用户名: 密码: 验证码:
新疆棉秆预处理及木质纤维素降解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用秸秆中的纤维素发酵产乙醇替代日益枯竭的化石燃料前景诱人。本文中以新疆所产棉杆为实验材料,比较了物理、化学和生物预处理方法,希望找到一条清洁、廉价的预处理途径使纤维素高效降解为葡萄糖。
     文章中研究了不同纤维素鉴别培养基,通过实验得到可高效筛选纤维素降解菌的鉴别培养基。分别经过初筛和复筛两个步骤筛选得到纤维素降解菌和木质素降解菌。比较了不同的理化预处理方法,通过试验得到产纤维素酶活力最高的理化预处理法。研究了纤维素降解菌和木质素降解菌对棉杆的协同降解试验,得到产纤维素酶活力最高的生物预处理法。对理化预处理法和生物预处理法进行分析比较。
     试验得出最好的刚果红鉴别培养基成分为:CMC-Na、MgSO_4、K_2HPO_4、刚果红、琼脂、明胶和土壤浸汁。得到6株产孢子能力强的纤维素降解菌和5株木质素降解菌——白腐菌,其中白腐菌F11降解木质素能力最强。试验得到2株可与F11共培养的纤维素降解菌。最佳理化处理条件是:碳源为碱超声处理的棉秆、氮源为牛肉膏、发酵温度为40℃、发酵时间为7天。温度对酶活力的影响力最大,其次是氮源。F52与F11共同发酵时,CMC酶活力和FPA酶活力都增加,Lac酶活消失,MnP酶活力减小,LiP酶活力增加,葡萄糖产量增加。理化处理后CMC酶活最高值略低于生物处理后CMC酶活最高值。
The exhausted fossil energy source be substituted by the ethanol that is made from cellulose have amazing future. The physical chemic and biologic pretreatment based on the cotton straw in xinjiang are researched in this text, we expect for finding a clean and inexpensive way that can change the cellulose into glucose efficiently.
     Different cellulose differential medium are compared in this text, and a differential medium that can filtrate cellulose decomposing microorganisms efficiently by dint of experimentation is gained. Cellulose and lignin decomposing microorganisms are gained throμgh the first filtration and the second filtration. Different physical chemic pretreatments are compared, and the best pretreatment that bring on the best activity of cellulase is gained. Cotton straw’s synergistic decomposing with cellulose and lignin decomposition microorganisms is studied in the text, and the best biologic pretreatment that bring on the best activity of cellulose is gained. The best physical chemic and biologic pretreatment are compared in the text.
     The best cogon red differential medium’s component is confirmed in experimentation, they are CMC-Na MgSO_4 K_2HPO_4 cogon red agar glutin and the steep of soil. Six cellulose decomposing microorganisms with high sporule yield and five lignin decomposing microorganisms (white rot fungi) are obtain, the white rot fungi F11 have the best decomposability on lignin. Two cellulose decomposing microbes are gained, which can commix with F11 to cultivate. The best physical chemic pretreatment condition is that the cotton straw after ultrasonic treatment with alkali as C source, beef extract as N source, 40℃as ferment temperature and 7 days as ferment time. The first influence factor to the activity of enzyme is temperature, and the second is N source. When F52 commixed with F11 to cultivate, CMCase and FPAse both increased, Lac disappeared, MnP decreased and LiP increased, the yield of glucose increased. Compared to the top of CMCase after physical chemic pretreatment, the top of CMCase after biologic pretreatment is lower.
引文
[1]朱庆云.世界生物燃料发展趋势[J].甘肃科技,2008,24(5):10-12.
    [2]曲音波.纤维素乙醇产业化[J].化学进展,2007,19(7):1098-1108.
    [3]吴业颖.生物质能研究进展[J].科技资讯,2008,(8):8-10.
    [4]吴杰.新疆棉花秸秆利用现状分析和探讨[J].中国棉花,2005,33(2):9-11.
    [5]林云琴,周少奇等.白腐菌降解纤维素和木质素的研究进展[J].环境技术,2003(4):29-33.
    [6]邓强,赵肃清.甘蔗渣纤维素的微生物和酶降解研究进展[J].化学工程与装备,2008(5):79-82.
