用户名: 密码: 验证码:
造山带碰撞—隆升过程的碎屑沉积响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今地球科学的两大主题是地球动力学和全球气候变化。位于板块边界的造山带是全球构造、岩浆和变质等地质作用最为活跃的地区之一;同时也是地表系统物理、化学活动最为强烈的结构单元之一。因此,造山带的形成、演化和发展是地球动力学前沿科学问题之一。当前造山带研究已经发展成为一个多学科、多角度和多时空的综合性学科方向,以全面阐释构造、岩浆、变质、沉积和动力为研究目标。其中,造山带沉积地质学研究逐渐成为新研究思路的增长点和问题解决的突破口,是造山带(如喜马拉雅)研究的一个重要方向。造山带来源的物质被搬运至周缘各种盆地中沉积下来,这些沉积物蕴含有丰富的源区信息,同时又被赋予特定的地层时代,为重建造山带演化历史提供重要依据。本文即是从造山带沉积地质学角度出发,利用相关的碎屑沉积记录来反演造山带的形成和发展,并通过三个实例研究,探讨造山带特定演化阶段的碎屑沉积响应。
     选取的三个研究实例分别为中国西北部北祁连志留系、西南部右江二叠-三叠系和大别山南麓侏罗系。北祁连志留系下覆为弧后盆地火山-沉积序列,并被泥盆系磨拉石不整合覆盖,是华北克拉通南缘早古生代从大洋俯冲到大陆碰撞转换的关键地质记录。右江二叠-三叠系记录从被动陆缘盆地到前陆盆地的转换,是华南大陆西南缘印支造山作用的重要物质记录。大别山南麓侏罗系对应于大别山的折返隆升,是大别山早期剥露历史的记录。本论文重点采样层位包括北祁连下志留统、右江上二叠统-中三叠统和大别山南麓中下侏罗统,主要样品为砂砾岩、砂岩、粉砂岩和泥岩等碎屑岩,以及右江盆地相关的火山岩和凝灰岩。通过中粗粒和中细粒砂岩的碎屑组分、碎屑岩全岩地球化学、碎屑锆石U-Pb年龄组成和重矿物(锆石和尖晶石)化学成分分析,获得大量与源区组成和性质相关的物源数据。
     祁连造山带位于青藏高原的东北端,记录了华北克拉通、中祁连地块和柴达木地块早古生代的相互作用。北祁连带位于该造山带北部,是华北克拉通南缘与中祁连地块间碰撞拼合的结果。北祁连下志留统碎屑岩的主要物源区为北祁连早古生代火山弧、中祁连地块的元古代基底和华北克拉通太古代基底及其再旋回沉积物。西部下志留统下部和东部晚奥陶统上部-下志留统下部既有来自早古生代弧火山岩的碎屑,也有来自南北大陆基底的碎屑,而下志留统上部碎屑主要来自南北陆块基底岩石。在西部下志留统下部砂岩中发现有来自SSZ(超俯冲带)型蛇绿岩的碎屑尖晶石,表明北祁连洋的洋壳残片已经仰冲至地表遭受剥蚀。早古生代年龄的碎屑锆石整体具有地壳岩石中锆石的地球化学特征,但少数几个颗粒落在洋壳锆石和陆壳锆石的重叠区,可能与碎屑尖晶石具有相似的超俯冲带洋壳性质的源区。结合岛弧火山岩、岛弧I型花岗岩、高压/低温榴辉岩-蓝片岩、同碰撞S型花岗质岩石、后碰撞I型花岗质岩石和大陆深俯冲超高压变质岩的年代学研究,北祁连下志留统的物源组成表明,祁连造山带地区早古生代从大洋俯冲到大陆初始碰撞的转换发生于奥陶纪末-早志留世初期(~450—440Ma)。
     右江盆地西北部紧邻峨眉山玄武岩省,东部和北部与扬子碳酸盐台地相接,东南为南华造山带,西南与越北地体以八布缝合带相隔。该盆地晚古生代以特征的深水盆地相和浅水孤立台地相相间沉积为特征,受北西向和北东向两个断裂系统控制,从南到北,可分为那坡、百色和河池-南丹-紫云三个次级盆地。晚二叠世-中三叠世盆地相沉积为火山岩屑浊积岩、硅质岩、泥岩和陆缘碎屑浊积岩及泥灰岩、钙质砂岩和砾屑灰岩。右江晚二叠世碎屑岩具有类似于峨眉山高Ti玄武岩的地球化学特征,砂岩中含有大量基性玄武岩岩屑,同时锆石U-Pb年龄也与峨眉山大火成岩省的主要岩浆喷发期一致,锆石颗粒具有类似于板内/非造山环境岩浆结晶锆石的微量元素特征,表明峨眉山高Ti玄武岩为主要物源区,且碎屑沉积于华南大陆西南部被动大陆边缘。地层对比和古流向等资料也支持火山碎屑主要来自盆地西北部峨眉山玄武岩的结论,而且碎屑沉积岩的地球化学组成表明这一主要物源区可能一直持续到早三叠世早期。早三叠世晚期物源发生重大变化,岩石地球化学组成明显不同于晚二叠世-早三叠世早期沉积岩,且砂屑灰岩中首次出现来自火山弧的二叠纪年龄的碎屑锆石。二叠-三叠纪界线附近凝灰岩地球化学和锆石U-Pb年龄及微量元素组成表明,此时由金沙江-哀牢山-八布洋盆南西向俯冲产生的岩浆弧已经靠近华南大陆西南缘;而早中三叠世界线附近凝灰岩及火山岩地球化学和锆石U-Pb年龄及微量元素组成则指示,它们形成于同碰撞环境,表明该岩浆弧与华南大陆沿金沙江-哀牢山-八布缝合带发生碰撞。中三叠世,右江盆地成为充填来自造山带的大量浊流碎屑的前陆盆地。右江盆地从被动陆缘向前陆盆地的转换发生于早三叠世(~250—245Ma)。
     大别山南麓黄石地区早中侏罗世为河流相碎屑沉积,在垂向上表现为旋回性的砂岩、粉砂岩和泥岩组合,包括曲流河河道、点坝和洪泛平原沉积的武昌组和辫状河河道和河道间沉积的花家湖组。古流向和物源数据表明,水流体系以向西流动的携带华南大陆基底碎屑的纵向水流为主,并混有向南流动的来自北部大别山的横向水流,且后者在中侏罗世明显增强。锆石REE及LC图像研究显示,早侏罗世砂岩中存在奥陶纪末期麻粒岩相变质锆石,而中侏罗世砂岩不但含有奥陶纪变质锆石,而且出现石炭纪榴辉岩相变质锆石和对应于大别山三叠纪高压/超高压变质作用的碎屑锆石。这一结果表明大别山曾发生早古生代麻粒岩相和石炭纪榴辉岩相变质事件,且相关高级变质体已于早中侏罗世折返剥露地表。同大别山北麓合肥盆地和东部潜山地区同时期碎屑锆石数据对比表明,大别山高压/超高压变质岩石在北部剥露较早(早侏罗世)而南部较晚(中侏罗世)。此外,黄石早中侏罗世砂岩、东部潜山早中侏罗世砂岩与韩国和日本相似构造位置(高压/超高压变质带南部)的同时代碎屑沉积物具有一致的碎屑锆石年龄组成,表明随大别超高压变质带经苏鲁变质带向东延伸至韩国和日本,其南部的前陆盆地系统也可能存在类似的延伸。
     北祁连下志留统记录了华北克拉通南缘从活动陆缘向前陆盆地的转换,右江盆地晚二叠世-中三叠世则记录了华南大陆西南缘从被动陆缘到前陆盆地的转换。由于所处的构造背景的不同,北祁连早志留世和右江早中三叠世碎屑沉积对初始碰撞造山作用的沉积响应也有所差别。初始碰撞造山作用在北祁连下志留统的碎屑沉积记录为:(1)华北克拉通和中祁连地块同时提供物源;和(2)造山带来源的碎屑的出现,如反映蛇绿岩遭受剥蚀的碎屑尖晶石和高Cr地球化学特征。初始碰撞造山带作用在右江盆地的记录为:(1)火山弧来源的碎屑沉积在华南西南被动陆缘之上;和(2)反映洋壳深俯冲作用的榴辉岩相变质岩已经折返到地表,并为右江盆地提供碎屑。这种沉积记录的差别反映了前陆盆地的形成在一定程度受构造背景的控制。
     在大别山隆升过程中,高压/超高压及其它高级变质岩折返剥露至地表的记录为黄石盆地中下侏罗统砂岩中对应年龄变质碎屑锆石的出现:奥陶纪末麻粒岩相变质锆石在下侏罗统砂岩中的出现表明早古生代麻粒岩相变质体折返剥露地表的时间在早侏罗世或之前;石炭纪榴辉岩相变质锆石和三叠纪变质锆石在中侏罗统砂岩中开始出现,表明高压/超高压变质岩折返剥露地表的时间为中侏罗世。利用盆地碎屑沉积来研究造山带折返隆升具有一个显著优势,即这些碎屑记录保存于一定的地层序列中,从而使造山带隆升过程被赋予相对或绝对的时间属性。同时,如果地层保存较为完整,那么这种时间属性就是连续的,所记录的动力过程也将是动态的、长时间尺度的。黄石盆地碎屑沉积对大别山折返隆升过程的重要性也正在于此。此外,对包括黄石盆地在内的大别山周缘前陆盆地同时代碎屑记录的对比研究则反映大别山隆升过程的空间属性。
     获得有效的与造山带碰撞-隆升过程相关的碎屑沉积记录的关键在于准确而可靠的物源分析,这就要求高精度的物源分析方法。碎屑沉积岩的组成受原岩性质、风化强度、沉积分选、再旋回程度、成岩作用和变质强度等因素的综合控制,与构造背景间不存在直接的联系。因此,传统物源判别图解的低成功率实际反映的不仅是图解本身的问题,而且也是碎屑沉积物组成和形成过程的复杂性。如果不考虑沉积后的成岩和变质影响,那么控制沉积物组成的要素则为原岩组成和沉积过程。对传统地球化学构造环境判别图解和砂岩碎屑模式三角图解的局限性研究表明,特殊的物源组成和沉积过程是影响这些传统物源分析方法有效性的主要因素。由于碎屑沉积物的形成直接受控于源区性质和沉积过程,因此,在利用这些模式判别图解时一定要谨慎而行,它们可能给出完全错误的结论。相对于砂岩来说,泥岩以高Al2O3、Fe2O3+MgO、Al2O3/SiO2、Th/Zr、Ti/Zr、La/Y和Sc/La为特征。它们具有相似的La/Th、Th/Sc和Sc/Cr等比值,表明整体来源自同一属性的源区,但化学风化、沉积分选和再旋回过程使一些元素随粘土矿物等比重低和粒径小的碎屑颗粒富集于泥级沉积物中,而一些元素随锆石等比重大和粒径较粗的碎屑颗粒在砂级沉积物种富集。大陆溢流玄武岩可以作为被动陆缘碎屑沉积的主要物源,使形成于被动陆缘的碎屑岩含有大量的玄武质岩屑,例如江盆地晚二叠世-早三叠世早期的碎屑沉积岩,它们沉积于华南大陆西南被动大陆边缘,由于峨眉山玄武岩源区的存在,使这些沉积物在构造背景图解中落在大洋岛弧/大陆岛弧/活动陆缘区。
     相对于这些传统物源分析方法,单颗粒矿物源区分析技术则可以提供更为详细和准确的物源信息。锆石U-Pb年代学已经被广泛用于碎屑沉积物的源区分析,但对其化学成分的物源指示意义仍存在较多的争议。在本文的三个研究实例中,尝试运用锆石微量元素组成来示踪特殊的源区,讨论其成因类型、岩浆性质和构造背景,如蛇绿岩、高压/超高压变质岩和裂谷/板内岩浆岩,表明它可以作为锆石物源分析的重要组成部分。需要指出的是,通过比较弧/造山带岩浆结晶锆石与板内/非造山岩浆结晶锆石在微量元素含量及比值的差异,建立判别两类锆石的双变量图解,为利用锆石化学组成示踪岩浆活动类型及构造背景提供了依据,这是本文的创新点所在。
Geodynamics and Global Climate Change are two major issues in current earth science. Built upon the plate boundaries, orogen is one of the places with most active geologic processes including tectonic movement, magmatism and metamorphism in the world, and also one of the elements with violent physical and chemical activities in the earth surface system. Therefore, the orogenic process constitutes pivotal part of the Geodynamics. This requires the orogen to be studied synthetically by multi-disciplinary, multi-sided and time-space viable methods, with the aim to investigate and understand the history of tectonics, magmatism, metamorphism and dynamics involved. Among the methods, utilizing detrital records is now proven efficient to provide new clues and new resolutions to the problems related to the orogenic evolution (such as in Himalaya Orogen). The sediments dispersed from the orogen and deposited in the adjacent basins contain lots of information pertinent to their provenance, which will become very particular as the temporal stratigraphic framework can be constrained. In this dissertation, three examples from China will be studied to show how to employ detrital records to unravel the orogenic processes and then discuss the sedimentary responses to initial collision and exhumation of HP/UHP metamorphic rocks.
     The studied three examples are the North Qilian Silurian sediments in the NW China, the Permian-Triassic sediments of Youjiang Basin in SW China and the Huangshi Jurassic sediments south of the Dabie Mountains in Central China. The North Qilian Silurian clastic rocks, underlain by the Ordovician back-arc volcano-sedimentary sequences and overlain by the Devonian molasses, are the records of the early Paleozoic tectonic transition from ocean subduction to continent collision in the southern North China Craton. The Youjiang Basin evolved from a passive marginal basin to a foreland basin during the Permian-Triassic time, a sedimentary sequence related to the Indosinian orogny in the SW South China Block. The Jurassic clastic sedimentary rocks in Huangshi Basin south of the Dabie Mountains are the records of the mountain building, and combined with the equivalent sediments in other basins around this mountain, can constrain the exhumation history of the Dabie Orogen. The studied samples are from the North Qilian Lower Silurian, the Youjiang Upper Permian-Middle Triassic and the Huangshi Lower-Middle Jurassic south of Dabie Mountains, including conglomerate sandstone, sandstone, siltstone, and shale. In addition, in Youjiang Basin Triassic volcanics and tuffs were sampled as well. By combing analysis of sandstone detrital modal composition, whole-rock geochemistry, detrital zircon U-Pb ages and heavy mineral chemistry (Cr-spinel and zircon), amounts of provenance-bearing data are obtained.
     The Qilian Orogen is situated in the northernmost part of the Tibet Plateau, with its formation related to the interaction between North China Craton, Central Qilian Block and Qaidam Block. Constituting the northern part of this orogen, the North Qilian Belt records the collisional assembly of southern North China Craton with Central Qilian Block. The Lower Silurian sediments in North Qilian were mainly sourced from the North Qilian early Paleozoic volcanic arc, the Proterozoic basement of the Central Qilian Block and the Archean basement and its recycled materials of the North China Craton. The lower Lower Silurian in the western segment and the upper Upper Ordovician-lower Lower Silurian in the eastern segment contain detritus from both the early Paleozoic arc volcanics and the continental basement rocks of the Central Qilian Block and the North China Craton. In contrast, continental basements are the main detrital supplier to the upper Lower Silurian sediments with the arc-derived component insignificant. Detrital spinels are observed in the western Lower Silurian sandstones, and have chemical composition similar to that of those from SSZ (supra-subduction zone) type ophiolites, suggesting that the North Qilian oceanic crust has been obducted and eroded. Detrital zircons of early Paleozoic ages are overall comparable to those of continental crust in geochemistry, with a small group of them plotted in the overlapping filed between the continental crust and oceanic crust zircons on the zircon trace element discriminating diagrams. The latter may be derived from a similar ophiolitic source as the detrital spinels. Combined with age data from arc volcanics, arc-related I-type granitic rocks, UP/LT eclogites and blueschists, syn-collisional granitic rocks, post-collisional I-type granitic rocks and continental deep subdction HP/UHP metamorphic rocks, the provenance of the North Qilian Lower Silurian clastic rocks suggests that the tectonic transition in Qilian Orogen from ocean-subduction to continental collision occurred during the latest Ordovician-earliest Silurian time (~450-440Ma)。
     The Youjiang Basin located in SW China, with the Emeishan basalt province to the northwest, Yangtze carbonate platform to the north, and Nanhua orogen to the east. This basin is separated from the North Vietnam to the southwest by Babu suture zone. During the late Paleozoic-Early Triassic, the sedimentation in this basin is characteristic of alternating deep-water basinal and shallow-water isolated carbonate platform sequences, controlled by northwest-southeast and northeast-southwest fault systems. As such, the Youjiang Basin can be divided into three NW-trending belts, named Napo, Baise and Hechi-Nandan-Ziyun sub-basins in a south to north order. The Late Permian-Middle Triassic strata are composed mainly of clastic turbidites, cherts, mudstones, marls, calcarenites and breccias. The Late Permian sediments have similar geochemical characteristics to the Emeishan high-Ti basalts, the sandstones contain plenty of basaltic rocks fragments, the zircons yield U-Pb ages are consistent with the main eruption stage of the Emeishan Large Igneous rocks and are characteristic of geochemical affinity to those from within-plate/anorogenic rocks, suggesting that Emeishan high-Ti basalts are the major source component and these rocks deposited in the passive margin of SW South China Block. This provenance interpretation is supported by the Late Permian stratigraphic correlation and paleo-current data, and such detrital flux may continue into the early stage of the Early Triassic as indicated by the sedimentary geochemistry. The provenance of the late Early Triassic sediments, however, are changed totally, as suggested by that the sediments have distinctly different geochemistry from the Late Permian-early Early Triassic clastic rocks and volcanic-arc sourced detrital zircons with Permian ages are present in the calcarenites. The geochemistry and zircon U-Pb ages and trace elements of the tuff rocks near the P/T boundary suggest that the magmatic arc is approaching to the South China Carton due to the southwestward seduction of the Jinshanjiang-Ailaoshan-Babu Paleo-Tethyan Ocean, while the Early-Middle Triassic tuffs and volcanics correspond with the subsequent collision. In the Middle Triassic, Youjiang Basin was flooded by turbidity detritus from the surrounding orogens. Therefore, conversion of Youjiang Basin from a passive marginal basin to a foreland basin occurred during the Early Triassic (~250-245Ma).
     The Lower-Middle Jurassic in Huangshi south of Dabie Mountains is a reverie sequence of recycled sandstone, siltstone and mudstone, including channel, point-bar and floodplain sedimentation in a meandering river for the Early Jurassic Wuchang Formation and channel and inter-channel sedimentation in a braided river for the Middle Jurassic Huajiahu Formation. Paleocurrent and sandstone provenance data suggest that a truck river flowed westward carrying detritus from the South China Block Paleoproterozoic basement and southward tributaries drained the Dabei orogen, with the latter getting stronger in the Middle Jurassic time. Detrital zircon U-Pb ages, CL images and REE elements suggest that one granulite-facies metamorphic zircon with latest Ordovician age is present in the Early Jurassic sandstone, while the Middle Jurassic sandstone contain not only the Ordovician metamorphic detrital zircons but also Carboniferous eclogite-facies metamorphic zircon and Triassic detrital zircons of metamorphic origin, which overlapping in age with the Triassic HP/UHP metamorphism in Dabie Orogen. This result suggests that in this source area occurred corresponding high-grade metamorphism, and such metamorphic terranes have been exhumed to the surface and eroded. Comparison with similar provenance studies from the northern Hefei Basin and eastern Qianshan Basin constrains a differential exhumation style by which the HP/UHP rocks were exposed earlier in the northern part and relatively latter in the southern part. In addition, the Early-Middle Jurassic sandstones in Huangshi Basin and Qianshan Basin yield a similar detrital zircon U-Pb spectrum, which can be correlated with those from the time-equivalent clastic rocks in southern Korea Peninsula and SW Japan, which occur in a comparable tectonic position (situated south of a HP/UHP belt). This data compilation leads supports for hypothesizing an elongated foreland basin south of the Dabie-Sulu collisional belt in China and its eastern extension in Korean and Japan.
