymers of 3,3'-bis(azidomethyl)-oxetane and 3-nitratomethyl-3-methyloxetane [J]. Journal of Polymer Science Part A:Polymer Chemistry,1990,28(9):2393-2401.
    [54]李娜,甘孝贤,邢颖,等.含能粘合剂PAMMO的合成与性能研究[J].含能材料,2007,15(1):53-55.
    [55]董军,甘孝贤,卢先明,等.含能黏合剂PAMMO的间接合成[J].化学推进剂与高分子材料,2008,6(2):33-36.
    [56]MANSER GERALD E, MALIK ASLAM A, ARCHIBALD THOMAS G. Polymers and copolymers from 3-azidomethyl-3-nitratomethyloxetane [P]. US5463019A,1995,10.
    [57]Robert B. Wardle. Polyoxetane thermoplastic elastomers as gun propellant binders [C]. 6th International Gun Propellant & Propulsion Symposium,1994.
    [58]李辰芳.含能BAMO/AMMO粘合剂及其在固体推进剂中的应用研究[J].飞航导弹,1997,1:42-45.
    [59]GILBERT EVERETTE. Process for making azidodexycellulose [P]. US4849514A,1988, 3.
    [60]邵自强,王飞俊,廖兵.叠氮纤维素的均相合成[J].火炸药学报,2005,28(2):47-49.
    [61]Michael D. Judge, Christopher M. Badeen, David E. G. Jones. An Advanced GAP/AN/TAGN Propellant. Part Ⅱ:Stability and Storage Life [J]. Propellants, Explosives, Pyrotechnics,2007,32 (3):227-234.
    [62]庞爱民.郑剑.高能固体推进技术未来发展展望[J].固体火箭技术,2004,27(4)289-293.
    [63]Vandenberg E.J., Woods F., Polyethers Containing Azidomethyl Side Chains [P]. US 3645917,1972.
    [64]Mehmet S. Eroglu, Bahattin M., Olgun Goven. Baysal Determination of solubility parameters of poly(epichlorohydrin) and poly(glycidyl azide) networks [J], Polymer, 1997,38(8):1945-1947.
    [65]王天放,李疏芬.新型高能聚合物GAP的热分解和燃烧,火炸药学报[J],2005,28(1):5-8.
    [66]陈智群,刘艳,刘子如,等.GAP热分解动力学和机理研究[J],固体火箭技术,2003,26(4):52-54.
    [67]曹一林,张九轩.四氢呋喃共聚型GAP粘合剂研究[J],固体火箭技术.1997,(20):45-51.
    [68]Subramanian K.. Hydroxyl-terminated poly (azidomethyl ethylene oxide-b-butadiene-b-azidomethyl ethylene oxide) synthesis, characterization and its potential as a propellant binder [J]. European polymer Journal,1999,35(8):1403-1411.
    [69]Mohan.Y.M., Raju M.P., Raju K.M.. Synthesis and characterization of GAP-PEG copolymers [J]. Journal of Polymer Materials,2005,54(7):651-666.
    [70]Byoung Sun Min, Characterization of the Plasticized GAP/PEG and GAP/PCL Block Copolyurethane Binder Matrices and its Propellants [J]. Propellants, Explosives, Pyrotechnics,2008,33:131.
    [71]Minoura H., KATO K., TAKANO Y.. Azidized polyether [P]. JP:4039328,1990.
    [72]Hulya Arslan, Mehmet S. Eroglu, Baki Hazer. Cericion initiation of methyl methacrylate from poly(glycidyl azide) diol [J]. Eur Polym J,2001, (37)3:581-596.
    [73]刘涛,叶林,刘永刚,等.热塑性含氟聚氨酯弹性体的制备与性能[J].高分子材料科学与工程,2009,25(6):143-146.
    [74]刘允航,孔凡家,杨晓慧,等.含砜基扩链剂对聚氨酯微相分离和性能的影响[J].聚氨酯工业,2009,24(3):13-16.
    [75]甄建军,翟文.微相分离对聚氨酯耐热性能的影响研究[J].弹性体,2009,19(1):23-25.
    [76]Cooper S.L.. Properties of linear elastomeric polyurethanes [J]. Journal of Applied Science,1966,10(12):1837-1861.
    [77]李绍雄,刘益军.聚氨酯胶粘剂[M].北京:化学工业出版社,2003.
    [78]何吉宇,谭惠民.推进剂用热塑性聚酯聚氨酯弹性体的结构与性能[J].宇航学报,2005,26(1):86-89.
    [79]赵孝彬,杜磊,等.聚氨酯弹性体及其微相分离[J].高分子材料科学与工程,2002,18(2):16-20.