    [7]董旭杰,吕聪等.3种白腐菌木质素降解酶的比较[J].中南林业科技大学学报,2007(27):131-135.
    [8]陈耀宁.堆肥化中协同降解木质纤维素的混合菌筛选及其培养[D].湖南大学博士学位论文,2007.
    [9]侯树宇,张清敏,等.白腐真菌和细菌对芘的协同生物降解研究[J].农业环境科学学报,2005,24(2):318-321.
    [10]李宗义,王海磊,等.优势混合菌主要木质素降解酶的协同效应研究[J].微生物生态学研究进展——第五界微生物生态学术研讨会论文集,2003.
    [11]刘浩,付时雨,等.白腐菌胞外酶降解木素的机制及其协同作用[J].中国造纸学报,2007,22(4):96-101.
    [12]倪启亮.木质纤维素降解菌的筛选及对秸秆降解的研究.桂林工学院[D],2008.
    [13]李慧蓉.白腐真菌生物学和生物技术.化学工业出版社(M),2005.
    [14]Bin Yang and Yanpin Lu.Perspective The promise of cellulosic ethanol production in china[J].Chem Technol Biotechnol,2007.82:6-10.
    [15]Stephan Wirth and Andreas Ulrich.Cellulose-Degrading Potentials and Phylogenetic Classification of Carboxymethyl-cellulose Decomposing Bacteria Isolated from Soil[J].Systematic and Applied Microbiology,2002,25:584-591.
    [16]季更生,勇强,余世袁.不同培养条件对树干毕赤酵母戊糖发酵的影响[J].林产化学与工业,2004,24(2):25-28.
    [17]Hong-Bo Yu.LiLi.Xiao-Yu Zhang.Hui-Yan Huang.Effects of wood species and enzyme production on lignocellulose degradation during the biodegradation of three native woods by Trametes versicolor[J].Forest Products Journal,58(4):2008.62-65.
    [18]阴春梅,刘忠,齐宏升.生物质发酵生产乙醇的研究进展[J].酿酒科技,2007,1:87-90.
    [19]张辉,桑青.生物降解纤维素研究新进展[J].安徽农业科学,2007,35(27):8651-8655.
    [20]张素平,颜涌捷,任铮伟,李庭琛.纤维素制取乙醇技术[J].化学进展,2007,19(8):1129-1133.
    [21]叶汉玲,尤纪雪,房贵干.选择性降解木质素白腐菌筛选的研究[J].纤维素科学与技术,2004,12(1).29-33.
    [22]Elena.Biotransformation of waste lignin products by the soil-inhabiting yeast Trichosporon pullulans[J].Canadian Journal of Microbiology,2002,48:200-203.
    [23]Clint Chapple,Michael Ladish & Rick Meilan.Loosening lignin’s grip on Bio-fuel Production[J].News and Views,2007,25:746-748.
    [24]Orly Ardon,Zohar Kerem.Enhancement of laccase activity in liquid cultures of the ligninolytic fungus Pleurotus ostreatus by cotton stalk extract[J].Journal of Biotechnolory,1996,51:201-207.
    [25]刘娇,宋公明,马丽娟,薛冬桦.不同预处理方法对玉米秸秆水解糖化效果的影响[J].饲料工业,2008,29(1):31-32.
    [26]池玉杰,于钢.6种木材白腐菌对山杨材木质素分解能力的研究[J].林业科学,2002,38(5):115-120.
    [27]王宏勋,杜甫佑等.白腐菌对稻草秸秆中木质纤维素降解规律的研究[J].中国造纸学报,2007,22(4):18-22.
    [28]吴志显,池玉杰.木材白腐菌对木质素生物降解机制的初步研究[J].中国森林病虫,2005,24(3):1-6.
    [29]杜甫佑.白腐菌木质纤维素降解次序研究[D].华中科技大学硕士学位论文,2004.
    [30]刘秀英,王建军,李杏芳.木腐菌木质素分解酶活力的初步研究[J].木材工业,1993,7(4):18-25.
    [31]刘炳全,李学凤,高文,杨秀山.木质纤维素制取燃料乙醇菌种的研究[J].可再生能源,2007,25(4):53-55.