     The Lower Silurian clastic sequence in North Qilian is a sedimentary record related to the early Paleozoic tectonic transformation from active continental margin of the North China Craton to a foreland basin, and the Late Permian-Middle Triassic clastic rocks in Youjiang Basin mark a basin conversion from a passive marginal basin in the SW South China Block to a foreland basin. The initial collisional sedimentary records in North Qilian Lower Silurian sediments include:(1) both the Central Qilian Block and North China Craton providing respective basement materials at this time; and (2) occurrence of orogen-derived detritus, such as detrital Cr-spinels and sandstones with high-Cr contents which argument for an ophiolitic provenance component. In Youjiang Basin, the evidences for initial collision include:(1) Permian volcanic-arc derived detrital zircons in the late Early-Middle Triassic clastic rocks which overlying the passive margin sequences; and (2) Carboniferous detrital zircon of eclogite-facies metamorphic origin occurred in the Middle Triassic sandstones, denoting the quick exhumation of the deep-subducted materials during the collision. The differences in the detrital record of initial collision from North Qilian and Youjiang examples, which have different pre-foreland basin tectonic positions, indicate that the formation and evolution of foreland basin is complicated and related to the tectonic background.
     Huangshi Lower-Middle Jurassic sedimentary record is a good indicator for the exhumation of Dabie Mountains. During the uplift of the Dabie Mountains, HP/UHP and other high-grade metamorphic rocks were exhumed to surface and recorded as detrital zircons in the Jurassic strata in Huangshi Basin, such as the occurrence of latest Ordovician aged detrital zircon of granulite-facies metamorphic origin in the Lower Jurassic sandstone representing that the early Paleozoic metamorphic terranes have been exhumed to surface by the Early Jurassic or earlier; the occurrence of Carboniferous and Triassic aged detrital zircons of eclogite-or high-grade metamorphic origins in the Middle Jurassic sandstone suggesting that corresponding HP/UHP rocks have been exhumed and exposed to the surface in this time. A significant superiority with implication of detrital record for mountain building is that these special detritus are preserved within a certain stratigraphic sequence, imposing a relative or absolute temporal feature on the orogen exhumation process. More importantly, if the sequence can be traced vertically, the corresponding record will be continuous and thus, reflect a dynamic process in a long-time interval. This is the significance of the study on the Huangshi Early-Middle Jurassic sandstones. In addition, provenance data compilation and comparison from the adjacent basins with Huangshi Basin included show a difference in the sedimentary record which reflects the time-space disequilibrium during the Dabie mountain uplift and exhumation.
     The key to get efficient sedimentary records related to the orogenic process is to obtain accurate and reliable provenance data, which depends on provenance analysis methods with high-resolution. The composition of clastic sedimentary rocks is the combined function of nature of provenance, chemical weathering, sedimentary sorting and recycling, post-depositional diagenesis and possible metamorphism, and not related directly to the tectonic setting. Considering this, the low success rate of routinely used tectonic discrimination diagrams reflects not only the intrinsic flaw of these diagrams, but also the complexity of sediment generation. If excluding the effects from diagenesis and metamorphism, sediments will be controlled compositionally by source components and sedimentary process. Based on the data of this dissertation, the limitation of the conventional whole geochemical and routine sandstone modal compositional discriminating diagrams was evaluated. It is concluded that special provenance component (e.g. continental flood basalts) and sedimentary process (chemical weathering, sedimentary sorting and recycling) are the main factors leading the results of such diagrams to be deviate from the actual what it is. Considering the composition of the clastic rocks are directly related to the nature of the source rocks and the intensity of chemical weathering, sedimentary sorting and recycling, it is recommended that these routine diagrams should be used with special cautions. Comparing with sandstones, the companying mudstones are characteristic of high contents in Al2O3and Fe2O3+MgO and high ratios of Al2O3/SiO2、Th/Zr、 Ti/Zr、La/Y and Sc/La. The difference can be ascribed to the sedimentary processes including chemical weathering, sedimentary sorting and recycling, by which some particals with low density and small size, such as clay minerals, will concentrate in muddy sediments and other particals with great density and large size, such as zircons and quartz, will be enriched in sandy sediments, a detrital sorting which will differentiate elemental distribution in sediments. Continental flood basalt can disperse voluminous mafic detritus into the adjacent passive continental margin, a kind of sediments totally different from quartzose deposits which are usually interpreted to represent a passive margin setting.
     Contrastingly, single mineral provenance analysis provides more detailed and valuable results. Among them, detrital zircon U-Pb geochronology now becomes a frequently-used method to infer the potential sources. However, its chemical significance to provenance is still under debate. In this dissertation, zircon REE pattern and other trace elements were used to discuss its origin (magmatic or metamorphism), metamorphic condition (if of metamorphic origin) and the nature and tectonics of related magmatism (if of magmatic origin), indicating that zircon chemistry could not be overlooked when studying detrital zircon provenance. To be noted is the designed diagrams using zircon trace elements to separate magmatic zircons from arc-related/orogenic setting from those from within-plate/anorogenic setting, which may be useful in future studies.
引文
[1]Amelin Y, Lee D-C, Halliday AN, Pidgon RT. Nature of the earth's earliest crust from hafnium isotopes in single detrital zircons. Nature.1999; 399:252-255.
    [2]Wilde SA, Valley JW, Peck WH, Graham CM. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature.2001; 409:175-178.
    [3]Mojzsis SJ, Harrison TM, Pidgeon RT. Oxygen-isotope evidence from ancient zircons for liquid water ar the Earth's surface 4,300 Myr ago. Nature.2001; 409:178-181.
    [4]Harrison TM, Blichert-toft J, Muller W, Albarede F, Holden P, Mojzsis SJ. Heterogeneous Hadean hafnium; evidence of continental crust at 4.4 to 4.5 Ga. Science.2005; 310:1947-1950.
    [5]Hawkesworth CJ, Kemp AIS. Evolution of the continental crust. Nature.2006; 443:811-817.
    [6]Taylor SR, McLennan SM. The continental crust:Its composition and evolution. Oxifird: Blackwell; 1985.
    [7]Taylor SR, McLennan SM. The geochemical evolution of the continental crust. Reviews of Geophysics.1995; 33:241-265.
    [8]McLennan SM, Taylor SR. Th and U in sedimentary rocks:crustal evolution and sedimentary recycling. Nature.1980; 285:621-624.
    [9]Gao S, Luo T, Zhang B, Zhang H, Han Y, Zhao Z, et al. Chemical compsition of the continental crust as revealed by studies in East China. Geochimica at Cosmochimica Acta.1998; 62(11): 1959-1975.
    [10]Weislogel AL, Graham SA, Chang EZ, Wooden JL, Gehrels GE, Yang H. Detrital zircon provenance of the Late Triassic Songpan-Ganzi complex:sedimentary record of collision of the North and South China blocks. Geology.2006; 34(2):97-100.
    [11]Rainbird RH, Heaman LM, Young G. Sampling Laurentia:detrital zircon geochronology offers evidence for an extensive Neoproterozoic river system originating from the Grenville orogen. Geology.1992; 20:351-354.
    [12]Dickinson WR, Suczek CA. Plate tectonics and sandstone composition. The American Association of Petroleum Geologists Bulletin.1979; 63(12):2164-2182.
    [13]Schwab FL, editor. Sedimentary 'signatures' of foreland basin assemblages:real or counterfeit. Oxford:Blackwell; 1986.
    [14]Michaelsen P, Henderson RA. Sandstone petrofacies expressions of multiphase basinal tectonics and arc magmatism:Permian-Triassic north Bowen Basin, Australia. Sedimentary Geology.2000; 136:113-136.
    [15]Griffin DL. The late Miocene climate of northeastern Africa:unravelling the signals in the sedimentary succession. Journal of the Geological Society, London.1999; 156:817-826.
    [16]Nesbitt HW, Young GM. Early proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature.1982; 299:715-717.
    [17]Fedo CM, Young GM, Nesbitt HW. Paleoclimatic control on the composition of the Paleoproterozoic Serpent Formation, Huronian Supergroup, Canada:a greenhouse to icehouse transition. Precambrian Research.1997; 86:201-223.
    [18]Young GM, Nesbitt HW. Paleoclimatology and provenance of the glaciogenic Gowganda Formation (Paleoproterozoic), Ontario, Canada:a chemostratigraphic approach. GSA Bulletin. 1999; 111(2):264-274.
    [19]Young GM, Minter WEL, Theron JN. Geochemistry and palaeogeography of upper Ordovician glaciogenic sedimentary in the Table Mountain Group, South Africa. Palaeogeography, Palaeoclimatology, Palaeoecology.2004; 214:323-345.
    [20]MacRae ND, Nesbitt HW, Kronberg BI. Development of a positive Eu anomaly during daigenesis. Earth and Planetary Science Letters.1992; 109:585-601.
    [21]Maynard JB, Ritger SD. Chemistry of sands from the modern Indus River and the Archean Witwatersrand basin:implications for the composition of the Archean atmosphere. Geology. 1991; 19:265-268.
    [22]Najman Y. The detrital record of orogenesis:a review of approaches and techniques used in the Himalayan sedimentary basins. Earth Science Reviews.2006; 74:1-72.
    [23]Garzanti E, Doglioni C, Vezzoli G, Ando S. Orogenic belts and orogenic sediment provenance. The Journal of Geology.2007; 115(3):315-334.
    [24]Suchet PA, Probst JL. Modelling of atmospheric CO2 consumption by chemical weathering of rocks:application to the Garonne, Congo and Amazon basins. Chemical Geology.1993; 107: 205-210.
    [25]Raymo ME, W F, Ruddiman. Tectonic forcing of late Cenozoic climate. Nature.1992; 359: 117-122.
    [26]Cawood PA, Kroner A, Collins WJ, Kusky TM, Mooney WD, Windley BF. Accretionary orogens through Earth history. In:Cawood PA, Kroner A, editors. Earth Accretionary Systems in Space and Time:The Geological Societry, London, Special Publications; 2009, p.1-36.
    [27]Najman Y, Bickle M, Chapman H. Early Himalayan exhumation:isotopic constraints from the Indian foreland basin. Terro Nova.2000; 12:28-34.
    [28]van-Hoang L, Clift PD, Mark D, Zheng H, Tan MT. Ar-Ar muscovite dating as a constraint on sediment provenance and erosion processes in the Red and Yangtze River systems, SE Asia. Earth and Planetary Science Letters.2010; 295:379-389.
    [29]Cawood PA, Nemchin AA, Freeman M, Sircombe K. Linking source and sedimentary basin: detrital zircon record of sediment flux along a modern river system and implications for provenance studies. Earth and Planetary Science Letters.2003; 210:259-268.
    [30]Cox R, Lowe DR, Cullers RL. The influence of sediment recycling and basement compostion on evolution of mudrock chemistry in the southwestern United States. Geochimica at Cosmochimica Acta.1995; 59(14):2919-2940.
    [31]McLennan SM, McCulloch MT, Taylor SR. Effects of sedimentary sorting on neodymium isoyopes in deep-sea turbites. Nature.1989; 337:547-549.
    [32]Nesbitt HW, Young GM, Mclennan SM, Keays RR. Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies. The Journal of Geology.1996; 104:525-542.
    [33]Marsaglia KM, DeVaughn AM, James DE, Marden M. Provenance of fluvial terrace sediments within the Waipaoa sedimentary system and their importance to New Zealand source-to-sink studies. Marine Geology.2010; 270:84-93.
    [34]Basu A, McKay DS, Gerke T. Petrology and provenance of Apollo 15 Drive Tube 15007/8. Proceedings of the Eigheenth Lunar and Planetary Science Conference:Cambridge University Press 1988:283-298.
    [35]Crook KAW. Lithogenesis and geotectonics:the significance of compositional variation in flysch arenites (grauwackes):in, Dott RH, Shaver RH. Eds. Modern and ancient geosynclinals sedimentation. Tulsa:SEPM Special Publication.1974; 19:304-310.
    [36]Haughton PD, Todd SP, Morton AC. Sedimentary provenance studies. Geological Society, London, Special Publications.1991; 57:1-11.
    [37]Ingersoll RV, Bullard TF, Ford RL, Grimm JP, Pickle JD, Sares SW. The effect of grain size on detrital modes:a test of the Gazzi-Dickinson point-counting method. Journal of Sedimentary Petrology.1984; 54(1):103-116.
    [38]Dickinson WR. Interpreting detrital models of graywacke and arkose. Journal of Sedimentay Petrology.1970; 40(2):695-707.
    [39]Dickinson WR, Beard LS, Brakenridge GR, Erjavec JL, Ferguson RC, Inman KF, et al. Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geological Society of America Bulletin.1983; 94:222-235.
    [40]Schwab FL. Framework mineralogy and chemical composition of continental margin-type sandstone. Geology.1975; 3:487-490.
    [41]Gu XX. Geochemical characteristics of the Triassic Tethys-turbidites in northwestern Sichuan, China: Implications for provenance and interpretation of the tectonic setting. Geochimica et Cosmochimica Acta. 1994; 58(21):4615-4631.
    [42]Maynard JB, Valloni R, Yu HS. Composition of modern deep-sea sands from arc-related basins. In:Leggtt JK, editor. Trench-Forearc Geology. Oxford:Blackwall scientific Publication; 1982, p. 551-562.
    [43]Roser BP, Korsch RJ. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. The Journal of Geology.1986; 94(5):635-650.
    [44]Roser BP, Korsch RJ. Provenance signatures of sandstone-mudstone suits determined using discriminant function analysis of major-element data. Chemical geology.1988; 67:119-139.
    [45]Bhatia MR. Plate tectonics and geochemical composition of sandstone. The Journal of Geology. 1983; 91(6):611-627.
    [46]Bhatia MR. Rare earth element geochemistry of Australian Paleozoic and mudrocks:Provence and tectonic control. Sedimentary Geology.1985; 45(1-2):97-113.
    [47]Gromet LP, Dymek RF, Haskin LA. The "North American shale composite":its complication, mjor and trance element characteristics. Geochimica at Cosmochimica Acta.1984; 48: 2469-2482.
    [48]Condie kC. Chemical compostion and evolution of the upper continental crust:contrasting resulting from surface samples and shales. Chemical Geology.1993; 104:1-37.
    [49]Nance WB, Taylor SR. Rare earth element patterns and crustal evolution-Ⅰ. Australian post-Archean sedimentary rocks. Geochimica at Cosmochimica Acta.1976; 40:1539-1551.
    [50]Wright JS. An overiew of the role of weathering in the production of quartz silt. Sedimentary Geology.2007; 202:337-351.
    [51]Nesbitt HW, Young GM. Petrogenesis of sediments in the absence of chemical weathering: effects of abration and sorting on bulk composition and mineralogy. Sedimentology.1996; 43: 341-358.
    [52]Yang S, Jung H-S, Li C. Two unique weathering regimes in the Changjiang and Huanghe drainage basins:geochemical evidence from river sediments. Sedimentary Geology.2004; 164: 19-34.
    [53]Yang S, Yim WW-S, Huang G. Geochemical composition of inner shelf Quaternary sediments in the northern South China Sea with implications for provenance discrimination and paleoenvironmental reconstruction. Global and Planetary Change.2008; 60:207-221.
    [54]Yang S, Li C, Yokoyama K. Elemental compositions and monazite age patterns of core sediments in the Changjiang Delta:implications for sediment provenance and development history of the Changjiang River. Earth and Planetary Sciences Letters.2006; 245:762-776.
    [55]Dorsey RJ. Provenance evolution and unroofing history of a arc-continent collision:evidence from petrography of Plio-Pleistocene sandstones, Eastern Taiwan. Journal of Sedimentary Petrology.1988; 58(2):208-218.
    [56]Garzanti E, Vezzoli G. A classification of metamorphic grains in sands based on their composition and grade. Journal of Sedimentary Research.2003; 73(5):830-837.
    [57]Critelli S, Marsaglia KM, Busby CJ. Tectonic history of a Jurassic backarc-basin sequence (the Gran Canon Formation, Cedros Island, Mexico), based on compositional modes of tuffaceous deposits. GSA Bulletin.2002; 114(5):515-527.
    [58]Critelli S, Arribas J, Pera EL, Tortosa A, Marsaglia KM, Latter KK. The recycled orogenic sand provenance from an uplifted thrust belt, Betic Cordiliera, Southern Spain. Journal of Sedimentary Research.2003; 73:72-81.
    [59]White NM, Pringle M, Garzanti E, Bickle M, Najman Y, Chapman H, et al. Constraints on the exhumation and erosion of the High Himalayan Slab, NW India, from foreland basin deposits. Earth and Planetary Science Letters.2002; 195:29-44.
    [60]Cawood PA. Modal composition and detrital clinopyroxene geochemistry of lithic sandstones from the New England Fold (east Australia):a Paleooic forearc terrane. Geological Society of America Bulletin.1983; 94:1199-1214.
    [61]Morton A, Chenery S. Detrital rutile geochemistry and thermometry as guides to provenance of Jurassic-Paleocene sandstones of the Norwegian Sea. Journal of Sedimentary Research.2009; 79: 540-553.
    [62]Dick HJB, Bullen T. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology.1984; 86: 54-76.
    [63]Zhu B, Kidd WSF, Rowley DB, Gurrie BS, Shafique N. Age of Initiation of the India-Asia collision in the East-Central Himalaya. The Journal of Geology.2005; 113:265-285.
    [64]Cookenboo HO, Bustin RM, Wilks KR. Detrital chromian spinel compositions used to reconstruct the tectonic setting of provenance:implications for orogeny in the Canadian Cordillera. Journal of Sedimentary Research.1997; 67(1):116-123.
    [65]Henry DJ, Guidotti CV. Tourmaline as a petrogenetic indicator mineral:an example from the staurolitte-grade metapelites of NW Maine. American Mineralogist.1985; 70:1-15.
    [66]Leitch EC, Cawood PA. Provenance determination of volcaniclastic rocks:the nature and tectonic significance of a Cambrian conglomerate from the New England Fold Belt, Eastern Australia. Journal of Sedimentary Petrology.1987; 57(4):630-638.
    [67]Massonne HJ, Schreyer W. Phengite geobarometry and quartz. Contribution to Mineralogy and Petrology.1987; 96:212-224.
    [68]Eynatten Hv, Schlunegger F, Gaupp R, Wijbrans JR. Exhumation of the Central Alps:evidence from 40Ar/39Ar laserprobe dating of detrital white micas from the Swiss Molasse Basin. Terra Nova.1999; 11:284-289.
    [69]Grigsbby JD. Chmical fingerprinting in detrital ilmentite:a viable alternative in provenance research? Journal of Sedimentary Petrology.1992; 62(2):331-337.