    [80]多英全,罗运军,罗善国,等.新型热塑性聚氨酯弹性体微相分离的定量研究[J].火炸药学报,2000,(4):58-60.
    [81]Schneider N. S., Paik Sung C. S. Infrared studies of Hydrogen Bonding in Toluene Diisocyannate based Polyurethanes [J]. Macromolucules,1975,8:68-73.
    [82]陈清元,陈中华,程时远,等.聚丁二烯聚氨酯弹性体的微相结构与性能[J].高分子材料科学与工程,1998,14(2):100-103.
    [83]多英全,陈福泰,罗运军,等.异佛尔酮二异氰酸酯基热塑性聚氨酯氢键体系的研究[J].高分子材料科学与工程,2001,17(6):87-89.
    [84]赵培仲,文庆珍,王源升,等.梯度固化聚氨酯脲中氢键的红外光谱分析[J].光谱学与光谱分析,2008,28(3):551-554.
    [85]Furukawa M., Mitsuia Y., Fukumarua T., et al. Microphase-separated structure and mechanical properties of novel polyurethane elastomers prepared with ether based diisocyanate [J]. Polymer,2005,46(24):10817-10822.
    [86]Velankar S., Cooper S. L.. Microphase Separation and Rheological Properties of Polyurethane Melts.3. Effect of Block Incompatibility on the Viscoelastic Properties [J]. Macromolecules,2000,33 (2):395-403.
    [87]Yilgor I., Yilgor E., Guler I.G., et al. FTIR investigation of the influence of diisocyanate symmetry on the morphology development in model segmented polyurethanes [J]. Polymer,2006,47(11):4105-4114.
    [88]Tan H., Guo M., Du R., et al. The effect of fluorinated side chain attached on hard segment on the phase separation and surface topography of polyurethanes [J]. Polymer, 2004,45(5):1647-1657.
    [89]詹中贤,赫军令.热塑性聚氨酯弹性体力学性能和结晶性能的研究[J].弹性体,2007,17(4):21-35.
    [90]尹玉华,孙平川,李宝会,等.非对称半结晶两嵌段共聚物的微相分离与结晶行为的模拟退火研究[J].2007,24(1):95-98.
    [91]山西化工研究所.聚氨酯弹性体手册[M].北京:化学工业出版社,2001.
    [92]傅明源,孙酣经.聚氨酯弹性体及其应用[M].北京:化学工业出版社,1999.
    [93]Ampleman G, MaroisA, Beaupre F. synthesis of energetic copolyurethane thermoplastic elastomers for recyclable GAP based HELOVA gun propellants [R]. Insensitive Munitions& Energetic Materials technology Symposium,1998.
    [94]Beaupre F, Ampleman G,Ahad E. Application of GAP based binders to low vulnerability gun propellant formulations[C].6th International Gun Propellant & Propulsion Symposium,1994.
    [95]Beaupre F., Ahad E.. Preliminary studies of HELOVA-type gun propellant formulations containing energetic binders [C]. International Symposium Energetic Materials Technology,1994.
    [96]Ampleman G, Beaupre F.. Synthesis of linear GAP-based energetic thermoplastic elastomers for use in HE LOVA gun propellant formulations [C].27th International ICT Conference,1996.
    [97]Beaupre F, Ampleman G. Processing and evaluation of gun propellant formulations containing energetic thermoplastic elastomers [A]. NDIA IM/EM Symposium,1998.
    [98]李倩,姚维尚,谭惠民.叠氮粘合剂与硝酸酯溶度参数的分子动力学模拟[J].含能材料,2007,15(4):370-377.
    [99]倪冰,覃光明,冉秀伦GAP/HTPB共混粘合剂体系的力学性能研究[J].含能材料,2010,18(2):167-173.
    [100]Ampleman. New Insensitive melt-cast explosives based on energetic thermoplastic elastomers [C]. Insensitive Munitions & Energetic Materials technology Symposium, Quebec,2001.
    [101]Patrick Brousseau, Guy Amp leman, Sonia Thiboutot. New melt cast explosives based on energetic thermop lastic elastomers [A].33 th ICT, Karlsruhe,2002.
    [102]Sanderson. Synthesis of energetic thermoplastic elastomers containing both polyoxirane and polyoxetane blocks [P]. US:P7101955,2006.
    [103]Braithwaite P., Edwards W., Sanderson A. J.. The Synthesis and combustion of high energy thermoplastic elastomer Binders [A]. Karlsruhe,2001.
    [104]Sylvain D., Andre M., Ampleman G. Energetic compolyurethane thermoplastic elastomers [P]. Canada, CA2330713.2001,9.