    [32]张辉,戴传超,朱奇,杨启银.生物降解木质素研究新进展[J].安徽农业科学,2006,34(9):1780-1784.
    [33]吴薇,顿宝庆,姜训鹏等.高效木质素降解菌的分离筛选[J].食品科技,2008,(3):22-25.
    [34]丁广辉,许士玉.木素降解菌——白腐菌的筛选[J].黑龙江造纸,2005,(2):5-6.
    [35]段传人,朱丽平,姚月良.三种白腐菌及其组合菌种木质素降解酶比较研究[J].菌物学报,2009,28(4):577-583.
    [36]张苏江,吾买尔江,祁成年,等.不同处理棉秆饲料在卡拉库尔羊瘤胃中降解的动态规律[J].石河子大学学报(自然科学版),2005,23(5):616-619.
    [37]魏敏,雒秋江,潘榕,等.对棉花秸秆饲用价值的基本评价[J].新疆农业大学学报,2003,26(1):1-4.
    [38]Nobuyuki Katagiri and Tomoaki Nishida. Correlation of Brigntening with Cumulative Enzyme Actibity Related to Lignin Biodegradatio during Biobleaching of Kraft Pulp by White Rot Fungi in the Solid-State Fermentation System[J],Applied and Environmental Microbiology.1995:617-622.
    [39]赵新刚.洗涤用碱性纤维素酶及其产生菌的分离方法[J].微生物学通报.1999,6(1):63-65.
    [40]艾志录.橄榄绿链霉菌E-86木聚糖酶的固定化及低聚木糖制备研究[D].中国农业大学博士学位论文,2004.
    [41]Frederick S.Archibald. A New Assay for Lignin-Type Peroxidases Employing the Dye Azure B[J],Applied And Environmental Microbiology.1992(58):3110-3116.
    [42]杨瑞金.酶法生产低聚木糖的研究[D].博士学位论文,1998.
    [43]Yuxin Wang,Rafael Vazquez-Duhalt,and Michael A.Pickard.Effect of growth conditions on the production of manganese peroxidase by three strains of Bierkandera adusta[J].Canadian Journal of Microbiology,2001,47(4):277-282.
    [44]罗明,庞俊峰,李徐勇,刘平.新疆天山云杉林区森林土壤微生物学特性及酶活性[J].生态学杂志,1997,16(1):26-30.
    [45]叶姜瑜.一种纤维素降解菌鉴别培养基[J].微生物通报,1997,24(4):251-252.
    [46]陈敏.一种改进的纤维素降解菌鉴别培养基[J].杭州师范学院学报(自然科学版),2001,18(5):11-12.
    [47]张宇昊,等.一种改进的纤维素降解菌鉴别培养基[J].纤维素科学与技术,2004,12(1):33-36.
    [48]陈阿娜,汤斌.一种改进的纤维素降解菌鉴别培养基[J].生物学杂志,2006,23(6):48-49.
    [49]Stephen P. Diggle, Ashleigh S. Griffin, Genevieve S. Campbell & Stuart A. West. Cooperation and conflict in quorum-sensing bacterial populations[J]. Nature,2007,15(450),411-416.
    [50]崔凯.棉花秸秆也是宝[J].中国经济导报,2008,B02:1.
    [51]孙君社,刘莉等.秸秆生产乙醇预处理关键技术[J].化学进展,2007,19(7-8):1122-1128.
    [52]池玉杰,鲍甫成等.木质素生物降解与生物制浆的研究现状分析[J].林业科学,2004,40(3):167-171.
    [53]齐云,袁月祥,陈飞,等.一组纤维素降解菌的分离筛选及其产酶条件的研究[J].天然产物研究与开发,2003,15(6):510-512.
    [54]张木明,徐振林,张兴秀,等.预处理对稻草秸秆纤维素酶解产糖及纤维素木质素含量的影响[J].农产品加工(学刊),2006,58(3):4-6.
    [55]丁广辉,许士玉等.木素降解菌——白腐菌的筛选[J].黑龙江造纸,2005,(2):5-7.
    [56]唐锘.秸秆预处理方法的筛选[J].化工时刊,2008,22(7):22-26.