    [70]Grigsby JD. Detrital magnetite as a provenance indicator. Journal of Sedimentary Petrology. 1990; 60(6):940-951.
    [71]Taylor KS, Faure G. Rb-Sr dating of detrital feldspar:a new method to study till. The Journal of Geology.1981; 89:97-107.
    [72]Hemming SR, McDaniel DK, McLennan SM, Hanson GN. Pb isotope constraints on theprovennace and diagenesis of detrital feldspars from the Sudbury Basin, Canada. Earth and Planetary Science Letters.1996; 142:501-512.
    [73]Chetel LM, Simo JA, Singer BS.40Ar/39Ar geochronology and provenance of detrital K-feldspars, Ordovician, Upper Mississippi Valley. Sedimentary Geology.2005; 182:163-181.
    [74]Hemming SR, Mclennan SM, Hanson GN. Lead isotopes as a provenance tool for quartz: examples from plutons and quartzite, northeastern Minnesota, USA. Geochimica et Cosmochimica Acta.1994; 58(20):4455-4464.
    [75]Hemming SR, Broecker WS, Sharp WD, Bond GC, Gwiazda RH, McManus JF, et al. Provenance of Heinrich layers in core V28-82, northeastern Atlantic:40Ar/39Ar ages of ice-refted hornblende, Pb isotopes in feldspar granis, and Nd-Sr-Pb isotopes in the fine sediment fraction. Earth and Planetary Science Letters.1998; 164:317-333.
    [76]Aronson JL, Lewis TL. Ages of detrital white mica from Devonian-Pennsylvanian strata of the North Central Appalachian Basin:dominance of the Acadian Orogen as provenance. The Journal of Geology.1994; 102:685-696.
    [77]Adams CJ, Kelley S. Provenance of Permian-Triassic and Ordovician metagraywacks terranes in New Zealand:evidence from 40Ar/39Ar dating of detrital micas. GSA Bulletin.1998; 110(3): 422-432.
    [78]Najman Y, Bickle M, Garzanti E, Pringle M, Barfod D, Brozovic N, et al. Reconstructing the exhumation history of the Lesser Himalaya, NW India, from a multitechnique provenance study of the foreland basin Siwalik Group. Tectonics.2009; 28:TC5018 doi:10.1029/2009TC002506.
    [79]Rahman MJJ, Faupl P.40Ar/39Ar multigrain dating of detrital white mica of sandstones of the Surma Group in the Sylhet Trough, Bengal Basin, Bangladesh. Sedimentary Geology.2003; 155: 383-392.
    [80]Grimmer JC, Raschbacher L, McWilliams M, Franz L, Gartzsch I, Tichomirowa M, et al. When did the ultrahigh-pressure rocks reach the surface? a 207Pb/206Pb zircon,40Ar/39Ar white mica, Si-in-white mica, single-grain provenance study of Dabie Shan synorogenic foreland sediments. Chemical Geology.2003; 197:87-110.
    [81]Rieser AB, Liu Y, Genser J, Neubauer F, Handler R, Friedl G, et al.40Ar/39Ar ages of detrital white mica constrain the Cenozoic development of the intracontinental Qaidam Basin, China. GSA Bulletin.2006; 118(11/12):1522-1534.
    [82]Zack T, Kronz A, Foley SF, Rivers T. Trace element abundances in rutiles form eclogites and associated garnet mica schists. Chemical Geology.2002; 184:97-122.
    [83]Zack T, Moraes R, Kronz A. Temperature dependence of Zr in rutile:empirical calibration of a rutile thermometer. Contributions to Mineralogy and Petrology.2004; 148:471-488.
    [84]Watson EB, Wark DA, Thomas JB. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology.2006; 151:413-433.
    [85]Zack T, Eynetten Hv, Kronz A. Rutile geochemistry and its potential use in quantitative provenance studies. Sedimentary Geology.2004; 171:37-58.
    [86]Stendal H, Toteu SF, Frei R, Penaye J, Njel UO, Bassahak J, et al. Derivation of detrital rutile in the Yaounde region from the Neoproteorzoic Pan-African belt in southern Cameroon (Central Africa). Journal of African Earth Sciences.2006; 44:443-58.
    [87]Meinhold G, Anders B, Kostopoulos D, Reischmann T. Rutile chemistry and thermometry as provenance indicator:an example from Chios Islan, Greece. Sedimentary Geology.2008; 203: 98-111.
    [88]Zimmermann U, Spalletti LA. Provenance of the Lower Paleozoic Balcarce Formation (Tandilia System, Buenos Aires Province, Argentina):implications for paleogeographic reconstructions of SW Gondwana. Sedimentary Geology.2009; 219:7-23.
    [89]Foster GL, Vance D. In situ Nd isotopic analysis of geological materials by laser ablation MC-ICP-MS. J Anal At Spectrom.2006; 21:288-296.
    [90]Foster GL, Cater A. Insights into the patterns and locations of erosion in the Himalaya-a combined fission track and in situ Sm-Nd isotopic study of detrital apatite. Earth and Planetary Science Letters.2007; 257:407-418.
    [91]Henderson AL, Foster GL, Najman Y. Testing the application of in situ Sm-Nd isotopic analysis on detrital apatites:a provenance tool fro constraining the timing of India-Eurasia collision. Earth and Planetary Science Letters.2010; 297:42-49.
    [92]Henderson AL, Najman Y, Parrish R, Mark DF, Foster GL. Constraints to the timing of India-Eurasia collision:a re-evaluation of evidence from the Indus Basin sedimentary rocks of the Indus-Tsangpo Suture Zone, Ladakh, India. Earth-Science Reviews.2011; 106:265-292.
    [93]Blatt H, Christie JM. Undulatory extinction in quartz of igneous and metamorphic rocks and its significance in provennace studies of sedimentary rocks. Journal of Sedimentary Petrology.1963; 33(3):550-579.
    [94]Basu A, Young SW, Suttner LJ, James WC, Mack GH. Re-evaluation of the use of undulatory extinction and polycrystallinity in detrital quartz for provenance interpretation. Journal of Sedimentary Petrology.1975; 45(4):873-782.
    [95]Gotze J, Plotze M, Habermann D. Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz—a review. Mineralogy and Petrology.2001; 71: 225-250.
    [96]Seyedolali A, Krinsley DH, OHara PF, Dypvik H, Goles GG. Provenance interpretation of quartz by scanning electron microscope-cathodoluminescence fabric analysis. Geology.1997; 25(9):787-790.
    [97]Gehrels GE, Dickinson WR, Stewart JH, Howell DG. Detrital zircon reference for Cambrian to Triassic miogeoclinal strata of western North America. Geology.1995; 23(9):831-834.
    [98]Cawood PA, Nemchin AA, Leverenz A, Saeed A, Ballance PF. U/Pb dating of detrital zircons: implications for the provenance record of Gondwana margin terranes. GSA Bulletin.1999; 111(8):1107-1119.
    [99]Fedo CM, Sircombe KN, Rainbird RH. Detrital zircon analysis of the sedimentary record Reviews in Mineralogy and geochemistry.2003; 53:277-303.
    [100]Carter A, Moss SJ. Combined detrital-zircon fission-track and U-Pb dating:a new approzch to understanding hinterland evolution. Geology.1999; 27(3):235-238.
    [101]Hoskin PWO, Ireland TR. Rare earth element chemistry of zircon and its use as a provenance indicator. Geology.2000; 28(7):627-630.
    [102]Belousova EA, Griffin WL, O'Reilly SY, Fisher NI. Igneous zircon:trace element composition as an indicator of source rock type. Contrib Mineral Petrol.2002; 143:602-622.
    [103]Schulz B, Klemd R, Bratz H. Host rock compositinal controls on zircon trace element signatures in metabasites from the Austroalpine basement. Geochimica et Cosmochimica Acta. 2006; 70:697-710.
    [104]Hawkesworth CJ, Kemp AIS. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chemical Geology.2006; 226:144-162.
    [105]Grimes CB, John BE, Kelemen PB, Mazdab FK, Wooden JL, Cheadle MJ, et al. Trace element chemistry of zircons from oceanic crust:a method for distinguishing detrital zircon provenance. Geology.2007; 35(7):643-646.
    [106]Grimes CB, John BE, Cheadle MJ, Mazdab Fk, Wooden JL, Swapp S, et al. On the occurrence, trace element geochemistry, and crystallization history of zircon from in situ ocean lithosphere. Contribution to Mineralogy and Petrology.2009; 158(6):757-783.
    [107]Carter A, Najman Y, Bahroudi A, Bown P, Garzanti E, Lawrence RD. Locating earliest records of orogenesis in western Himalaya:evidence from Paleogene sediments in the Iranian Makran region and Pakistan Katawaz basin. Geology.2010; 38:807-810.
    [108]Carrapa B. Resolving tectonic problems by dating detrital minerals. Geology.2010; 38(2): 191-192.
    [109]Hietpas J, Scamson S, Moecher D, Schmitt AK. Recovering tectonic events from the sedimentary record:detrital monazite plays in high fidelity. Geology.2010; 38:167-170.
    [110]Liu Y, Zong K, Kelemen PB, Gao S. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole:subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Chemical Geology.2008; 247: 133-153.
    [111]Barnes SJ, Roeder PL. The range of spinel compositions in terrestrial mafic and ultramafic rocks. Journal of Petrology.2001; 42(12):2279-2302.
    [112]Hu Z, Gao S, Liu Y, Hu S, Chen H, Yuan H. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas. Journal of Analytical Atomic Spectrometry.2008; 23:1093-1101.
    [113]Liu Y, Hu Z, Gao S, Gunther D, Xu J, Gao C, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology. 2008; 257:34-43.
    [114]Liu Y, Gao S, Hu Z, Gao C, Zong K. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. Journal of Petrology.2010; 51(1-2):537-571.
    [115]Wiedenbeck M, Hanchar JM, Peck WH, Sylvester P, Valley J, Whitehouse M, et al. Further characterisation of the 91500 zircon crystal. Geostandards and Geoanalytical Research.2004; 28(1):9-39.
    [116]Jackson SE, Pearson NJ, Griffin WL, Belousova EA. The application of laser ablation-inductively coupled plasma-mass spetrometry to in situ U-Pb zircon geochronology. Chemical Geology.2004; 211:47-69.
    [117]Ludwig kR. User's manual for Isoplot 3.00:a geochronological toolkit for microsoft Excel. Berkeley Geochronology Center Special Publication No.42003.
    [118]Bian Q, Gao S, Li D, Ye Z, Chang C, Luo X. A study of the Kunlun-Qilian-Qinling Suture system. Acta Geologica Sinica.2001; 75(4):364-374.
    [119]冯益民,何世平.祁连山大地构造与造山作用.北京:地质出版社;1996.
    [120]Xu Z, Yang J, Wu C, Li H, Zhang J, Qi X, et al. Timging and mechanism of formation and exhumation of the Northern Qaidam ultrahigh-pressure metramorphic belt. Journal of Asian Earth Sciences.2006; 28:160-173.
    [121]肖序常,陈国铭,朱志直.祁连山古蛇绿岩带的地质构造意义.地质学报.1978;4(281-295).
    [122]Wu H, Feng Y, Song S. Metamorphism and deformation of blueschist belts and tectonic implicaitons, North Qilian Mountains, China. Journal of Metamorphic Geology.1993; 11: 523-536.
    [123]夏林圻,夏祖春,徐学义.北祁连山构造-火山岩浆演化动力学.西北地质科学.1995;16(1):1-28.
    [124]周志强,曹宣铎,赵江天,胡云绪.祁连山东部早古生代地层和沉积-构造演化.西北地质科学.1996;17(1):1-58.
    [125]Song S, Zhang L, Niu Y, Song B, Zhang G, Wang Q. Zircon U-Pb SHRIMP ages of eclogites from the North Qilian Mountains in NW China and their tectonic implication. Chinese Science Bulletin.2004; 49(8):848-852.
    [126]Du Y, Zhu J, Gu S, Xu Y, Yang J. Sedimentary geochemistry of the Cambrian-Ordovician cherts: implication on archipelagic ocean of North Qilian Orogenic Bellt. Science in China (Series D). 2007; 50(11):1628-1644.
    [127]甘肃省地质矿产局.甘肃省区域地质志.北京:地质出版社;1989.
    [128]Qian Q, Zhang Q, Wang Y. Early Paleozoic North Qilian Oceanic basin, an analogue to modern west Pacific:evidence ffrom geochemical characteristics of ophiolites. InterRidge News.2001; 10(1):28-31.
    [129]Du Y, Wang J, Han X. From flysch to molasse—sedimentary and tectonic evolution of Late Caledonian-Early Hercynian foreland basin in North Qilian Mountains. Journal of China University of Geoscienses.2003; 14(1):1-7.
    [130]杜远生,朱杰,韩欣.从弧后盆地到前路盆地—北祁连造山带奥陶纪—泥盆纪的沉积盆地与构造演化.地质通报.2004;23(9~10):911-917.
    [131]Song S, Niu Y, Zhang L, Wei C, Liou JG, Su L. Tectonic evolution of early Paleozoic HP metamorphic rocks in the North Qilian Mountains, NW China:new perspectives. Journal of Asian Earth Sciences.2009; 35:334-353.
    [132]Liou JG, Wang XM, Colemen RG. Bluschists in major suture zones of China. Tectonics.1989; 8(3): 609-619.
    [133]青海地质矿产局.青海区域地质志.北京:地质出版社;1991.
    [134]Wu C, Shi R, Yang J, Yang H, Wooden JL, Zheng Q, et al. Petrogenesis and dating of two types of granite from North Qilian, China. Acta Geologica Sinica. 2005; 79(2): 193-200.
    [135]Xia L, Xia Z, Xu X. Magmagenesis in the Ordovician backarc basins of the North Qilian Mountains, China. GSA Bulletin. 2003; 115(12): 1510-1522.
    [136]Mao J, Zhang Z, Zhang Z, Du A. Re-Os isotopic dating of molybdenites in Xiaoliugou W(Mo) deposit in the northern Qilian mountains and its geological significance. Geochemical et CosmochemicaActa. 1999; 63(11/12): 1815-1818.
    [137]Mao J, Zhang Z, Jian P, Zhang Z, Yang J, Zhang Z. U-Pb zircon dating of the Yeniutan granitic intrusion in the western sector of the North Qilian Mountains. Acta Geologica Sinica. 2000; 74(4): 781-785.
    [138]Chen WM, Huang YC, Yoshiyuki I, Lo CH, Wu H, Song S, et al. Integrated P-T paths of the high-pressure rocks and their tectonic implications for the mountain-building of the North Qilian, China. Acta Geologica Sinica. 2002; 76(1): 44-62.
    [139]Wang CY, Zhang Q, Qian Q, Zhou M-F. Geochemistry of the early Paleozoic Baiyin volcanic rocks (NW China): implications for the tectonic evolution of the North Qilian orogenic belt. The Journal of Geology. 2005; 113: 83-94.
    [140]陈化奇.北祁连冷龙岭地区宁缠河花岗岩体的地球化学特征及大地构造意义.甘肃地质,2007;16(4):37-42.
    [141]刘晓煌,孙柏年,屈文俊,康鸿杰,吴靖宇.北祁连山西段西柳沟钨钼矿的Re-Os定年及地质意义.岩石学报.2007;23(10):2434-2442.
    [142]Tseng C, Yang H, Yang H, Liu D, Tsai C, Wu H, et al. The Dongcaohe ophiolite from the North Qlian Mountains: a fossil oceanic crust of the Paleo-Qilian ocean. Chinese Scinece Bulletin. 2007; 52(17): 2390-2401.
    [143]Xia X, Song S. Forming age and tectono-petrogenises of the Jiugequan ophiolite in the North Qilian Mountain, NW China. Chinese Science Bulletin. 2010; 55(18): 1899-1907.
    [144]余吉远,李向民,马中平,孙吉明,王建强.青海省祁连县清水沟—白柳沟矿田含矿火山岩系年代学研究.地球科学进展.2010;25(1):55-60.
    [145]Song SG, Zhang LF, Niu Y, Wei CJ, Liou JG, Shu GM. Eclogite and carpholite-bearing metasedimentary rocks in the North Qilian suture zone, NW China: implications fot Early Palaeozoic cold oceanic subduction and water transport into mantle. Journal of Metamorphic Geology. 2007; 25: 547-563.
    [146]史仁灯,杨经绥,吴才来,Wooden J北祁连玉石沟蛇绿岩形成于晚震旦世的SHRIMP年龄证据.地质学报.2004;78(5):649-657.
    [147]Wan Y, Yang J, Xu Z, Wu C. Geochemical characteristics of the Maxianshan complex and Xinglong Group in the eastern sement of the Qilian Orogen Belt. Journal of the Geological Society of China. 2000; 43(1): 52-68.
    [148]Wan Y, Xu Z, Yang J, Zhang J. Ages and composition of the Precambrian high-grade basement of the Qilian terrane and its adjacent areas. Acta Geologica Sinica.2001; 75(4):375-384.
    [149]Smith AD. The geochemistry and age of ophiolitic strata of the Xinglongshan Group: implications for the amalgamation of the Central Qilian belt. Journal of Asian Earth Sciences. 2006; 28:133-142.
    [150]张宏飞,靳兰兰,张利.基底岩系和花岗岩类Pb-Nd同位素组成限制祁连山带的构造属性.地球科学-中国地质大学学报.2006;31(1):57-65.
    [151]郭进京,赵风清,李怀坤,李惠民,左义成.中祁连东段湟源群的年代学新证据及其地质意义.中国区域地质.2000;19(1):26-31.
    [152]Wan Y, Zhang J, Yang J, Xu Z. Geochemistry of high-grade metamorphic rocks of the North Qaidam mountains and their geological significance. Journal of Asian Earth Sciences.2006; 28: 174-184.
    [153]Gehrels GE, Yin A, Wang XF. Detrital-zircon geochronology of the northeastern Tibetan plateau. GSA Bulletin.2003; 115(7):881-896.
    [154]Tung K, Yang H, Yang H, Liu D, Zhang J, Wan Y, et al. Shrimp U-Pb geochronology of the zircon from the Precambrian basement of the Qilian Block and its geological significances. Chinese Scinece Bulletin.2007; 52(19):2687-2701.
    [155]Xu W, Zhang H, Liu X. U-Pb zircon dating constraints on formation time of Qilian high-grade metamorphic rock and its tectonic implications. Chinese Science Bulletin.2007; 52(4):531-538.
    [156]雍拥,肖文交,袁超,李继亮,阎臻,毛启贵.中祁连东段花岗岩LA-ICPMS锆石U-Pb年龄及地质意义.新疆地质.2008;26(1):62-70.
    [157]薛宁,王瑾,谈生祥,林海,李五福,任晋祁,et al中祁连北缘野牛沟-托勒地区晋宁期花岗岩的地质意义.青海大学学报(自然科学版).2009;27(4):23-28.
    [158]陈隽璐,徐学义,曾佐勋,肖林,王洪亮,王宗起,et al中祁连东段什川杂岩基的岩石化学特征及年代学研究.岩石学报.2008;24(4):841-854.
    [159]何世平,王洪亮,陈隽璐,徐学义,张宏飞,任光明,et al中祁连马衔山岩群内基性岩墙群锆石LA-ICPMS U-Pb年代学及其构造意义.地球科学—中国地质大学学报.2008;33(1):35-45.