    [105]Ampleman G. Heats of combustion and formation of new energetic thermoplastic elastomers based on GAP, poly NIMMO and poly GLYN [J]. Propellants, Explosives, Pyrotechnics,2003,28(3):101-106.
    [106]Suresh Mathew, Manu S.K., Varghese T.L.. Thermomechanical and Morphological Characteristics of CROSS-Linked GAP and GAP-HTPB Networks with Different Diisocyanates [J]. Propellants, Explosives, Pyrotechnics,2008,33(2):146-152.
    [107]Thomas Keicher, Werner Kuglstatter, Siegfried Eisele, Tim Wetzel, Horst Krause, Isocyanate-Free Curing of Glycidyl Azide Polymer (GAP) with Bis-Propargyl-Succinate (Ⅱ) [J]. Propellants, Explosives, Pyrotechnics,2009,34(3):210-217.
    [108]Ampleman Guy, Desilets Sylvain, Marois Ander. Energetic copolyurethane thermoplastic elastomers [P]. CA2330713,2001,9.2.
    [109]Diaz E., Brousseau P., Guy A., Heats of Combustion and Formation of New Energetic Thermoplastic Elastomers Based on GAP, PolyNIMMO and PolyGLYN [J]. Propellants, Explosives, Pyrotechnics,2003,28(3):101-106.
    [110]BUI V. T., AHAD E., RHEAUME D., RAYMOND M.P.. Energetic Polyurethanes from Branched Glycidyl Azide Polymer and Copolymer [J]. Journal of Applied Polymer Science,1996,62,27.
    [111]HU SNU KASiKC, FIKRET PEKEL, SAIMo ZKAR, Curing Characteristics of Glycidyl Azide Polymer-Based Binders [J]. Journal of Applied Polymer Science,2001, 80(1):65-70.
    [112]SELIM K., Ozkar S., Yilmaz L. Thermal Characterization of Glycidyl Azide Polymer (GAP) and GAP-Based Binders for Composite Propellants [J]. Journal of Applied Polymer Science,2000,77(3):538-546.
    [113]刘晶如,罗运军,杨寅.GAP推进剂粘合剂固化体系力学性能的研究[J].精细化工,2007,24(11):1128-1135.
    [114]Diether S., Peter E., Peter E.. Insensitive high-performance energetic materials -applied research for optimized products [J]. Propellants, Explosives, Pyrotechnics,1997,22: 109-111.
    [115]Ross G. Stacer, D. Mark Husband. Molecual structure of the ideal solid propellant binder [J]. Propellants, Explosives, Pyrotechnics,1991,16:167-176.
    [116]侯林法.复合固体推进剂[M].北京:宇航出版杜.1994,87.
    [117]Provatas, Arthur. Energetic Polymers and Plasticisers for Explosive Formulations-A Review of Recent Advances [A]. ADA377866,2000.
    [118]何吉宇,谭慧民.热塑性聚氨酯复合固体推进剂[J].宇航学报,2008,29(1):252-254.
    [119]洪晓斌,杜磊,张小平.高增塑聚乙二醇聚氨酯弹性体形态结构的研究[J].推进技术,1999,20(3):100-102.
    [120]Seefried C. G, Koleske J. V.. Glass-transition temperatures of methyl-substituted & epsivcaprolactones and polymer blends [J]. Journal of Polymer Science, Polymer Physics Edition,1975,13(4):851-856.
    [121]Xu Yijin, Brittain William J., Vaia Richard A.. Improving the physical properties of PEA/PMMA blends by the uniform dispersion of clay platelets [J]. Polymer,2006, 47(13):4564-4570.
    [122]Blackwell J., Nagarajan M. R., Hoitink T. B.. Structure of polyurethane elastomers X-ray diffraction and conformational analysis of MDI-propandiol and MDI-ethylene glycol hard segments [J]. Polymer,1981,22(11):1534-1539.
    [123]Blackwell J., Nagarajan M. R.. Conformational analysis of poly (MDI-butandiol) hard segment in polyurethane elastomers [J]. Polymer,1981,22(2):202-208.
    [124]Korodi T., Marcu N., Tirnaveanu A.. Polyurethane microcellular elastomers:2. Effect of chain extender on the mechanical properties [J]. Polymer,1984,25(8):1211-1213.
    [125]陈福泰,多英全,罗运军,等.新型热塑性聚氨酯弹性体粘合剂的合成与表征[J].聚氨酯,2004,11:71-75.
    [126]李煜,菅晓霞,周伟良,等.发射药用聚氨酯热塑性弹性体的合成[J].火炸药学报,2007,(30)4:58-61.