    [57]王许涛,周恒涛等.秸秆生产乙醇的预处理方法分析[J].安徽农业科学,2007,35(22):6883-6886.
    [58]李振红,陆贻通.高效纤维素降解菌的筛选[J].环境污染与防治,2003,25(3):133-153.
    [59]吴杰.新疆棉花秸秆利用现状分析和探讨[J].中国棉花,2005,33(2):9-11.
    [60]Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and non starch polysaccharides in relation to animal nutrition[J]. Journal of Dairy Science,1991,74(10): 3583-3597.
    [61]Ghose TK. Measurement of cellulose activities[J]. Pure & Appl. Chem., 1987,59(2):257-268.
    [62]汤晖,于淼,汤树德.纤维素酶解条件和连续酶解工艺的研究[J].黑龙江八一农垦大学学报,2001,13(4):79-85.
    [63]周俊虎,戚峰,程军,等.不同来源污泥对稻草发酵产氢影响的研究[J].浙江大学学报(工学版),2007,41(5):761-764.
    [64]王洪媛,杨翔华,陈晓旸.青霉菌FSWY3固体发酵研究[J].抚顺石油学院学报,2003,23(1):19-22.
    [65]冯炘,王丹,辛丽霞,等.粗糙脉孢菌(Neurosporacrassa)产纤维素酶发酵条件研究[J].食品科学,2005,26(1):67-70.
    [66]陈育如,夏黎明,吴绵斌,等.植物纤维素原料预处理技术的研究进展[J].化工进展,1999,4:24-26.
    [67]计红果,庞浩,张容丽,等.木质纤维素的预处理及其酶解[J].化学通报,2008,5:329-335.
    [68]徐忠,汪群慧,姜兆华.氨预处理大豆秸秆纤维素酶解产糖影响的研究[J].高校化学工程学报,2004,18(6):773-776.
    [69]李冬梅.利用玉米秸秆中的纤维素生产燃料酒精的试验研究[D].哈尔滨工业大学硕士学位论文,2005.
    [70]宋安东,王风芹,杜风光,等.戊糖和己糖共发酵生产燃料乙醇条件研究[J].生物学杂志,2007,24(2):17-20.
    [71]O.Ben Hamman. Effect of carbon and nitrogen limitation on lignin peroxidase and manganese peroxidase production by Phanerochaete flavido-alba[J],Journal of Applied Microbiology.1997(83): 751-757.
    [72]陈活虎,何品晶,等.农村蔬菜废物高温好氧降解协同性及动力学[J].应用与环境生物学报,2006,12(6):833-837.
    [73]JUN SEOK Kim,Y.Y.LEE.Cellulose Hydrolysis Under Extremely Low Sulfuric Acid and High-Temperature Conditions[J].Applied Biochemistry and Biotechnology,2001,91:331-340.
    [74]张超.纤维素降解菌筛选及降解柑桔果渣研究[D].西南大学硕士学位论文,2006.
    [75]史英君.菌种复配降解纤维素的协同产氢能力研究[D].哈尔滨工业大学硕士学位论文,2006.
    [76]陈耀宁,曾光明.与黄孢原毛平革菌协同降解稻草的混合菌筛选[J].中国环境科学,2007,27(2):189-19.
    [77]Thomas Bell,Jonathan A.Newman,Bernard W.The contribution of species richness and composition to bacterial services[J].Nature,2005.436:1157-1160.
    [78]杜甫佑,张晓昱,王立勋.木质纤维素的定量测定及降解规律的初步研究[J].生物技术,2004,14(5):46-48.
    [79]肖琳,杨柳燕.环境微生物实验技术[M].中国环境科学出版社,2003:19-25.
    [80]贺建华等.饲料分析与检测[M].中国农业出版社,2005.
    [81]赵曦,黄艺.木质素降解酶研究进展与外生菌根真菌[J].环境科学与技术,2008,31(1):45-50.
    [82]M.A.Pichard,H.Vandertol,R.Roman,and R.Vazquez-Duhalt.High production of ligninolytic enzymes from white rot fungi in cereal bran liquid medium[J].Canadian Journal of Microbiology,1999,45(7): 627-631.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700