    [160]雍拥,肖文交,袁超,阎臻,李继亮.中祁连东段古生代花岗岩的年代学、地球化学特征及其大地构造意义.岩石学报.2008;24(4):855-866.
    [161]苏建平,胡能高,张海峰,冯备战.中祁连西段黑沟梁子花岗岩的锆石U-Pb同位素年龄及成因.现代地质.2004;18(1):70-74.
    [162]Tseng CY, Zuo GC, Yang HJ, Yang HY, Tung KA, Liu DY, et al. Occurrence of Alaskan-type mafic-ultramafic intrusions in the North Qilian Mountains, Northwest China:evidence of Cambrian arc magmatism on the Qilian Block. Island Arc.2009; 18:526-549.
    [163]Yang JS, Xu Z, Li HB, Wu CL, Zhang JX, Shi RD. An Early Paleozoic convergent border at the southern margin of the Qilian terrain, NW China:evidence from the eclogite, garnet peridotite and ophiolite Journal of Geological Societry, China.2000; 43:142-164.
    [164]郝国杰,陆松年,李怀坤,郑健康.柴北缘沙柳河榴辉岩岩石学及年代学初步研究.前寒武纪研究进展.2001;24(3):154-162.
    [165]史仁灯,杨经绥,吴才来,Lizuka T, Hirata T.柴达木北缘超高压变质带中的岛弧火山岩.地质学报.2004;78(1):52-64.
    [166]Wu C, Wooden JL, Yang J, Robinson RT, Zheng L, Shi R, et al. Granitic magmatism in the North Qaidam Early Paleozoic Ultrahigh-pressure metamorphic belt, Northwest China. International Geology Review.2006; 48(3):223-240.
    [167]吴才来,杨经绥,徐志琴,Woodern JL, Ireland T,李海兵, et al柴达木盆地北缘古生代超高压带中花岗质岩浆作用.地质学报.2004;78(5):658-674.
    [168]Wu C, Yang J, Wooden J, Liou JG, Li H, Shi R, et al. Zircon SHRIMP dating of granite from Qaidamshan, NW China. Chinese Science Bulletin.2002; 47(5):418-422.
    [169]Wu C, Wooden J, Yang J, Li H, Ireland T, Liou JG, et al. Relationship between granite and eclogite on the southern margin of the Qilian Mountains:evidence from zircon SHRIMP ages of the Aolaoshan granite. Acta Geologica Sinica.2002; 76(1):118-125.
    [170]Wu C, Yang J, Wooden JL, Shi R, Chen S, Meibom A, et al. Zircon U-Pb SHRIMP dating of the Yematan batholith in Dulan, North Qaidam, NW China. Chinese Science Bulletin.2004; 49(16): 1736-1740.
    [171]袁桂邦,王慧初,李惠民,郝国杰,辛后田,张宝华,et al柴北缘绿梁山地区辉长岩的锆石U-Pb年龄及意义.前寒武纪研究进展.2002;25(1):37-40.
    [172]赵风清,郭进京,李怀坤.青海锡铁山地区滩间山群的地质特征及同位素年代学.地质通报.2003;22(1):28-31.
    [173]孟繁聪,张建新,杨经绥.柴北缘锡铁山早古生代HP/UHP变质作用后的构造热事件—花岗岩和片麻岩的同位素与岩石地球化学证据.岩石学报.2005;21(1):45-56.
    [174]卢欣祥,孙延贵,张雪亭,肖庆辉,王晓霞,尉向东,et al柴达木盆地北缘塔塔楞环斑花岗岩的SHRIMP年龄地质学报.2007;81(5):626-634.
    [175]吴才来,郜源红,吴锁平,陈其龙,Wooden JL, Mazadab FK, et al柴达木盆地北缘大柴旦地区古生代花岗岩锆石SHRIMP定年.岩石学报.2007;23(8):1861-1875.
    [176]朱小辉,陈丹玲,刘良,李涤.柴达木盆地北缘都兰地区旺尕秀辉长杂岩的锆石LA-ICP-MS U-Pb年龄及地质意义.地质通报.2010;29:227-236.
    [177]Wu C, Gao Y, Wu S, Chen Q, Wooden JL, Mazadab FK, et al. Geochemistry and zircon SHRIMP U-Pb dating of granitoids from the west segment of the North Qaidam. Science in China (Series D).2009; 52(11):1771-1790.
    [178]杨雨,范国琳,姚国金, editors全国地层多重划分对比研究.武汉:中国地质大学出版社;1997.
    [179]甘肃省地质局区域地质调查队.甘肃的志留系.甘肃地质.1986;3(1):1-117.
    [180]Du Y, Xu Y, Yang J. Soft-sediment deformation structures related to earthquake from the Devonian of the Eastern North Qilian Mts. and its tectonic significance. Acta Geologica Sinica. 2008; 82(6):1185-1193.
    [181]Marsaglia KM, Ingersoll RV. Compositional trends in arc-related, deep-marine sand and sandstone:A reassessment of magmatic-arc provenance. Geological Society of America Bulletin. 1992; 104:1637-1649.
    [182]Young GM, Nesbitt HW. Processes controling the distribution of Ti and Al in weathering profiles, siliciclastic sediments and sedimentary rocks. Journal of Sedimentary Research.1998; 68(3):448-455.
    [183]Nesbitt HW, Young GM. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta.1984; 48:1523-1534.
    [184]Fedo CM, Nesbitt HW, Young GM. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology.1995; 23(10):921-924.
    [185]McLennan SM. Weathering and global denudation. The Journal of Geology.1993; 101: 295-303.
    [186]Nesbitt HW, Young GM. Formation and diagenesis of weathering profiles. The Journal of Geology.1989; 97:129-147.
    [187]Sun SS, McDonough WF. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes. Geological Society, London, Special Publications.1989; 42:313-345.
    [188]McLennan SM, Heming S, McDaniel DK, Hanson GN. Geochemical approaches to sedimentation, provenance, and tectonics. Geological Society of America, Special Paper.1993; 284:21-40.
    [189]Hoskin PWO, Schaltegger U. The composition of zircon and igneous and metamorphic petrogensis. In:Hanchar JM, Hoskin PWO, editors. Ziron. Washington, D.C.:Reviews in Mineralogy and Geochemistry; 2003, p.27-62.
    [190]Lenaz D, Kamenetsky VS, Crawford AJ, Princivalle F. Melt inclusions in detrital spinel from the SE Alps (Italy-Slovenia):a new approch to provenance studies of sedimentary basins. Contributions to Mineralogy and Petrology.2000; 139:748-758.
    [191]Kamenetsky VS, Crawford AJ, Meffre S. Factors controlling chemistry of magmatic spine!:an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. Journal of Petrology.2001; 42(4):655-671.
    [192]Preston J, Hartley A, Mange-Rajetzky M, Hole M, May G, Buck S. The provenance of Triassic continental sandstones from the Beryl Field, northern North Sea:mineralogical, geochemical, and sedimentological constraints. Journal of Sedimentary Research.2002; 72(1):18-29.
    [193]Hsu T-W, Shau Y-H. A petrographic and mineralogical studyof volcanic rocks from the Mayaxueshan area, North Qiian Fold Belt, NW China. Acta Geologica Sinica.2002; 76(1): 15-30.
    [194]Nesbitt HW, Fedo CM, Young GM. Quartz and feldspar stability, steady and non-steady-state weathering, and petrogenesis of siliciclastic sands and mud. The Journal of Geology.1997; 105: 173-191.
    [195]Lee YI. Geochemistry of shales of the Upper Cretaceous Hayang Group, SE Korea: implications for provenance and source weathering at the active continental margin. Sedimentary Geology.2009; 215:1-12.
    [196]Roddaz M, Viers J, Brusset S, Baby P, Boucayrand C, Herail G. Controls on weathering and provenance in the Amazonian foreland basin:insights from major and trace element geochemistry of Neogene Amazonian sediments. Chemical Geology.2006; 226:31-65.
    [197]Kamp PCvd, Leake BE. Petrography and geochemistry of feldspathic and mafic sediments of the northeastern Pacific margin. Transactions of the Royal Society of Edinburgh:Earth Sciences. 1985; 76:411-449.
    [198]McLennan SM, Taylor SR, McCulloch MT, Maynard JB. Geochemical and Nd-Sr isotopic composition of deep-sea turbidites:crustal evolution and plate tectonic associations. Geochimica et Cosmochimica Acta.1990; 54:2015-2050.
    [199]Meinhold G, Kostopoulos D, Reischmann T. Geochemical constraints on the provenance and depositional setting of sedimentary rocks from the islands of Chios, Inousses and Psara, Aegean Sea, Greece:implications for the evolution of Paleotethys. Journal of the Geological Society, London.2007; 164:1145-1163.
    [200]Bhatia MR, Crook KAW. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to mineralogy and petrology.1986; 92: 181-193.
    [201]Girty GH, Hanson AD, Knaack C, Johnson D. Provennace determined by REE, Th, and Sc analyses of metasedimentary rocks, Boyden Cave roof pendant, central Sierra Nevada, California. Journal of Sedimentary Research.1994; 64:68-73.
    [202]Crichton JG, Condie KC. Trace elements as source indicators in Cratonic sediments:a case study from the Early Proterozoic Libby Creek Group, Southeastern Wyoming. The Journal of Geology.1993; 101:319-332.
    [203]Weaver CE. Clays, muds, and shales. Amsterdam:Elsevier; 1989.
    [204]Cullers R, Chaudhuri S, Kilbane E, Koch R. Rare-earths in size fractions and sedimentary rocks of Pennsylvanian-Permian age from the mid-continent of the U. S. A. Geochimica et Cosmochimica Acta.1979; 43:1285-1301.
    [205]Nesbitt HW. Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature.1979; 279:206-210.
    [206]Nesbitt HW, Markovics G, Price RC. Chemical processes affecting alkalis and alkaline earths during continental weathering. Geochimica et Cosmochimica Acta.1980; 44:1659-1666.
    [207]Hiscott RN. Ophilotitic source rocks for Taconic-age flysch:trace-element evidence. Geological Society of America Bulletin.1984; 95:1261-1267.
    [208]Cullers RL, Barrett T, Carlson R, Robinson B. Rear-earth element and mineralogic changes in Holocene soil and stream sediment:a case study in the Wet Mountains, Colorado, U. S. A. Chemical Geology.1987; 63:275-297.
    [209]Cullers RL, Basu A, Suttner LJ. Geochemical singnature of provenance in sand-size material in soil and stream sediments near the Tobacco Root batholith, Montana, U. S. A. Chemical Geology. 1988; 70:335-348.
    [210]Bonjour J-L, Dabard M-P. Ti/Nb ratios of clastic terrigenous sediments used as an indicator of provenance. Chemical Geology.1991; 91:257-267.
    [211]Gu XX, Liu JM, Zheng MH, Tang JX, Qi L. Provenance and tectonic setting of the proterozoic turbidites in Hunan, South China:geochemical evidence. Journal of Sedimentary Research.2002; 72(3):393-407.
    [212]Frost CD, Winston D. Nd isotope systematics of coarse- and fine-grained sediments:examples from the Middle Proterozoic Belt-Purcell Supergroup. The Journal of Geology.1987; 95: 309-327.
    [213]McLennan SM, Nance WB, Taylor SR. Rare earth element-thorium correlations in sedimentary rocks, and the composition of the continental crust. Geochimica at Cosmochimica Acta.1980; 44: 1833-1839.
    [214]Xu Y, Du Y, Cawood PA, Guo H, Huang H, An Z. Detrital zircon record of continental collision: assembly of the Qilian Orogen, China. Sedimentary Geology.2010; 230:35-45.
    [215]Zhou J-B:Wilde SA, Zhao G-C, Chang-Qing Z, WeiJin, Xing-ZhouZhang, et al. Detrital zircon U-Pb dating of low-grade metamorphic rocks in the Sulu UHP belt:evidence for overthrusting of the North China Craton onto the South China Craton during continental subduction. Journal of the Geological Society, London.2008; 165:423-433.
    [216]Zhao G, Wilde SA, Cawood PA, Sun M. SHRIMP U-Pb zircon ages of the Fuping complex: implications for late archean to paleoproterozoic accretion and assembly of the North China craton. American Journal of Sciences.2002; 302:191-226.
    [217]Zhao G, Wilde SA, Sun M, Li S, Li X, Zhang J. SHRIMP U-Pb zircon ages of granitoid rocks in the Luliang Complex:implication for the accrection and evolution of the Trans-North China Orogen. Precambrian Research.2008; 160:213-226.
    [218]Zhao G Cawood PA, Wilde SA, Sun M. Review of global 2.1-1.8 Ga orogens:implications for a pre-Rodinia supercontinent. Earth-Science Reviews.2002; 59:125-162.
    [219]Wilde SA, Cawood PA, Wang KY, Nemchin AA, Zhao G. Determining Precambrian crustal evolution in China:a case study from Wutaishan, Shanxi Province, demonstrating the applications of precise SHRIMP U-Pb geochronology. In:Feltcher J, Ali CJN, R. J, Aitchison JC, eds. Aspects of the tectonic evolution of China:Geological Society Publication 2004:5-20.
    [220]Santosh M, Wilde SA, Li JH. Timing of Paleoproterozoic ultrahigh-temperature metamorphism in the North China Craton:evidence from SHRIMP U-Pb zircon geochronology. Precambrian Research.2007; 159:178-196.
    [221]Zhao G, Wilde SA, Guo J, Cawood PA, Sun M, Li X. Single zircon grains record two paleopeoterozoic collisinal events in the North China Craton. Precambrian Research.2010; 177: 266-276.
    [222]Liu DY, Nutman aP, Compston W, Wu JS, Shen QH. Remnants of≥3800 Ma crust in the Chinese part of the Sino-Korean craton. Geology.1992; 20:339-342.
    [223]Tung KA, Yang HY, Liu DY, Zhang JX, Tseng CY, Wan YS. SHRIMP U-Pb geochronology of the detrital zircons from the Longshoushan Group and its tectonic significance. Chinese Science Bulletin.2007; 52(10):1414-1426.
    [224]Gehrels GE, Yin A, Xiao X-F. Magmatic history of the northeastern Tibetan Plateau. Journal of Geophysical Research.2003; 108(B9):2423-2436.
    [225]王洪亮,何世平,陈隽璐,徐学义,孙勇,第五春荣.甘肃马衔山花岗岩杂岩体LA-ICPMS锆石U-Pb测年及其构造意义.地质学报.2007;81(1):72-78.
    [226]Kroner A, Compston W, Zhang G, Guo A, Todt W. Age and tectonic setting of Late Archean greenstone-gneiss terain in Henan Province, China, as revealed by single-grain zicon datin. Geology.1988; 16:211-215.
    [227]Wan Y, Zhang Q, Song T. SHRIMP ages of detrital zircons from the Changcheng System in the Ming Tembs area, Beijing:constraints on the protolith nature and maximum depositional age of the Mesoproterozoic cover of the North China Craton. Chinese Science Bulletin.2003; 48(22): 2500-2506.
    [228]Darby BJ, Gehrels G. Detrital zircon reference fot the North China Block. Journal of Asian Earth Science 2006; 26:637-648.
    [229]Li Q, Liu S, Wang Z, Chu Z, Song B, Wang Y. Contrasting provenance of Late Archean metasedimentary rocks from the Wutai Complex, North China Craton:detrital zircon U-Pb, whole-rock Sm-Nd isotopic, and geochemical data. International Journal of Earth Sciences.2008; 97:443-458.
    [230]张建新,徐志琴,陈文,徐惠芬.北祁连中段俯冲—增生杂岩/火山弧的时代探讨.岩石矿物杂志.1997;16(2):112-129.
    [231]夏祖春,夏林圻,徐学义.北祁连山元古宙末—寒武纪主动大陆裂谷火山作用.地球学报.1996;17(3):282-291.
    [232]张旗,Yu C,周德进.北祁连大岔大坂蛇绿岩的地球化学特征及其成因.中国科学(D辑)1998;28(1):30-34.
    [233]Zhang JX, Meng FC, Wen YS. A cold Early Palaeozoic subduction zone in the North Qilian Mountains, NW China:petrological and U-Pb geochronological constraints. Journal of Metamorphic Geology.2007; 25:285-304.
    [234]Song S, Zhang L, Niu Y, Li S, Song B, Liu D. Evolution from oceanic subduction to continental collision:a Case study from the Northern Tibetan Plateau based on geochemical and geochronological data. Journal of Petrology.2006; 47(3):435-455.
    [235]Liu Y-J, Neubauer F, Genser J, Takasu A, Ge X-H, Handler R.40Ar/39Ar ages of blueschist facies pelitic schists from Qingshuigou in the Northern Qilian Mountains, Western China. Island Arc.2006; 15:187-198.
    [236]Critelli S, Ingersoll RV. Sandstone petrology and provenance of the Siwalik Group (Northwestern Pakistan and Western-Southeastern Nepal). Journal of Sedimentary Research. 1994; A64(4):815-823.
    [237]Zhang B, Luo T, Gao S, Ouyang J, Han Y, Gao C. Geochemical constraints on the evolution of North China and Yangtze blocks. Journal of Southeast Asian Earth Sciences.1994; 9(4): 405-416.
    [238]Arai S, Okada H. Petrology of serpentine sandstone as a key to tectonic development of serpentine belts. Tectonophysics.1991; 195:65-81
    [239]von-Eynatten H. Petrography and chemistry of sandstones from the Swiss Molasse Basin:an archive of the Oligocene to Miocene evolution of the Central Alps. Sedimentology.2003; 50: 703-724.
    [240]Garver JI, Scott TJ. Trace elemens in shale as indicators of crustal provenance and terrane accretion in the southern Canadian Codillera. GSA Bulletin.1995; 107(4):440-453.
    [241]Garver JI, Royce PR, Smick TA. Chronmium and nickel in shale of the taconic foreland:a case study for the provenance of fine-grined sediments with an ultramafic source. Journal of Sedimentary Research.1996; 66(1):100-106.
    [242]Totten MW, Hanan MA, Weaver BL. Beyond whole-rock geochemistry of shales:the importance of assessing mineralogic controls for revealing tectonic discriminants of muliple sediment sources for the Ouachita Mountain flysch deposits. GSA Bulletin.2000; 112(7): 1012-1022.
    [243]Ganssloser M. Detrital chromian spinel in Rhenohercynian greywackes and sandstones (Givetain-Visean, Variscides, Germany) as indicators of ultramafic source rocks. Geological Magazine.1999; 136:437-451.
    [244]Hisada K-I, Arai S, Lee YI. Tecotonic implication of Lower Cretaceous chromian spinel-bearing sandstones in Japan and Korea. The Island Arc.1999; 8:336-348.
    [245]Lee YI. Geotectonic significance of detrital chronmian spinel:a review. Geosciences Journal. 1999; 3(1):23-29.
    [246]Stevens RK. Cambro-Ordovician flysch sedimentation and tectonics in west Newfoundland and their possible bearing on a Pro to-Atlantic Ocean. In:Lajoie J, editor. Flysch sedimentology in North America:Geological Assocication of Canada speical paper; 1970, p.165-177.
    [247]Pober E, Faupl P. The chemistry of detrital chromian spinel and its implications for the geodynamic evolution of the Eastern Alps. Geologische Rundschan.1988; 77(3):641-670.
    [248]Arai S. Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry. Mineralogical Magazine.1992; 56:176-184.