    [127]谢富春,余东升,胡治元.透明聚氨酯弹性体的合成[J].粘结,2007,28(2):21-23
    [128]罗宁,王得宁,应圣康.聚氨酯红外光谱氢键化谱带的归属与定量分析[J].合成橡胶工业,1995,18(4):200-203.
    [129]苗毅,史铁钧,杭国培,等.硬段含量对聚氨酯和聚氨酯脲氢键化程度的影响[J].化学推进剂与高分子材料,2008,6(2):40-44.
    [130]金日光,华幼卿.高分子物理[M].北京:化学工业出版社,2006.
    [131]王泽山,何卫东,徐复铭.火药装药设计原理与技术[M].北京:北京理工大学出版社,2006.
    [132]徐武,王煊军,刘祥萱.含能粘合剂的新进展[J].火箭推进,2007,33(2):44-47.
    [133]焦剑,雷渭媛.高聚物结构、性能与测试[M].北京:化学工业出版社,2003.
    [134]Takayuki Murayama聚合物材料的动态力学分析[M].北京:轻工业出版社,1988.
    [135]过梅丽.高聚物与复合材料的动态力学热分析[M].北京:化学工业出版社,2002,8.
    [136]庞爱民NEPE类推进剂力学性能调节的新技术[J].固体火箭技术,2000,33(3):49-53.
    [137]赵长才,鲁国林,王北海.二醇类扩链剂对丁羟推进剂力学性能的影响[J].固体火箭技术,2000,23(4):23-28.
    [138]张伟,谢五喜,樊学忠,等.扩链和交联剂对NEPE推进剂胶片高温力学性能的影响[J].含能材料,2007,15(4):349-351,362.
    [139]顾书英,任杰.聚合物基复合材料[M].北京:化学工业出版社.2007,3.
    [140]周伟,愈炜,周持兴.相形态对聚合物反应共混过程的影响[J].高分子学报,2010,(6):747-752.
    [141]Niehaus M, Compounding of Glycidyl Azide Polymer with Nitrocellulose and its Influence on the Properties of Propellants [J]. Propellants, Explosives, Pyrotechnics, 2000,25:236-40.
    [142]李平,陈强,李旭利,等.GAP共聚体系静态力学性能研究[J].火炸药学报,2000,(2):23-25,28.
    [143]宁斌科,刘蓉,杨正权等.硝化棉一级催化分解反应动力学参数树脂模拟[J].含能材料,1999,7(4):162-165.
    [144]吴培熙,张留城.聚合物共混改性原理及工艺[M].北京:轻工业出版社,1984.
    [145]张端庆.火药用原料性能与制备[M].北京:北京理工大学出版社,1995,11.
    [146]孙国祥.高分子混合炸药[M].北京:国防工业出版社,1984.
    [147]黄人骏,宋洪昌.火药设计基础[M].北京:北京理工大学出版社,1997.
    [148]汪长春,包启宇.丙烯酸酯涂料[M].北京:化学工业出版社,2003.
    [149]胡荣祖,史启祯.热分析动力学[M].北京:科学出版社,2001.
    [150]刘子如.含能材料热分析[M].北京:国防工业出版社,2008.
    [151]Kubota N., Sonobe T.. Combustion mechanism of polymer [J]. Propell, Explos, Pyrotechnics,1988,13:172-177.
    [152]Takeo Saito, Masataka Shimodaa, Tsuyoshi Tsuyukib, et al. CO2 laser-induced pulsating regression behavior of GAP at sub-atmospheric pressures [J]. Combustion and Flame,2001,124(4):611-623.
    [153]刘畅.GAP热分解机理函数研究[J].中国新技术新产品,2009,233-234.
    [154]Haas Y., Ben Eliahu Y., Welner S.. Infrared laser-induced decomposition of GAP [J]. Combustion and Flame,1994,96(3):212-220.
    [155]KOROBEINICHEV O.P., KUIBIDA L.V., VOLKOV E.N., et al. Mass Spectrometric Study of Combustion and Thermal Decomposition of GAP [J]. Combustion and Flame, 2002,129:136-150.
    [156]Bilbao R., Mastral J., Ceamanos J., Aldea M.E., et al. Kinetics of the thermal decomposition of polyurethane foams in nitrogen and air atmospheres [J]. Journal of Analytical and Applied Pyrolysis,1996,37(4):69-82.
    [157]Esperanza M.M, Garcia A N, Font R, et al. Pyrolysisi if varnish wastes based on a polyurethane [J]. Journal of Analytical and Applied Pyrolysis,1999,52(2):151-166.
    [158]Font R., Fullana A., Caballero J. A., et al. Pyrolysis study of polyurethane [J]. Journal of Analytical and Applied Pyrolysis,2001,58-59:63-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700