    [249]陈雨,周德进,王二七,李秀云.北祁连肃南县大岔大坂蛇绿岩中玻安岩系岩石的发现及其地球化学特征.岩石学报.1995;11(增刊):147-153.
    [250]左国朝,刘寄陈.北祁连早古生代大地构造演化.地质科学.1987;1:14-24.
    [251]Xiao WJ, Windley BF, Yong Y, Yan Z, Yuan C, Liu CZ, et al. Early Paleozoic to Devonian multiple-accretionary model for the Qilian Shan, NW China. Journal of Asian Earth Sciences. 2009; 35:323-333.
    [252]夏林圻,夏祖春,徐学义.北祁连早古生代洋脊—洋岛和弧后盆地火山作用.地质学报.1998;72(4):301-312.
    [253]许志琴,徐慧芬,张建新,李海兵,朱志直,曲景川,et al北祁连走廊南山加里东俯冲杂岩增生及其动力学.地质学报.1994;68(1):1-15.
    [254]夏林圻,夏祖春,徐学义.北祁连山奥陶纪弧后盆地火山岩浆成因.中国地质.2003;30(1):48-60.
    [255]Xu Y, Du Y, Cawood PA, Yang J. Provenance record of a foreland basin:detrital zirocn U-Pb ages from Devonian strata in the North Qilian Orogenic Blet, China. Tectonophysics.2010; 495: 337-347.
    [256]Najman Y, Garzanti E. Reconstructing early Himalayan tectonic evolution and paleogeography from Tertiary foreland basin sedimentary rocks, northern India. Geological Society of America, Bulletin.2000; 112:435-449.
    [257]Yan Z, Xiao W, Wang Z, Li J. Integrated analyses constraining the provenance of sandstones, mudstones, and conglomerates, a case study:the Laojunshan conglomerate, Qilian orogen, northwest China. Canadian Journal of Earth Sciences.2007; 44(7):961-986.
    [258]Yan Z, Xiao W, Windley BF, Wang ZQ, Li J. Silurian clastic sediments in the North QIlian Shan, NW China:chemical and isotopic constraints on their forearc provenance with implications for the Paleozoic evolution of the Tibetan Plateau. Sedimentary Geology.2010; 231(3-4):98-114.
    [259]Cawood PA. Characterisation of intra-oceanic magmatic arc source terranes by provenance studies of detrital sediments. New Zealand Journal of Geology and Geophysics.1991; 34(3): 347-358.
    [260]王慧初,陆松年,莫宣学,李怀坤,辛后田.柴达木盆地北缘早古生代碰撞造山系统.地质通报.2005;24(7):603-612.
    [261]Zhang J, Yang J, Mattinson CG, Xu Z, Meng F, Shi R. Two contrasting eclogite cooling histories, North Qaidam HP/UHP terrane, western China:petrological and isotopic constraints. LIthos.2005; 84:51-76.
    [262]张德全,孙桂英,徐洪林.祁连山金佛寺岩体的岩石学和同位素年代学研究.地球学报.1995;4:375-385.
    [263]钱青,王岳明,李惠民,贾秀琴,韩松,张旗.甘肃老虎山闪长岩的地球化学特征及其成因.岩石学报.1998;14(4):520-528.
    [264]Song S, Zhang L, Niu Y, Su L, Jian P, Liu D. Geochronology of diamond-bearing zircons from garnet peridotiete in the Nroth Qaidam UHP belt, Nroth Tibetau Plateau:a record of complex histories from oceanic lithosphere subduction to continental collision. Earth and Planetary Science Letters.2005; 234:99-118.
    [265]Zhang J, Mattinson CG, Meng F, Wan Y, Tung K. Polyphase tectonothermal history recorded in granulitized gneisses from the north Qaidam HP/UHP metamorphic terrane, western China: evidence from zircon U-Pb geochronology. GSA Bulletin.2008; 120(5/6):732-749.
    [266]He S, Wang H, Chen J, Xu X, Zhang H, Ren G, et al. LA-ICP-MS U-Pb zircon geochronology of basic dikes within Maxianshan Rock Group in the Cetral Qilian Orogenic Belt and its tectonic implication. Journal of China University of Geosciences.2007; 18(1):19-29.
    [267]Wang Y, Zhou L, Zhao L, Ji M, Gao H. Palaeozoic uplands and unconformity in the North Block:constraints from zircon LA-ICP-MS dating and geochemical analysis of Bauxite. Terra Nova.2010; 22:264-273.
    [268]Wang H, Mo X. An outline of the tectonic evolution of China. Episodes.1995; 18:6-16.
    [269]Jian P, Liu D, Kroner A, Zhang Q, Wang Y, Sun X, et al. Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China (Ⅱ):insights from ages of ophiolites, arc/ back-arc assemblages and within-plate igneous rocks and generation of the Emeishan CFB province. Lithos.2009; 113:767-784.
    [270]简平,刘敦一.金沙江中段共波加里东期辉长岩锆石U-Pb年龄测定.地质论评.2002;48:17-21.
    [271]钟大赉,吴根耀,季建清,张旗,丁林.滇东南发现蛇绿岩.科学通报.1998;43(13):1365-1370.
    [272]覃小锋,王宗起,张英利,潘罗忠,胡贵昂,周府生.桂西南早中生代酸性火山岩年代学和地球化学:对钦-杭结合带西南段构造演化的约束.岩石学报.2011;27(3):794-808.
    [273]董云鹏,朱炳泉.滇东南建水岛弧型枕状熔岩及其对华南古特提斯的制约.科学通报.1999;44(21):2323-2328.
    [274]吴根耀,吴浩若,钟大赉,邝国敦,季建清.滇桂交界处古特提斯的洋岛和岛弧火山岩.现代地质.2000;14(4):393-400.
    [275]吴根耀,季建清,何顺东,钟大赉.广西凭祥地区早二叠世的岩浆弧及其构造意义.矿物岩石.2002;22(3):61-65.
    [276]Hoa TT, Anh TT, Phuong NT, Poliakov GV, Izokn AE, Lan CY, et al. Geochemical significances of Permo-Triassic magmatism of NE Vietnam. International Symposium on Earthquake and Active Tectonics, Taipei 2006.
    [277]Chung SL, Jahn BM. Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian-Triassic boundary. Geology.1995; 23(10):889-892.
    [278]Xu YG, Chung SL, Jahn BM, Wu GY. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China. Lithos.2001; 58: 145-168.
    [279]Zhong H, Yao Y, Prevec SA, Wilson AH, Viljoen MJ, Viljoen RP, et al. Trace-element and Sr-Nd isotopic geochemistry of the PGE-bearing Xinjie layered intrustion in SW China. Chemical Geology.2004; 203:237-252.
    [280]Zhou M-F, Malpas J, Song X-Y, Robinson PT, Sun M, Kennedy AK, et al. A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction. Earth and Planetary Science Letters.2002; 196:113-122.
    [281]Zhou M-F, Robinson PT, Lesher CM, Keays RR, Zhang C-J, Malpas J. Geochemistry, petrogenesis and metallogenesis of the Panzhihua gabbroic layered intrusion and associated Fe-Ti-V oxide deposits, Sichuan Province, SW China. Journal of Petrology.2005; 46(11): 2253-2280.
    [282]Xiao L, Xu Y-G, Mei HJ, Zheng Y-F, He B, Pirajno F. Distinct mantle sources of low-Ti and high-Ti basalts from the western Emeishan large igneous province, SW China:implications for plume-lithosphere interaction. Earth and Planetary Science Letters.2004; 228:525-546.
    [283]Ali JR, Thompson GM, Song X, Wang Y. Emeishan Basalts (SW China) and the 'end-Guadalupian' Crisis:magnetobiostratigraphic constraints. Journal of the Geological Society, London.2002; 159:21-29.
    [284]Xu Y-G, He B, Chung S-L, Menzies MA, Frey FA. Geologic, geochemical, and geophysical consequences of plume involvement in the Emeishan flood-basalt province. Geology.2004; 32(10):917-920.
    [285]Zhong H, Campbell IH, Zhu WG, Allen CM, Hu RZ, Xie LW, et al. Timing and source constraints on the relationship between mafic and felsic intrusions in the Emeishan large igneous province. Geochimica et Cosmochimica Acta.2011; 75:1374-1395.
    [286]Zhou MF, Arndt NT, Malpas J, Wang CY, Kennedy AK. Two magma series and associated ore deposit types in the Permian Emeishan large igneous province, SW China. Lithos.2008; 103: 352-368.
    [287]Zhou M-F, Zhao J-H, Qi L, Su W-C, Hu R-Z. Zircon U-pb geochronology and elemental and Sr-Nd isotope geochemsitry of Permian mafic rocks in the Funing area, SW China. Contribution to Mineralogy and Petrology.2006; 151:1-19.
    [288]Zhong H, Zhu W-G, Hu R-Z, Xie L-W, He D-F, Liu F, et al. Zircon U-Pb age and Sr-Nd-Hf isotope geochemistry of the Panzhihua A-type syenitic intrusion in the Emeishan large igneous province, southwest China and implications for growth of juvenile crust. Lithos.2009; 110: 109-128.
    [289]Zhong H, Zhu W-G, Chu Z-Y, He D-F, Song X-Y. Shrimp U-Pb zircon geochronology, geochemistry, and Nd-Sr isotopic study of contrasting granites in the Emeishan large igneous province, SW China. Chemical Geology.2007; 236:112-133.
    [290]Wang CY, Zhou M-F, Keays RR. Geochemical constraints on the origin of the Permian Baimazhai mafic-ultramafic intrusion, SW China. Contribution to Mineralogy and Petrology. 2006; 152:309-321.
    [291]Tao Y, Ma Y-S, Miao L-C, Zhu F-L. SHRIMP U-Pb zircon age of the Jinbaoshan ultramfic intrusion, Yunan Province, SW China. Chinese Science Bulletin.2009; 54(1):168-172.
    [292]Shellnutt JG, Zhou M-F, Zellmer GF. The role of Fe-Ti oxide crystallization in the formation of A-type ganitoids with implications for the Daly gap:an example from the Permian igneous complex SW China. Chemical Geology.2009; 259:204-217.
    [293]Shellnutt JG, Zhou M-F. Permian, rifting related fayalite syenite in the Panxi region, SW China. Lithos.2008; 101:54-73.
    [294]Shellnutt JG, Zhou M-F. Permian peralkaline, peraluminous and metaluminous A-type granites in the Panxi district, SW China: their relationship to the Emeishan mantle plume. Chemical Geology. 2007; 243: 286-316.
    [295]Shellnutt JG, Zhou M-F, Yan D-P, Wang Y-B. Longevity of the Permian Emeishan mantle plume (SW China): 1 Ma, 8 Ma or 18 Ma? Geological Magazine. 2008; 145(3): 373-388.
    [296]He B, Xu Y-G Huang X-L, Luo Z-Y, Shi Y-R, Yang Q-J, et al. Age and duration of the Emeishan flood volcanism, SW China: geochemistry and SHRIMP zircon U-Pb dating of silicic ignimbrites, post-volcanic Xuanwei Formation and clay tuff at the Chaotian section. Earth and Planetary Science Letters. 2007; 255: 306-323.
    [297]Guo F, Fan W-M, Wang Y-J, Li C-W. When did the Emeishan mantle plume activity start? Geochronological and geochemical evidence from ultramafic-mafic dikes in Southwestern China. International Geology Review. 2004; 46: 226-234.
    [298]Xu Y-G, Luo Z-Y, Huang X-L, He B, Xiao L, Xie L-W, et al. Zircon U-Pb and Hf isotope constraints on crustal melting associated with the Emeishan mantle plume. Geochimica et Cosmochimica Acta. 2008; 72: 3084-3104.
    [299]Lo CH, Chung SL, Lee TY, Wu G. Age of the Emeishan flood magmatism and relations to Permian-Triassic boundary events. Earth and Planetary Science Letters. 2002; 198: 449-458.
    [300]Boven A, Pasteels P, Punzalan LE, Liu J, Luo X, Zhang W, et al. 40Ar/39Ar geochronological constraints on the age and evolution of the Permo-Triassic Emeishan Volcanic Province, Southwest China. Journal of Asian Earth Sciences. 2002; 20(2): 157-175.
    [301]Wu GY, Zhong DL, Zhang Q, Ji JQ. Babu-Phu Ngu ophiolites: a geological record of paleotethyan ocean bordering China and Vietnam. Gondwana Research. 1999; 2(4): 554-557.
    [302]Wang X, Metcalfe I, Jian P, He L, Wang C. The Jinshanjiang-Ailaoshan Suture Zone, ChinaL tectostratigraphy, age and evolution. Journal of Asian Earth Sciences. 2000; 18: 675-690.
    [303]Jian P, Liu D, Kroner A, Zhang Q, Wang Y, Sun X, et al. Devonian to Pemian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China (Ⅰ ): geochemistry of ophiolites, arc/back-arc assemblages and within-plate igneous rocks. Lithos. 2009; 113: 748-766.
    [304]Jian P, Liu D, Sun X. SHRIMP dating of the Permo-Carboniferous Jinshajiang ophiolite, southwestern China: geochronological constraints for the evolution of Paleo-Tethys. Journal of Asian Earth Sciences. 2008; 32: 371-384.
    [305]冯庆来,刘本培.滇东南八布蛇绿混杂岩中的早二叠世放射虫化石.地球科学-中国地质大学学报.2002;27(1):1-3.
    [306]吴根耀,马力,钟大赉,吴浩若,季建清,邝国敦,et al.滇桂交界区印支期增生弧型造山带:兼论与造山作用耦合的盆地演化.石油实验地质.2001;23(2):8-18.
    [307]董云鹏,朱炳泉,常向阳,张国伟.滇东师宗-弥勒带北段基性火山岩地球化学及其对华南大陆构造格局的制约.岩石学报.2002;18(1):37-46.
    [308]吴浩若.晚古生代-三叠纪南盘江海的构造古地理问题.古地理学报.2003;5(1):63-76.
    [309]Guo F, Fan W, Wang Y, Li C. Upper Paleozoic basalts in the Southern Yangtze Block: geochemical and Sr-Nd isotopic evidence for asthenosphere-lithosphere interaction and opening of the Paleo-Tethyan Ocean. International Geology Review.2004; 46:332-346.
    [310]秦建华,吴应林,颜仰基,朱忠发.南盘江盆地海西—印支期沉积构造演化.地质学报.1996;70(2):99-107.
    [311]Fan W, Wang Y, Zhang A, Zhang F, Zhang Y. Permian arc-back-arc basin development along the Ailaoshan tectonic zone:geochemical, isotopic and geochronological evidence from the Mojiang volcanic rocks, Southwest China. Lithos.2010; 119:553-568.
    [312]高睿,肖龙,何琦,袁静,倪平泽,杜静霞.滇西维西-德钦一带花岗岩年代学、地球化学和岩石成因.地球科学—中国地质大学学报.2010;35(2):186-200.
    [313]简平,刘敦一,孙晓猛.滇西吉岔阿拉斯加型辉长岩SHRIMP测年:早二叠世俯冲事件的证据.地质学报.2004;78(2):166-170.
    [314]简平,汪啸风,贺龙请,王传尚.云南新平县双沟蛇绿岩U-Pb年代学初步研究.岩石学报.1998;14(2):207-211.
    [315]简平,汪啸风,贺龙请,王传尚.金沙江蛇绿岩中斜长岩和斜长花岗岩的U-Pb年龄及地质意义.岩石学报.1999;15(4):590-593.
    [316]李宝龙,季建清,付晓悦,龚俊峰,宋彪,庆建春, et al滇西点苍山—哀牢山变质岩系锆石SHRIMP定年及其地质意义.岩石学报.2008;24(10):2322-2330.
    [317]戚学祥,朱路华,李化启,胡兆初,李志群.青藏高原东缘哀牢山-金沙江构造带糜棱状花岗岩的LA-ICP-MS U-Pb定年及其构造意义.地质学报.2010;84(3):357-369.
    [318]张玉泉,夏斌,梁华英,刘红英,林清茶.云南太平糜棱岩化碱性花岗岩的锆石特征及其地质意义.高校地质学报.2004;10(3):378-384.
    [319]Charvet J, Shu L, Faure M, Choulet F, Wang B, Lu H, et al. Structural development of the Lower Paleozoic belt of South China:genesis of an intracontinental orogen. Journal of Asian Earth Sciences.2010; 39:309-330.
    [320]Chen C, Hsieh P, Lee C, Zhou H. Two eposodes of the Indosinian thermal event on the South China Block:constraints from LA-ICPMS U-Pb zircon and electron microprobe ages of the Darongshan S-type granitic suite. Gondwana Research.2011; 19:1008-1023.
    [321]Li L, Sun M, Wang Y, Xing G, Zhao G, Lin S, et al. U-Pb and Hf isotopic study of zircons from migmatised amphibolites in the Cathaysia block:implications fro the early Paleozoic peak tectonothermal event in Southeastern China. Gondwana Research.2011; 19:191-201.
    [322]Li ZX, Li XH, Wartho JA, Clark C, Li WX, Zhang CL, et al. Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny, southeastern South China:new age constraints and pressure-temperature conditions. Geological Society of America, Bulletin.2010; 122:772-793.
    [323]Liu R, Zhou H, Zhang L, Zhong Z, Zeng W, Xiang H, et al. Zircon U-Pb ages and Hf isotope compositions of the Mayun migmatite complex, NW Fujian Province, Southeast China: constraints on the timing and nature of a regional tectonothermal event associated with the Caledonian Orogeny. Lithos.2010; 119:163-180.
    [324]Wan YS, Liu D, Wilde SA, Cao JJ, Chen B, Dong CY, et al. Evolution of the Yunkai Terrane, South China:evidence from SHRIMP zircon U-Pb dating, geochemistry and Nd isotope. Journal of Asian Earth Sciences.2010; 37:140-153.
    [325]Wang Y, Fan W, Cawood PA, Ji S, Peng T, Chen X. Indosinian high-strain deformation for the Yunkaidashan tectonic belt, south China:kinematics and 40Ar/39Ar geochronological constraints. Tectonics.2007; 26:doi:10.1029/2007TC002099.
    [326]Wang Y, Fan W, Sun M, Liang X, Zhang Y, Peng T. Geochronological, geochemical and geothermal constraints on petrogenesis of the Indosinian peraluminous granites in the South China Block:a case study in the Hunan Province. Lithos.2007; 96:475-502.
    [327]Wang Y, Fan W, Zhao G, Ji S, Peng T. Zircon U-Pb geochronology of gneissic rocks in the Yunkai massif and its implications on the Caledonian event in the South China Block. Gondwana Research.2007; 12:404-416.
    [328]Xu XB, Zhang YQ, Shu LS, Jia D. La-ICP-MS U-Pb and 40Ar/39Ar geochronology of the sheared metamorphic rocks in the Wuyishan:constraints on the timing of Early Paleozoic and early Mesozoic tectonic-thermal events in SE China. Tectonophysics.2011; 501(501):71-86.
    [329]广西壮族自治区地质矿产局.广西壮族自治区区域地质志.北京:地质出版社;1985.
    [330]杜远生,黄宏伟,黄志强,徐亚军,杨江海,黄虎.右江盆地晚古生代—二叠纪盆地转换及其构造意义.地质科技情报.2009;28(6):10-15.
    [331]陈洪德,曾允孚.右江沉积盆地的性质及演化讨论.岩相古地理.1990;1:28-37.
    [332]曾允孚,刘文均,陈洪德,郑荣才,张锦泉,李孝全,et al华南右江复合盆地的沉积构造演化.地质学报.1995;69(2):113-124.
    [333]张锦泉,蒋廷操.右江三叠纪弧后盆地沉积特征及盆地演化.广西地质.1994;7(2):1-14.
    [334]章正军,丁俊,赵珉.南盘江地区三叠纪板块构造背景探讨.云南地质.1997;16(3):211-221.
    [335]杨超,陈清华,吕洪波,张洪涛,曲长胜.南盘江盆地中三叠统复理石的物源和沉积构造背景分析.中国石油大学学报(自然科学版).2008;32(6):22-27.
    [336]碳酸盐岩研究室.南盘江地区晚二叠世沉积相及火山碎屑成因.西南石油学院学报.1981;4:1-24.
    [337]侯方浩,黄继祥.南盘江断险区二、三叠系的火山碎屑浊积岩——一种独特的无海底扇浊流沉积模式.沉积学报.1984;2(4):19-32.
    [338]苟汉成.滇黔桂地区中、上三叠统浊积岩形成的构造背景及物源区的初步探讨.沉积学报.1985;3(4):95-107.
    [339]张继淹.右江三叠系复理石与印制再生地槽.中国区域地质.1988;1:29-36.
    [340]吴应林,牟传龙.南盘江盆地中三叠世浊流沉积模式初探.石油与天然气地质.1990;11(1):96-101.
    [341]吴江,李思田.广西中三叠统浊流流向及坡向.广西地质.1992;5(4):15-24.
    [342]贵州省地质矿产局.贵州省区域地质志.北京:地质出版社;1987.
    [343]牟传龙,吴应林,谭钦银.南盘江盆地中三叠统浊积岩及其物源和大地构造背景.成都地质学院学报.1990;17(4):90-96.
    [344]Winchester JA, Floyd PA. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology.1977; 20:325-343.
    [345]Song X-Y, Zhou M-F, Keays RR, Cao Z-M, Sun M, Qi L. Geochemistry of the Emeishan flood basalts at Yangliuping, Sichuan, SW China:implications for sulfide segregation. Contribution to Mineralogy and Petrology.2006; 152:53-74.
    [346]Qi L, Zhou MF. Platinum-group elemental and Sr-Nd-Os isotopic geochemistry of Permian Emeishan flood basalts in Guizhou Province, SW China. Chemical Geology.2008; 248:83-103.
    [347]Shellnutt JG, Jahn BM. Formation of the Late Permian Panzhihua plutonic-hypabyssal-volcanic igneous complex:implications for the genesis of Fe-Ti oxide deposits and A-type granites of SW China. Earth and Planetary Science Letters.2010; 289:509-519.
    [348]邵辉,徐义刚,何斌,黄小龙,罗震宇.峨眉山大火成岩省晚期酸性火山岩的岩石地球化学特征.矿物岩石地球化学通报.2007;26(4):350-358.
    [349]Corfu F, Hanchar JM, Hoskin PWO, Kinny P. Atlas of zricon textures. Reviews in Mineralogy and Geochemistry.2003; 53:469-500.
    [350]McDonough WF, Sun SS. The composition of the Earth. Chemical Geology.1995; 120: 223-253.
    [351]Rubatto D. Zircon trace element geochemistry:partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology.2002; 184:123-138.
    [352]Whitehouse MJ, Platt JP. Dating high-grade metamorphism-constraints from rare-earth elements in zircon and garnet. Contrib Mineral Petrol.2003; 145:61-74.
    [353]吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报.2004;49(16):1589-1604.
    [354]Schaltegger U, Fanning CM, Gunther D, Maurin JC, Schulmann K, Gebauer D. Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism:conventional and in-situ U-Pb isotope, cathodoluminescence and microchemical evidence. Contrib Mineral Petrol.1999; 134:186-201.
    [355]Wu Y-B, Zheng Y-F, Gao S, Jiao W-F, Liu Y-S. Zircon U-Pb age and trace element evidence for Paleoproterozic granulite-facies metamorphism and Archean crustal rocks in the Dabie Orgen. Lithos.2008; 101:308-322.
    [356]Wu YB, Hanchar JM, Gao S, Sylvester PJ, Tubrett M, Qiu HN, et al. Age and nature of eclogites in the Huwan shear zone, and the multi-stage evolution of the Qinling-Dabie-Sulu orogen, central China. Earth and Planetry Science Letters.2009; 277:345-354.
    [357]Hoskin PWO. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta.2005; 69(3):637-648.
    [358]Kirkland CL, Whitehouse MJ, Slagstad T. Fluid-assited zircon and monazite growth within a shear zone:a case study from Finnmark, Arctic Norway. Contrib Mineral Petrol.2009; 158: 637-657.
    [359]Pettke T, Audetat A, Schaltegger U, Heinrich CA. Magmatic-to-hydrothermal crystallization in the W-Sn mineralized Mole Granite (NSW, Australia) Part Ⅱ:evolving zircon and thorite trace element chemistry. Chemical Geology.2005; 220:191-213.
    [360]Kebede T, Horie K, Hidaka H, Terada K. Zircon 'microvein' in peralkaline grantic gneiss, western Ethiopia:origin, SHRIMP U-Pb geochronology and trace element investigations. Chemical Geology.2007; 242:76-102.
    [361]Pelleter E, Cheilletz A, Gasquet D, Mouttaqi A, Annich M, Hakour AE, et al. Hydrothermal zircons:a tool for ion microprobe U-Pb dating of gold mineralization (Tamlalt-Menhouhou gold deposit—Morocco). Chemical Geology.2007; 245:135-161.
    [362]Schwartz JJ, John BE, Cheadle MJ, Wooden JL, Mazdab F, Swapp S, et al. Dissolution-reprecipitation of igneous zircon in mid-ocean ridge gabbro, Atlantis Bank, Southwest Indian Ridge. Chemical Geology.2010; 274:68-81.
    [363]Belousova EA, Griffin WL, O'reilly SY. Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling:examples from Eastern Australian granitoids. Journal of Petrology.2006; 47(2):329-353.
    [364]Griffin WL, Wang X, Jackson SE, Pearson NJ, O'Reilly SY, Xu X, et al. Zircon chemistry and magma mixing, SE China:in-situ analysis of Hf isotopes, Tonghu and Pingtan igneous complexes. Lithos.2002; 61:237-269.
    [365]Rubatto D, Hermann J. Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks. Chemical Geology.2007; 241:38-61.
    [366]Clarborne LL, Miller CF, Walker BA, Wooden JL, Mazdab FK, Bea F. Tracing magmatic processes through Zr/Hf ratios in rocks and Hf and Ti in ratios:an example from the Spirit Mountain batholith, Nevada. Mineralogical Magazine.2006; 70(5):517-543.
    [367]Claiborne LL, Miller CF, Wooden JL. Trace element composition of igneous zircon:a thermal and compositional record of the accumulation and evolution of a large silicic batholith, Spirit Mountain, Nevada. Contrib Mineral Petrol.2010; 160:511-531.
    [368]Ferry JM, Watson EB. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Mineral Petrol.2007; 154:429-437.
    [369]Watson EB, Wark DA, Thomas JB. Crystallization thermometers for zircon and rutile. Contrib Mineral Petrol.2006; 151:413-433.
    [370]Claiborne LL, Miller CF, Flanagan DM, Clynne MA, Wooden JL. Zircon reveals protracted magma storage and recycling beneath Mount St. Helens. Geology.2010; 38(11):1011-1014.
    [371]Hoskin PWO, Kinny PD, Wyborn D, Chappell BW. Identifying accessory mineral saturation during differentiation in granitoid mamas:an integrated approach. Journal of Petrology.2000; 41(9):1365-1396.
    [372]Pearce JA, Peat DW. Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary.1995; 23:251-285.
    [373]Li H, Zhang H, Ling MX, Wang FY, Ding X, Zhou JB, et al. Geochemical and zircon U-Pb study of the Huangmeijian A-type granite:implications for geological evolution of the Lower Yangtze River belt. International Geology Review.2011; 53(5-6):499-525.
    [374]Schoene B, Latkoczy C, Schaltegger U, Gunther D. A new method integrating high-precision U-Pb geochronology with zircon trace element analysis (U-Pb TIMS-TEA). Geochimica et Cosmochimica Acta.2010; 74:7144-7159.
    [375]de-Barros CE, Nardi LVS, Dillenburg SR, Ayup R, Jarvis K, Baitelli R. Detrital minerals of mordern beach sediments in Southern Brazil:a provenance study based on the Chemistry of zircon. Journal of Coastal Research.2010; 26(1):80-93.
    [376]丛峰,林仕良,唐红峰,谢韬,李再会,邹光富,et al滇西梁河三叠纪花岗岩的锆石微量元素、U-Pb和Hf同位素组成.地质学报.2010;84(8):1155-1164.
    [377]Tani K, Dunkley DJ, Kimura J-I, Wysocanski RJ, Yamada K, Tatsumi Y. Syncollisional rapid granitic magma formation in an arc-arc collision zone:evidence from the Tanzawa plutonic complex, Japan. Geology.2010; 38(3):215-218.
    [378]Peytcheva I, Quadt Av, Neubauer F, Frank M, Nedialkov R, Heinrich C, et al. U-Pb dating, Hf-isotope characteristics and trace-REE-patterns of zircons from Medet porphry copper deposit, Bulgaria:implications for timing, duration and sources of ore-bearing magmatism. Miner Petrol. 2009; 96:19-41.
    [379]Wang Y, Zhang A, Fan W, Zhao G, Zhang G, Zhang Y, et al. Kwangsian crustal anatexis within the eastern South China Block:geochemical, zircon U-Pb geochronological and Hf isotopic fingerprints from the gneissoid granites of Wugong and Wuyi-Yunkai Domains. Lithos.2011; 127:239-260.
    [380]彭松柏,金振民,刘云华,付建明,何龙清,蔡明海,et al云开造山带强过铝深熔花岗岩地球化学、年代学及构造背景.地球科学2006;31(1):110-120.
    [381]XiaoleiWang, Zhou J, Griffin WL, Wang RC, Qiu JS, S.Y.O.'Reilly, et al. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen:dating the assembly of the Yantze and Cathaysia Block. Precambrian Research.2007; 159:117-131.
    [382]Zhou J, Wang X, Qiu J. Geochronology of Neoproterozoic mafic rocks and sandstones from northeastern Guizhou, South China:coeval arc magmatism and sedimentation. Precambrian Research.2009; 170:27-42.
    [383]Li XH, Li W, Li ZX, Lo CH, Wang J, Ye M, et al. Amalgamation between the Yantze and Cathaysia Blocks in South China:constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks. Precambrian Research.2009; 174: 117-128.
    [384]Li XH. U-Pb zircon ages of granites from the southern margin of the Yantze Block:timing of Neoproterozoic Jinning Orogeny in SE China and implications for Rodinia Assembly. Precambrian Research.1999; 97:43-57.
    [385]Li ZX, Li XH, Zhou H, Kinny PD. Grenvillian continental collision in south China:new SHRIMP U-Pb zircon results and implications for the configuration of Rodinia. Geology.2002; 30:163-166.
    [386]Li ZX, Wartho J-A, Occhipinti S, Zhang C, Li X, Wang J, et al. Early history of the eastern Sibao Orogen (South China) during the assembly of Rodinia:new mica 40Ar/39Ar dating and SHRIMP U-Pb detrital zircon provennace constraints. Precambrian Research.2007; 159:79-94.
    [387]Li W-X, Li X-H, Li Z-X. Neoproterozoic bimodal magmatism in the Cathaysia Block of South China and its tectonic significance. PrecambrIan Research.2005; 136:51-66.
    [388]Altenberger U, Schmid R, Oberhansli R. Composition and pre-metamorphic geodynamic setting of the ultrahigh-pressure metabasic rocks from Dabie Shan, E-China. International Journal of Earth Science.2008; 97:1301-1314.
    [389]Li XH, Li ZX, Ge W, Zhou H, Li W, Liu Y, et al. Neoproterozoic granitoids in South China: crustal melting above a mantle plume at ca.825 Ma? Precambrian Research.2003; 122:45-83.
    [390]Li XH, Li ZX, Zhou H, Liu Y, Kinny PD. U-Pb zircon geothronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of South China: implications for the initial rifting of Rodinia. Precambrian Research.2002; 113:135-154.
    [391]Li ZX, Li XH, Kinny PD, Wang J. The breakup of Rodinia:did it start with a mantle plume beneath South China? Earth and Planetary Science Letters.1999; 173:171-181.
    [392]Wang J, Li ZX. History of Neoproterozoic rift basins in South China:implications for Rodinia break-up. Precambrian Research.2003; 122:141-158.
    [393]Wang L, Griffin WL, Yu J, O'Reilly SY. Precambrian crustal evolution of the Yangtze Block tracked by detrital zircons from Neoproterozoic sedimentary rocks. Precambrian Research.2010; 177:131-144.
    [394]Yu J, Wang L, O'Reilly SY, Griffin WL, Zhang M, Li C, et al. A Paleoproterozoic orogeny recorded in a long-lived cratonic remnant (Wuyishan terrane), eastern Cathaysia Block, China. Precambrian Research.2009; 174:347-363.
    [395]Yu J, O'Reilly SY, Wang L, Griffin WL, Zhou M, Zhang M, et al. Components and episodic growth of Precambrian crust in the Cathaysia Block, South China:evidence from U-Pb ages and Hf isotopes of zircons in Neoproterozoic sediments. Precambrian Research.2010; 181:97-114.
    [396]Zheng J, Griffin WL, O'Reilly SY, Zhang M, Pearson N, Pan Y. Widespread Archean basement beneth the Yangtze craton. Geology.2006; 34(6):417-420.
    [397]Wang Y, Zhang F, Fan W, Zhang G, Chen S, Cawood PA, et al. Tectonic setting of he South China Block in the early Paleozoic:resolving intracontinental and ocean closure models from detrital zircon U-Pb geochronology. Tectonics.2010; 29:TC6020, doi:10.1029/2010TC002750.
    [398]Xiao L, He Q, Pirajno F, Ni P, Du J, Wei Q. Possible correlation between a mantle plume and the evolution of Paleo-Tethys Jinshajiang Ocean:evidence from a volcanic rifted margin in the Xiaruo-Tuoding area, Yunnan, SW China. Lithos.2008; 100:112-126.
    [399]Yin H, Huang S, Zhang K, Yang F, Ding M, Bi X, et al. Volcanism at the Permian-Triassic boundary in South China and its effects on Mass Extinction. Acta Geologica Sinica.1989; 2(4): 417-431.
    [400]Yin H, Huang S, Zhang K, Hansen HJ, Yang F, Ding M, et al. The effects of volcanism on the Permo-Triassic mass extinction in South China. In:Sweet WC, Yang Z, Dickins JM, Yin H, editors. Permo-Triassic events in the Eastern Tethys. Cambridge:Cambridge University Press; 1992, p.146-157.
    [401]Lai S, Qin J, Li Y, Li S, Santosh M. Permian high Ti/Y basalts from the eastern part of the Emeishan Large Igneous Province, southwestern China:petrogenesis and tectonic implications. Journal of Asian Earth Sciences.2011; doi:10.1016/j.jseaes.2011.07.010.
    [402]Fan W, Zhang C, Wang Y, Guo F, Peng T. Geochronology and geochemistry of Permian basalts in western Guangxi Province, Southwest China:evidence for plume-lithosphere interaction. Lithos.2008; 102:218-236.
    [403]邱振,王清晨.广西来宾中上二叠统硅质岩海底热液成因的地球化学证据.中国科学:地球科学.2011;41(5):725-737.
    [404]邱振,王清晨.湘黔桂地区中上二叠统硅质岩的地球化学特征及沉积背景.岩石学报.2010;26(12):3612-3628.
    [405]Wan Y, Song B, Liu D, Wilde SA, Wu J, Shi Y, et al. SHEIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton:evidence for a major Late Palaeoproterozoic tectonothermal event. Precambrian Research.2006; 149:249-271.
    [406]Wan Y, Wilde SA, Liu D, Yang C, Song B, Yin X. Further evidence for-1.85 Ga metamorphism in the Central Zone of the North China Craton:SHRIMP U-Pb dating of zircon from metamorphic rocks in the Lushan area, Henan Province. Gondwana Research.2006; 9:189-197.
    [407]Wilde SA, Cawood PA, Wang K, Nemchin AA. Granitoid evolution in the Late Archean Wutai Complex, North China Craton. Journal of Asian Earth Science.2005; 24:597-613.
    [408]Zhao G. Palaeoproterozoic assembly of the North China Craton. Geological Magazine.2001; 138(1):89-91.
    [409]Zhao G, KrOner A, Wilde SA, Sun M, Li S, Li X, et al. Lithotectonic elements and geological events in the Hengshan-Wutai-Fuping belt:A synthsis and implications for the evolution of the Trans-North China Orogen. Geological Magazine.2007; 144(5):753-75.
    [410]Zhai X, Day HW, Hacker BR, You Z. Paleozoic metamorphism in the Qinling orogen, Tongbai Mountains, central China. Geology.1998; 26:371-374.
    [411]Hacker BR, Ratschbacher L, Webb L, Ireland T, Walker D, Dong SW. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qing-Ling Orogen, China. Earth and Planetry Science Letters.1998; 161:215-320.
    [412]Meng Q-R, Zhang G-W. Tming of collision of the North and South China blocks:controversy and reconciliation. Geology.1999; 27(2):123-126.
    [413]Ratschbacher L, Hacker BR, Calvert A, Webb LE, Grimmer JC, McWilliams MO, et al. Tectonics of the Qinling (Central China):tectonostratigraphy, geochronology, and deformation history. Tectonophysics.2003; 366:1-53.
    [414]Lu S, Yang C, Li H, Li H. A group of rifting events in the terminal Paleoproterozoic in the North China Craton. Gondwana Research.2002; 5(1):123-131.
    [415]Xia X, Sun M, Zhao G, Luo Y. LA-ICPMS U-Pb geochronology of detrital zircons from the Jining Complex, North China Craton and its tectonic signigicance. Precambrian Research.2006; 144:199-212.
    [416]Wang Y, Zhao G, Fan W, Peng T, Sun L, Xia X. LA-ICP-MS U-Pb zircon geochronology and geochemistry of Paleoproterozoic mafic dykes from western Shandong Province:implications for back-arc basin magmaticm in the Eastern Block, North China Craton. Precambrian Research. 2007; 154:107-124.
    [417]Guo JH, Sun M, Chen FK, Zhai MG. Sm-Nd and SHRIMP U-Pb zircon geochronology of high-pressure granulite in the Sanggan zrea, North China Craton:timing of Paleoproterozoic continental collision. Journal of Asian Earth Science.2005; 24:629-642.
    [418]Zhang S, Liu S, Zhao Y, Yang J, Song B, Liu X. The 1.75-1.68 Ga anorthosite-mangerite-alkali granitoid-rapakivi granite suite from the northern North China Craton:magmatism related to a Paleoproterozoic orogen. Precambrian Research.2007; 155:287-312.
    [419]Liu YC, Li SG, Gu XF, Hou ZH. Zircon SHRIMP U-Pb dating for olivine gabbro at Wangmuguan in the Beihuaiyang zone and its geological significance. Chinese Science Bulletin. 2006; 51(20):2500-2506.
    [420]高山,Qiu Y,凌文黎,McNaughton NJ.张本仁,张国伟,et al大别山英山和熊店榴辉岩单颗粒锆石SHRIMP U-Pb年代学研究.地球科学-中国地质大学学报.2002;27(5):558-64.
    [421]简平,刘敦一,杨巍然,Williams IS大别山西部河南罗山熊店加里东期榴辉岩锆石特征及SHRIMP分析结果.74.2000:3:259-264.
    [422]Jiang LL, Siebe W, Chen FK, Liu YC, Chu DR. U-Pb zircon ages for the Luzhengguan Complex in northern part of the eastern Dabie orogen. Science in China (Series D).2005; 48(9): 1357-1367.
    [423]Li X-P, Zheng Y-F, Wu Y-B, Chen F, Gong B, Li Y-L. Low-T eclogite in the Dabie terrane of China:petrological and isotopic constraints on fluid activity and radiometric dating. Contrib Mineral Petrol.2004; 148:443-470.
    [424]Liu DY, Jian P, Krnoer A, Xu ST. Dating of prograde metamorphic events deciphered from episodic zircon growth in rocks of the Dabie-Sulu UHP complex, China. Earth and Planetry Science Letters.2006; 250:650-666.
    [425]Liu XC, Jahn B-m, Liu D, Dong S, Li S. SHRIMP U-Pb zricon dating of a metagabbro and eclogites from western Dabieshan (Hongan Block), China, and its tectonic implications. Tectonophysics.2004; 394:171-192.
    [426]Ma CQ, Ming HL, Yang KG. An Ordovician magmatic arc at the northern foot of Dabie mountains:evidence from geochronology and geochemistry of intrusice rocks. Acta Petrologica Sinica.2004; 20(3):393-402 (in Chinese with English abstract).
    [427]Ma CQ, She ZB, Xu P, Wang LY. Silurian A-type granitoids in the southern margin of the Tongbai-Dabieshan:evidence from SHRIMP zircon geochronology and geochemistry. Science in China (Series D).2005; 48(8):1134-1145.
    [428]Rowley DB, Xue F, Tucker RD, Peng ZX, Baker J, Davis A. Ages of ultrahigh pressure metamorphism and protolith orthogneisses from the eastern Dabie Shan:U/Pb zircon geochronology. Earth and Planetry Science Letters.1997; 151:191-203.
    [429]Sun WD, Williams IS, Li SG. Carboniferous and Triassic eclogites in the western Dabie Mountains, east-central China:evidence for protracted convergence of the North and South China Blocks. Journal of Metamorphic Geology.2002; 20:873-886
    [430]Wu Y-B, Gao S, Zhang H-F, Yang S-H, Jiao W-F, Liu Y-S, et al. Timing of UHP metamorphism in the Hong'an area, western Dabie Mountains, China:evidence from zircon U-Pb age, trace element and Hf isotope compsition. Contrib Mineral Petrol.2008; 155:123-133.
    [431]Yang WR, Jian P. Geochronology study of Caledonian granulite and high-pressure gneiss in the Dabie Mountains. Acta Geologica Sinica.1998; 72(3):264-270.
    [432]Zhang JY, Ma CQ, She ZB, Zhang XG, Zhou HS. The Early Paleozoic Tiefosi syn-collisional granite in the northern Dabie Orogen:geochronological and geochemical constraints. Science in China (Series D).2007; 50(6):847-856.
    [433]Zheng YF, Gong B, Zhao ZF, Fu B, Li YL. Two types of gneisses associated with eclogite at Shuanghe in the Dabie terrane:carbon isotope, zircon U-Pb dating and oxygen isotope. Lithos. 2003; 70:321-343.
    [434]Zheng YF, Wu YB, Chen FK, Gong B, Li L, Zhao ZF. Zircon U-Pb and xygen isotpe evidence for a large-scale 18O depletion event in igneous rocks during the Neoproterozoic Geochimica et Cosmochimica Acta.2004; 68(20):4145-4165.
    [435]Zheng YF, Zhao ZF, Wu YB, Zhang SB, Liu XM, Wu FY. Zircon U-Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure ecogite and gneiss in the Dabie Orogen. Chemical Geology.2006; 231:135-158.
    [436]吴元保,郑永飞,龚冰,唐俊,赵子福,查向平.北淮阳庐镇关岩浆岩锆石U-Pb年龄和氧同位素组成.岩石学报.2004;20(5):1007-1024.
    [437]彭敏,吴元保,汪晶,焦文放,刘小驰,杨赛红.扬子崆岭高级变质地体古元古代基性岩脉的发现及其意义.科学通报.2009;54(5):641-647.
    [438]Qiu Y, Gao S, McNaughton NJ, Groves DI, Ling W. First evidence of>3.2 Ga continental crust in the Yangtze craton of south China and its implications for Archean crustal evolution and Phanerozoic tectonics. Geology.2000; 28:11-14.
    [439]Wu Y, Gao S, Gong HJ, Xiang H, Jiao WF, Yang S, et al. Zircon U-pb age, trace element and Hf isotope composition of Kongling terrane in the Yangtze Craton:refining the timing of Paleoproterozoic high-grade metamorphism. Journal of Metamorphic Geology.2009; 27: 461-477.
    [440]熊庆,郑建平,余淳梅,苏玉平,汤华云,张志海.宜昌圈椅墒A型花岗岩锆石U-Pb年龄 和Hf同位素与扬子大陆古元古代克拉通化作用.科学通报.2008;53(22):2782-2792.
    [441]Zhang S, Zheng Y, Zhao Z, Wu Y, Yuan H, Wu F. Neoproterozoic anatexis of Archean lithosphere:geochemical evidence from felsic to mafic intrusions at Xiaofeng in the Yangtze Gorge, South China. Precambrian Research.2008; 163:210-238.
    [442]Greentree MR, Li Z-X, Li X-H, Wu H. Late Mesoproterozoic to earliest Neoproterozoic basin record of the Sibao orogenesis in western South China and relationship to the assembly of Rodinia. Precambrian Research.2006; 151:79-100.
    [443]Greentree MR, Li Z. The oldest know rocks in south-western China:SHRIMP U-Pb magmatic crystallisation age and detrital provenance analysis of the Paleoproterozoic Dahongshan Group. Journal of Asian Earth Sciences.2008; 33:289-302.
    [444]Huang X-L, Xue Y-G, Li X-H, Li W-X, Lan J-B, Zhang H-H, et al. Petrogenesis and tectonic implications of Neoproterozoic, highly fractionated A-type granites from Mianning, South China. Precambrian Research.2008; 165:190-204.
    [445]Li W-X, Li X-H, Li Z-X, Lou F-S. Obduction-type granites within the NE Jiangxi ophiolite: implications for the final amalgamation between the Yangtze and Cathaysia Blocks. Gondwana Research.2008; 13:288-301.
    [446]Ling HF, Shen WZ, Wang RC, Xu SJ. Geochemical characteristics and genesis of Neoproterozoic granitoids in the northwestern margin of the Yangtze block. Phys Chem Earth(A). 2001; 26:805-819.
    [447]Ling W, Gao S, Zhang B, Li H, Liu Y, Cheng J. Neoproterozoic tectonic evolution of the northwestern Yangtze craton, South China:implications for amalgamation and break-up of the Rodinia Supercontinent. Precambrian Research.2003; 122:111-140.
    [448]Wang X, Zhao G, Zhou J, Liu Y, Hu J. Geochronology and Hf isotopes of zircon from volcanic rocks of the Shuangqiaoshan Group, South China:implications for the Neoproterozoic tectonic evolution of the eastern Jiangnan orogen. Gondwana Research.2008; 14:355-367.
    [449]Xiao L, Zhang H, Ni P, Xiang H, Liu X. LA-ICP-MS U-Pb zircon geochronology of early Neoproterozoic mafic-intermediat intrusions from NW margin of the Yangtze Block, South China:implication for tectonic evolution. Precambrian Research.2007; 154:221-235.
    [450]Ye M, Li X, Li W, Liu Y, Li Z. SHRIMP zircon U-Pb geochronological and whole-rock geochemical evidence for an early Neoproterozoic Sibao magmatic arc along the southeastern margin of the Yangtze Block. Gondwana Research.2007; 12:144-156.
    [451]Zheng Y-F, Wu R-X, Wu Y-B, Zhang S-B, Yuan H, Wu F-Y. Rift melting of juvenile arc-derived crust:geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen, South China. Precambrian Research.2008; 163:351-383.
    [452]Zhou C, Tucker R, Xiao S, Peng Z, Yuan X, Chen Z. New constraints on the ages of Neoproterozoic glaciations in south China. Geology.2004; 32:437-440.
    [453]Zhou J, Li X, Ge W, Li Z. Age and origin of middle Neoproterozoic mafic magmatism in southern Yangtze Block and relevance to the break-up of Rodinia. Gondwana Research.2007; 12: 184-197.
    [454]Zhou M, Yan D, Kennedy AK, Li Y, Ding J. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China. Earth and Planetary Science Letters.2002; 196:51-67.
    [455]Zhou M, Ma Y, Yan D, Xia X, Zhao J, Sun M. The Yanbian Terrane (Southern Sichuan Province, SW China):a Neoproterozoic arc assemblage in the western margin of the Yangtze Block. Precambrian Research.2006; 144:19-38.
    [456]Wang X, Zhou J, Griffin WL, Wang RC, Qiu JS, S.Y.O.'Reilly, et al. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen:dating the assembly of the Yantze and Cathay sia Block. Precambrian Research.2007; 159:117-131.
    [457]Li X-h. Timing of the Cathaysia Block formation:constraints from SHRIMP U-Pb zircon geochronology. Episodes.1997; 20(3):188-192.
    [458]刘锐,周汉文,张利,钟增球,曾雯,向华,et al华夏地块古元古代陆壳再造:锆石微量元素与U-Pb和Lu-Hf同位素证据.科学通报.2009;54(7):906-917.
    [459]Wan Y, Liu D, Xu M, Zhuang J, Song B, Shi Y, et al. SHRIMP U-Pb zircon geochronology and geochemistry of metavolcanic and metasedimentary rocks in Northwestern Fujian, Cathaysia block, China:tectonic implications and the need to redifine lithostratigraphic units. Gondwana Research.2007; 12:166-183.
    [460]向华,张利,周汉文,曾雯,刘锐,靳松.浙江南变质基底基性-超基性变质岩锆石U-Pb年龄、Hf同位素研究:华夏地块变质基底对华南印支期造山的响应.中国科学D辑:地球科学.2008;38(4):401-413.
    [461]Xu X, O'Reilly SU, Griffin WL, Wang X, Pearson NL, He Z. The crust of Cathaysia:age, assembly and reworking of two terranes. Precambrian Research.2007; 158:51-78.
    [462]Yue Y, Graham SA, Ritts B, Wooden JL. Detrital zircon procenance evidence for large-scale extrusion along the Altyn Tagh fault. Tectonophysics.2005; 406:165-178.
    [463]Yu J, Wang L, O'Reilly SY, Shu LS, Sun T. Paleoproterozoic basement beneath the sothern Jiangxi Province:evidence from U-Pb ages and Lu-Hf isotopes in zircons from the Doushui lamprophyre. Chinese Science Bulletin.2009; 54(9):1555-1563.
    [464]曾雯,张利,周汉文,钟增球,向华,刘锐,et al华夏地块古元古代基底的加里东期再造:锆石U-Pb年龄、Hf同位素和微量元素制约.科学通报.2008;53(3):335-344.
    [465]Charvet J, Shu L, Shi Y, Guo L, Faure M. The building of south China:collision of Yangzi and Cathaysia blocks, probelms and tentative answers. Journal of Southeast Asian Earth Sciences. 1996; 13(3-5):223-235.
    [466]Zhao G, Cawood PA. Tectonothermal evolution of the Mayun assemblage in the Cathaysia Block:implications for Neoproterozoic collision-related assembly of the South China Craton. American Journal of Science.1999; 299:309-339.
    [467]凌文黎,高山,张本仁,周炼,徐启东.扬子陆核古元古代晚期构造热事件与扬子克拉通化.科学通报.2000;45(21):2343-2348.
    [468]Zhang S, Zheng Y, Wu Y, Zhao Z, Gao S, Wu F. Zircon isotope evidence for 3.5Ga continental crust in the Yangtze craton of China. Precambrian Research.2006; 146:16-34.
    [469]Zhang S, Zheng Y, Wu Y, Zhao Z, Gao S, Wu F. Zircon U-Pb age and Hf-O isotope evidence for Paleoproterozoic metamorphic event in South China. Precambrian Research.2006; 151:265-88.
    [470]Chen JF, Yan J, Xie Z, Xing F. Nd and Sr isotopic compositons of igneous rocks from the Lower Yangtze Region in Eastern China:constraints on sources. Phys Chem Earth(A).2001; 26(9-10):719-731.
    [471]Huang J, Zheng Y, Zhao Z, Wu Y, Zhou J, Liu X. Melting of subducted continent:element and isotopic evidence for a genetic relationship between Neoproterozoic and Mesozoic granitoids in the Sulu orogen. Chemical Geology.2006; 229:227-256.
    [472]Sun W, Zhou M, Gao J, Yang Y, Zhao X, Zhao J. Detrital zircon U-Pb geochronological and Lu-Hf isotopic constraints on the Precambrian magmatic and crustal evolution of the western Yangtze Block, SW China. Precambrian Research.2009; 172:99-126.
    [473]Wu Y, Zheng Y, Tang J, Gong B, Zhao Z, Liu X. Zircon U-Pb dating of water-rock interaction during Neoproterozoic rift magmatism in South China. Chemical Geology.2007; 246:65-86.
    [474]Xue HM, Dong SW, Jian P. Zircon U-Pb SHRIMP ages of weakly to unmetamorphosed granitoids of the Yantze basement outcrop in Dabieshan, central China. Journal of Asian Earth Sciences.2006; 27:779-787.
    [475]Sun W, Zhou M, Yan D, Li J, Ma Y. Provenance and tectonic setting of the Neoproterozoic Yanbian Group, western Yangtze Block (SW China). Precambrian Research.2008; 167: 213-236.
    [476]Zheng Y, Zhang S, Zhao Z, Wu Y, Li X, Li Z, et al. Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China:implications for growth and reworking of continental crust. Lithos.2007; 96:127-150.
    [477]甘晓春,李惠民,孙大中,金文山,赵风清.浙西南早元古代花岗质岩石的年代.岩石矿物学杂志.1995;14(1):1-8.
    [478]甘晓春,李惠民,孙大中,庄建民.闵北前寒武纪基底的地质年代学研究.福建地质.1993;1:17-32.
    [479]胡雄健.浙西南下元古界八都群的地质年代学.地球化学.1994;23(Suppl.):18-24.
    [480]胡雄健,许金坤,童朝旭,陈程华.浙西南19亿年花岗闪长岩的地质特征及发现意义.地质论评.1993;39(6):557-563.
    [481]胡雄健,许金坤,陈程华,李春忠,李惠民.浙西南早元古代花岗岩、伟晶岩的单颗粒锆石U-Pb年龄.科学通报.1992;11:1016-1018.
    [482]Ames L, R.Tilton G, Zhou G. Timing of collision of the Sino-Korean and Yangtze cartons:U-Pb zircon dating of coesite-bearing eclogites. Geology.1993; 21:339-342.
    [483]Zhang K. North and South China collision along the eastern and southern North China margins. Tectonophysics.1997; 270:145-156.
    [484]Ames L, Zhou G, Xioing B. Geochronology and isotopic character of ultrahigh-pressure metamorphicm with implications for collision of the Sino-Korean and Yangtze cratons, central China. Tectonics.1996; 15(2):472-489.
    [485]Ayers JC, Dunkle S, Gao S, Miller CF. Constraints on timing of peak and retrograde metamorphism in the Dabie Shan Ultrahigh-Pressure Metamorphic Blet, east-central China, using U-Th-Pb dating of zircon and monazite. Chemical Geology.2002; 186:315-331.
    [486]Bryant DL, Ayers JC, Gao S, Miller CF, Zhang H. Geochemistry, age, and isotopic constraints on the location of the Sino-Korean/Yangtze Suture and evolution of the Northern Dabie Complex, east central China. GSA Bulletin.2004; 116:698-717.
    [487]Hacker BR, Ratschbacher L, Webb L, McWilliams MO, Ireland T, Calvert A, et al. Exhumation of ultrahigh-pressure continental crust in east central China:Late Triassic-Early Jurassic tectonic unroofing. Journal of Geophysical Research.2000; 105:13339-13364.
    [488]Li S, Xiao Y, Liou D, Chen Y, Ge N, Zhang Z, et al. Collision of the North China and Yangtse Blocks and formaiton of coesite-bearing eclogites:timing and processes. Chemical Geology. 1993; 109:89-111.
    [489]Maruyama S, Tabata H, Nutman AP, Morikawa T, Liou JG. SHRIMP U-Pb geochronology of ultrahigh-pressure metamorphic rocks of the Dabie Mountains, Central China. Continental Dynamics.1998; 3:72-85.
    [490]Qiu H, Wijbrans JR, Brouwer FM, Yun JB, Zhao LH, Xu Y. Amphibolite facies retrograde metamorphism of the Zhujiachong eclogite, SE Dabieshan:40Ar/39Ar age constraints from argon extraction using UV-laser microprobe, in vacuo crushing and stepwise heating. Journal of Metamorphic Geology.2010; 28(5):477-487.
    [491]Qiu H, Wijbrans JR. The Paleozoic metamorphism history of the Central Orogenic Belt of China from 40Ar/39Ar geochronology of eclogite garnet fluid inclusions. Earth and Planetry Science Letters.2008; 268:501-514.
    [492]Qiu H, Wijbrans JR. Paleozoic ages and excess 40Ar/39AAr in garnets from the Bixiling eclogite in Dabieshan, China:new insights from 40Ar/39Ar by stepwise crushing. Geochimica et Cosmochimica Acta.2006; 70(9):2354-2270.
    [493]Nie S, Yin A, Rowley DB, Jin Y. Exhumation of the Dabie Shan ultra-high-pressure rocks and accumulation of the Songpan-Ganzi flusch sequence, central China. Geology.1994; 22: 999-1002.
    [494]Tsai CH, Loiu JG. Eclogite facies relics and inferred ultrahigh-pressure metamorphism in the North Dabie Complex, central-eastern China. American Mineralogist.2000; 85:1-8.
    [495]Wu Y-B, Zheng Y-F, Zhao Z-F, Gong B, Liu X-M, Wu F-Y. U-Pb, Hf and O isotope ecidence for two episodes of fluid-assisted zricon growth in marble-hosted eclogites from the Dabie orogen. Geochimica et Cosmochimica Acta.2006; 70:3743-3761.
    [496]Xie Z, Chen J, Zheng Y, Zhang X, Li H, Zhou T. Zircon U-Pb dating of the metamorphic rocks of different grades from the southern part of the Dabie Terrain in China. Phys Chem Earth (A). 2001; 26:685-693.
    [497]Xue F, Rowley DB, Tudker RD, Peng ZX. U-Pb zircon ages of granitoid rocks in the North Dabie Complex, eastern Dabie Shan, China. The Journal of Geology.1997; 105:744-753.
    [498]Zhao Z, Zheng Y, Wei C, Chen F, Liu X, Wu F. Zircon U-Pb ages, Hf and O isotopes constrain the crustal architecture of the ultrahigh-pressure Dabie orogen in China. Chemical Geology. 2008; 253:222-242.
    [499]简平,杨巍然,李志昌,周慧芳.大别山西部熊店加里东期榴辉岩—同位素地质年代学的证据.地质学报.1997;71(2):133-147.
    [500]Chen F, Siebel W, Guo J, Cong B, Satir M. Late Proterozoic magmatism and metamorphism recorded in gneisses from the Dabie high-pressure metamorphic zone, eastern China:evidence from zircon U-Pb geochronology. Precambrian Research.2003; 120:131-148.
    [501]Li R, Li S, Jin F, Wan Y, Zhang S. Provenance of Carboniferous sedimentary rocks in the northern margin of Dabie Mountains, Central China and the tectonic significance:constraints from trace elements, mineral chemistry and SHRIMP dating of zircons. Sedimentary Geology. 2004; 166:245-264.
    [502]马昌前,明厚利,杨坤光.大别山北麓的奥陶纪岩浆弧:侵入岩年代学和地球化学证据.岩石学报.2004;20(3):393-402.
    [503]安徽省地质矿产局.安徽省岩石地层.武汉:中国地质大学出版社;1997.
    [504]Liu S, Heller PL, Zhang G. Mesozoic basin development and tectonic evolution of the Dabieshan orogenic belt, central China. Tectonics.2003; 22(4):12-1-21,doi; 10.1029/2002TC0001390.
    [505]王鸿祯.中国古地理图集.北京:地图出版社;1985.
    [506]李双应,岳书仓,王道轩,刘因,王清晨,李任伟,et al大别造山带超高压变质岩折返隆升的底层学证据.地质论评.2002;48(4):345-352.
    [507]李双应,岳书仓,王道轩,刘因,李任伟,孟庆任,et al大别造山带北缘中生代地层中榴辉岩砾石地球化学特征及构造意义.地球化学.2003;32(5):436-444.
    [508]李双应,王道轩,刘因,李任伟,孟庆任,岳书仓.大别造山带折返剥露历史:来自合肥盆地南缘中生界变质岩碎屑的证据.地质科学.2005;40(4):518-531.
    [509]李双应,李任伟,岳书仓,王道轩,刘因,孟庆任,et al安徽肥西中生代碎屑岩地球化学特征及其对物源制约.岩石学报.2004;20(3):667-676.
    [510]李双应,李任伟,岳书仓,刘因,王道轩,孟庆任,et al大别山北缘暨邻区中新生代砂岩稀土元素的地球化学特征及对源岩的制约.中国稀土学报.2004;22(4):512-517.
    [511]李双应,李任伟,王道轩,刘因,孟庆任,岳书仓,et al大别山北缘凤凰台组砾石地球化学特征及源区构造环境.沉积学报.2005;23(3):381-388.
    [512]李任伟,江茂生,李忠,孙枢,金福全,张雯华.大别山北麓侏罗系大理岩砾石的碳-氧同位素组成及地质意义.岩石学报.1999;15(4):623-629.
    [513]李忠,孙枢,李任伟,江茂生.合肥盆地中生代充填序列及其对大别山造山作用的指示.中国科学(D辑).2000;30(3):256-263.
    [514]李忠,李任伟,孙枢,张雯华.大别地块北缘侏罗系花岗岩类砾石的Rb-Sr年代学特征. 科学通报.2001;46(7):582-585.
    [515]李忠,李任伟,孙枢,江茂生,张雯华.合肥盆地南部侏罗系砂岩碎屑组分及其物源构造属性.岩石学报.1999;15(3):438-445.
    [516]Liu S, Zhang G, Zhang Z, Su S. Isotope chronological trace of granite gravel in Hefei Basin Chinese Science Bulletin.2001; 46(20):1716-1721.
    [517]Li R, Wan Y, Cheng Z, Zhou J, Li S. Provenance of Jurassic sediments in the Hefei Basin, east-central China and the contribution of high-pressure and ultrahigh-pressure metamorphic rocks from the Dabie Shan. Earth and Planetary Science Letters.2005; 231:279-294.
    [518]Li Z, Li R, Sun S, Wang Q. Jurassic depositional records and sandstone provenance in Hefei Basin, central China:implication for Dabie orogenesis. The Island Arc.2004; 13:346-358.
    [519]朱光,王道轩,徐春华,李学田,王勇生,刘国生, et al大别高压-超高压变质岩剥露历史在合肥盆地的记录.高校地质学报.2004;10(4):594-605.
    [520]李任伟,孙枢,李忠,江茂生,金福全,李双应.高压-超高压岩石对合肥盆地侏罗系沉积的贡献.岩石学报.2002;18(4):526-530.
    [521]陈振宇,周建雄,李任伟,万渝生.合肥盆地早侏罗世防虎山组沉积岩碎屑锆石的矿物包裹体及内部结构.矿物学报.2005;25(1):89-94.
    [522]王道轩,刘因,李双应,金福全.大别超高压变质岩折返至地表的时间下限:大别山北麓晚侏罗世砾岩中发现榴辉岩砾石.科学通报.2001;46(14):1216-1220.
    [523]李忠,李任伟,孙枢,张雯华.大别山南麓中生代盆地充填记录对造山作用属性的反映.中国科学(D辑).2002;32(6):469-478.
    [524]李双应,李任伟,孟庆任,王道轩,刘因.大别山东南麓中新生代碎屑岩地球化学特征及其对物源的制约.岩石学报.2005;21(4):1157-1166.
    [525]Grimmer JC, Ratschbacher L, McWilliams M, Franz L, Gaitzsch I, Tichomirowa M, et al. When did the ultrahigh-pressure rocks reach the surface? A 207Pb/206Pb zircon,40Ar/39Ar white mica, Si-in-white mica, single-grain provenance study of Dabie Shan synorogenic foreland sediments. Chemical Geology.2003; 197:87-110.
    [526]Wang Y, Zhao G, XIa X, Zhang Y, Fan W, Li C, et al. Early Mesozoic unroofing pattern of the Dabie Mountains (China):constraints from the U-Pb detrital zircon geochronology and Si-in white mica analysis of synorogenic sediments in the Jianghan Basin. Chemical Geology.2009; 266:231-241.
    [527]李任伟.大别山周缘盆地物源研究:新结果及运用.沉积学报.2010;28(1):102-117.
    [528]黄其胜,卢宗盛.鄂东南武昌组早侏罗世植物群.地球科学.1988;13(5):545-552.
    [529]王璞.鄂东南地区下侏罗统武昌组的双壳类化石.古生物学报.1993;32(6):725-739.
    [530]湖北省地质矿产局.湖北省区域地质志.北京:地质出版社;1990.
    [531]Bingen B, Austrheim H, Whitehouse MJ, Davis WJ. Trace element signature and U-Pb geochronology of eclogite-facies zircon, Bergen Arcs, Caledonides of W Norway. Contrib Mineral Petrol.2004; 147:671-683.
    [532]Rubatto D, Hermann J. Zircon formation during fluid circulation in eclogites (Monviso, Western Alps):implications for Zr and Hf budget in subduction zones. Geochemica et Cosmochimica Acta.2003; 67(12):2173-2187.
    [533]安徽省地质矿产局.全国地层多重划分对比研究:安徽省岩石地层.武汉:中国地质大学出版社;1998.
    [534]Du X, Zhang Y, editors. Multiple classification and correlation of the stratigraphaphy of China (30):regional stratigraphy of Southeast China. Wuhan:China University of Geosciences Press; 1998.
    [535]Meng Q-R, Li S-Y, Li R-W. Mesozoic evolution of the Hefei basin in eastern China: sedimentary response to deformations in the adjacent Dabieshan and along the Tanlu fault. GSA Bulletin.2007; 119(7/8):897-916.
    [536]Jeon H, Cho M, Kim H, Horie K, Hidaka H. Early Archean to Middle Jurassic evolution of the Korean Peninsula and its correlation with Chinese Cratons:SHRIMP U-Pb zircon age constrains. The Journal of Geology.2007; 115:525-539.
    [537]Oh CW. A new concept on tectonic correlation between Korea, China and Japan:history from the late Proterozoic to Cretaceous. Gondwana Research.2006; 9:47-61.
    [538]Adachi M, Suzuki K. Precambrian detrital monazite and zircons from Jurassic turbidite sandstones in the Nomugi area, Mino terrane. J Earth Planet Sci Nagoya Univ.1994; 41:33-43.
    [539]佘振兵.中上扬子元古界——中生界碎屑锆石年代学研究.武汉:中国地质大学;2008.
    [540]Hidaka H, Shimizu H, Adachi M. U-Pb geochronology and REE geochemistry of zircons from Paleoproterozoic paragneiss clasts in the Mesozoic Kamiaso conglomerate, central Japan: evidence for an Archean provenance. Chemical Geology.2002; 187:279-293.
    [541]Nutman AP, Sano Y, Terada K, Hidaka H.743±17 Ma grnaite clast from Jurassic conglomerte, Kamiaso, Mino Terrane, Japan:the case for South China Craton provenance. Journal of Asian Earth Sciences.2006; 26:99-104.
    [542]刘宝珺,许效松,潘杏南,黄慧琼,徐强.中国南方古大陆沉积地壳演化与成矿.北京:科学出版社;1993.
    [543]袁海华,张志兰,刘炜,卢秋霞.直接测定颗粒锆石207Pb/206pb年龄的方法.岩石矿物.1991;11(2):72-79.
    [544]Zhang S, Zheng Y, Wu Y, Zhao Z, Gao S, Wu F. Zircon U-Pb age and Hf isotope evidence for 3.8 Ga crustal remnant and episodeic reworking of Archean crust in South China. Earth and Planetary Science Letters.252; 252:56-71.
    [545]Liu S, Zhang G, Ritts BD, Zhang H, Gao M, Qian C. Tracing exhumation of the Dabie Shan ultrahigh-pressure metamorphic complex using the sedimentary record in the Hefei Basin, China. GSA Bulletin.2010; 122:198-218.
    [546]Oh CW, Kim SW, Choi SQ Zhai M, Guo J, Krishnan S. First finding of eclogite facies metamorphic event in South Korea and its correlation with the Dabie-Sulu collision belt in China. The Journal of Geology.2005; 113:226-232.
    [547]Kwon S, Sajeev K, Mitra G, Park Y, Kim SW, Ryu I-C. Evidence for Permian-Triassic collision in Far East Asia:the Korean collisional orogen. Earth and Planetary Science Letters.2009; 279: 340-349
    [548]Tsujimori T, Liou JG, Ernst WG, Itaya T. Triassic paragonite-and garnet-bearing epidote-amphibolite from the Hida mountains, Japan. Gondwana Research.2006; 9:171-179.
    [549]Egawa K, Lee YI. Jurassic synorogenic basin filling in western Korea:sedimentary response to inception of the western Cirsum-Pacific orogeny. Basin Research.2009; 21:407-431.
    [550]Isozaki Y. Contrasting two types of orogen in Permo-Triassic Japan:accretionary versus collisional. The Island Arc.1997; 6:2-24.
    [551]Armstrong-Altrin JS, LEE YI, Verma SP, Ramasamy S. Geochemistry of sandsone from the Upper Miocene Kudankulam Formaiton, Southern India:implications for provenance, weathering, and tectonic setting. Journal of Sedimentary Research.2004; 74(2):285-297.
    [552]Yan Z, Wang Z, Wang T, Yan Q, Xiao W, Li J. Provenance and tectonic setting of clastic deposits in the Devonian Xicheng Basin, Qinling Orogen, Central China. Journal of Sedimentary Research.2006; 76:557-574.
    [553]Joo YJ, Lee YI, Bai Z. Provenance of the Qingshuijian Formation (Late Carboniferous), NE China:implications for tectonic processes in the northern margin of the North China block. Sedimentary Geology.2005; 177:97-114.
    [554]Yan Z, Wang Z, Yan Q, Wang T, Guo X. Geochemical constraints on the provenance and depositional setting of the Devonian Liuling Group, East Qinling Mountains, Central China: implications for the tectonic evolution of the Qinling Orogenic Belt. Journal of Sedimentary Research.2012; 82:9-20.
    [555]Burnett DJ, Quirk DG. Trubidite provenance in the Lower Palaeozoic Mans Group, Iale of Man: implications for the tectonic setting of Eastern Avalonia. Journal of the Geological Society.2001; 158:913-924.
    [556]Armstrong-Altrin JS, Verma SP. Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic settings. Sedimentary Geology.2005; 177(1-2):115-129.
    [557]Saha S, Banerjee S, Burley SD, Ghosh A, Saraswati PK. The influce of flood basaltic source terrains on the efficiency of tectonic setting discrimination diagrams:an example from the Gulf of Khambhat, western India. Sedimentary Geology.2010; 228:1-13.
    [558]Cina SE, Yin A, Grove M, Dubey CS, Shukla DP, Lovera OM, et al. Gangdese arc detritus within the eastern Himalayan Neogene foreland basin:implications for the Neogenge evolution of the Yalu-Brahmaputra River system. Earth and Planetary Science Letters.2009; 285: 150-162.
    [559]DeCelles PG, Gehrels GE, Najman Y, Martin AJ, Cater A, Garzanti E. Detrital geochronology and geochemistry of Cretaceous-Early Miocene strata of Nepal:implications for timing and diachroneity of initial Himalayan orogenesis. Earth and Planetary Science Letters.2004; 227: 313-330.
    [560]Cawood PA, Nemchin AA, Strachan R, Prave T, Krabbendam M. Sedimentary basin and detrital zircon record along East Laurentia and Baltica during assembly and breakup of Rodinia. Journal of the Geological Society, London.2007; 164:257-275.
    [561]Heaman LM, Bowins R, Crocket J. The chemical composition of igneous zircon suites: implications for geochemical tracer studies. Geochimica et Cosmochimica Acta.1990; 54: 1597-1607.
    [562]Yin A, Harrison TM. Geologic evolution of the Himalayan-Tibetan orogen. AnnuRev Earth Planet Sci.2000; 28:211-280.
    [563]Najman Y, Appel E, Boudagher-Fadel M, Brown P, Carter A, Garzanti E, et al. Timing of India-Asia collision:geological, biostratigraphy, and paleomagnetic constraints. Journal of Geophysical Research.2010; 115:B12416, doi:10.1029/2010JB007673.
    [564]Aitchison JC, Ali JR, Davis AM. When and where did India and Asia collide? Journal of Geophysical Research.2007; 112:Bot423, doi:10.1029/2006JB004706.
    [565]Rowley DB. Age of initiation of collision between India and Asia:a review of stratigraphic data. Earth and Planetary Science Letters.1996; 145:1-13.
    [566]Green OR, Searle MP, Corfield RI, Corfield RM. Cretaceous-Tertiary carbonate platform evolution and the age of the India-Asia collision along the Ladakh Himalaya (Northwest India). The Journal of Geology.2008;116(4):331-353.
    [567]Mo X, Niu Y, Dong G, Zhao Z, Hou Z, Zhou S, et al. Contribution of syncollisional felsic magmatism to continental crust growth:a case study of the Paleogene Linzizong volcanic succession in southern Tibet. Chemical Geology.2008; 250:49-67.
    [568]Mo X, Hou Z, Niu Y, Dong G, Qu X, Zhao Z, et al. Mantle contributions to crustal thickening during continental collision:evidence from Cenozoic igneous rocks in southern Tibet. Lithos. 2007; 96:225-242.
    [569]Chen J, Huang B, Sun L. New constraints to the onset of the India-Asia collision: paleomagnetic reconnaissance on the Linzizong Group in the Lhasa Block, China. Tectonophysics.2010; 489:189-209.
    [570]Tan X, Gilder S, Kodama KP, Jiang W, Han Y, Zhang H, et al. New paleomagnetic results from the Lhasa block:revised estimation of latitudinal shortening across Tibet and implications for dating the India-Asia collision. Earth and Planetary Letters.2010; 293:396-404.
    [571]Yi Z, Huang B, Chen J, Chen L, Wang H. Paleomagnetism of early Paleogene marine sediments in Southern Tibet, China:implications to onset of the India-Asia collision and Size of Greater India. Earth and Planetary Letters.2011; 309:153-165.
    [572]Clementz M, Bajpai S, Ravikant V, Thewissen JGM, Saravanan N, Singh IB, et al. Early Eocene warming events and the timing of terrestrial faunal exchange between India and Asia. Geology.2010; 39(1):15-18.
    [573]Aikman AB, Harrison TM, Ding L. Evidence for ealry (>44Ma) Himalayan crustal thickening, Tethyan Himalaya, southeastern Tibet. Earth and Planetary Letters.2008; 274:14-23.
    [574]Henderson AL, Najman Y, Parrish R, BouDagher-Fadel M, Barford D, Garzanti E, et al. Geology of the Cenozoic Indus Basin sedimentary rocks:paleoenvironmental interpretation of sedimentation from the western Himalaya during the early phases of India-Eurasia collision. Tectonics.2010; 29:TC6015, doi:10.1029/2009TC002651.
    [575]Wang J, Hu X, Jansa L, Huang Z. Provennace of the Upper Cretaceous-Eocene deep-water sandstones in Sangdanlin, Southern Tibet:constraints on the timing of initial India-Asia collision. The Journal of Geology.2011; 119(3):293-309.
    [576]Cai F, Ding L, Yue Y. Provenance analysis of upper Cretaceous strata in the Tethys Himalaya, southern Tibet:implications for timing of India-Asia collision. Earth and Planetary Letters.2011; 305:195-206.
    [577]Hu X, Sinclair HD, Wang J, Jiang H, Wu F. Late Crataceous-Palaeogene stratigraphic and basin evolution in the Zhepure Mountain of southern Tibet:implications for the timing of India-Asia initial collision. Basin Research.2012; 24:1-24.
    [578]White NM, Parrish RR, Bickle MJ, Najman YM, Burbank D, Maithani A. Metamorphism and exhumation of the NW Himalaya constrained by U-Th-Pb analyses of detrital monazite from early foreland basin sediments. Journal of the Geological Society, London.2001; 158:625-635.
    [579]Clift PD, Cater A, Draut AE, Long HV, Chew DM, Schouten HA. Detrital U-Pb zircon dating of lower Ordovician syn-arc-continental collision conglomerates in the Irish Caledonides. Tectonophysics.2009; 479:165-174.
    [580]Huang CY, Yuan PB, Tsao SJ Temporal and spatial records of active arc-continent collision in Taiwan:a synthesis. GSA Bulletin.2006; 118:274-288.
    [581]Eide EA, McWilliams MO, Liou JG.40Ar/39Ar geochronology and exhumation of high-pressure to ultrahigh-pressure metamorphic rocks in east-central China. Geology.1994; 22: 601-604.
    [582]Vannay J-C, Grasemann B, Rahn M, Frank W, Cater A, Baudraz V, et al. Miocene to Holocene exhumation of metamorphic crustal wedges in the NW Himalaya:evidence for tectonic extrusion coupled to fluvial erosion. Tectonics.2004; 23:TC1014 doi:10.29/2002TC001429.
    [583]Groppo C, Lombardo B, Rolfo F, Pertusati P. Clockwise exhumation path of granulitized eclogites from the Ama Drime range (Eastern Himalayas). Journal of Metamorphic Geology. 2006; 25(1):51-75.
    [584]Rubatto D, Hermann J. Exhumation as fast as subduction? Geology.2001; 29(1):3-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700