用户名: 密码: 验证码:
高温、干旱及其复合胁迫对小麦籽粒谷蛋白大聚合体、淀粉粒度分布和品质性状的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以两个不同品质类型小麦品种(郑麦366和豫农949)为材料,连续2年采用盆栽方式与人工气候室模拟高温相结合的方法,研究了灌浆期不同时段(前期和中期)高温、干旱及其复合胁迫对小麦籽粒淀粉粒度分布、谷蛋白大聚合体(Glutenin macropolymer, GMP)粒度分布及籽粒氮代谢关键酶活性的影响,分析不同逆境胁迫下小麦淀粉组成与特性、蛋白质含量与组成和产量的变化,旨在探讨逆境胁迫影响小麦籽粒淀粉和蛋白质品质的内在机制与范围,为小麦抗逆调优高产栽培提供理论依据。
     其主要研究结果如下:
     一、小麦籽粒淀粉粒度分析结果表明,淀粉粒数目分布表现为单峰曲线,而体积和表面积均表现为双峰分布。逆境胁迫主要影响小麦籽粒淀粉粒体积和表面积分布,对淀粉粒数目分布的影响较小。在高温、干旱及其复合胁迫下,强筋小麦品种郑麦366的>9.9μm淀粉粒(A型)体积百分比显著下降,<2.8μm的淀粉粒表面积百分比显著下降,而2.8-5.8μm和5.8-9.9μm的淀粉粒体积百分比显著升高。中筋小麦豫农949的>9.9μm(A型)淀粉粒体积和表面积百分比显著升高,2.8-5.8μm和5.8-9.9μm的淀粉粒体积百分比显著降低。两品种比较,强筋小麦郑麦366籽粒淀粉粒体积分布受逆境胁迫的影响较大。不同处理比较,前期高温干旱复合胁迫(HT1+DS)>前期高温胁迫(花后8~11d,HT1)>干旱胁迫(DS)>中期高温胁迫(花后18~21d,HT2)>中期高温干旱复合胁迫(HT2+DS)。结合电镜扫描观察发现,前期高温干旱复合胁迫下淀粉粒明显变形、体积减小。
     二、灌浆期高温、干旱及其复合胁迫显著影响小麦籽粒淀粉含量、组成和淀粉特性:使籽粒直链淀粉、支链淀粉及总淀粉含量均下降,但对直链淀粉的影响较小,因此使直/支比升高。不同胁迫处理对淀粉糊化特性参数(峰值粘度、低谷粘度、终结粘度、稀懈值和回生值)及膨胀势的影响存在差异:干旱胁迫使强筋小麦郑麦366的糊化特性参数显著升高、膨胀势降低,而使中筋小麦豫农949的糊化特性参数显著降低,膨胀势升高;但高温处理和高温干旱复合胁迫下,两品种的糊化特性参数及膨胀势均降低。两品种比较,中筋小麦豫农949淀粉含量及淀粉特性更易受逆境胁迫的影响。不同处理相比,高温胁迫的影响明显大于干旱处理,高温干旱复合胁迫具有明显的叠加效应。从不同时期高温处理看,前期影响大于中期。
     三、籽粒淀粉粒度分布与淀粉含量的相关分析结果表明,总淀粉、直链和支链淀粉含量与>9.9μm(A型)淀粉粒体积和表面积分布均呈极显著的负相关,与2.8-5.8μm的淀粉粒体积和表面积百分比呈极显著的正相关。表明淀粉粒体积和表面积分布对淀粉含量及其组分的影响较大,淀粉粒数目百分比主要影响直链淀粉含量。籽粒淀粉粒度分布与淀粉糊化特性也有一定的相关性,其中淀粉粒数目分布与糊化特性的关系较密切。研究结果还表明,膨胀势、糊化特性参数(峰值粘度、终结粘度、稀懈值和回生值)与支链淀粉和总淀粉含量极显著或显著正相关,但与直/支比极显著或显著负相关。上述结果表明,逆境胁迫通过改变籽粒淀粉粒度分布发生改变,影响支链淀粉和总淀粉含量,改变淀粉直/支比,进而影响了淀粉品质特性。
     四、灌浆期高温、干旱及其复合胁迫均使两品种总蛋白质含量显著提高,灌浆前期高温、高温干旱复合胁迫和干旱胁迫均导致谷/醇比显著下降,而中期高温及高温干旱复合胁迫使谷/醇比显著升高。籽粒蛋白质含量及组成对面粉色泽有重要影响,L*与总蛋白质含量、球蛋白和谷蛋白含量极显著或显著负相关,与谷/醇比显著正相关。a*与总蛋白质和谷蛋白含量均极显著正相关,b*与总蛋白质和球蛋白、谷蛋白含量显著或极显著正相关,与谷/醇比显著负相关。可见逆境胁迫下,总蛋白质含量升高及组成变化,影响面粉L*、a*和b*值,并最终影响面粉色泽。
     五、灌浆期高温、干旱及其复合胁迫使两品种籽粒谷氨酰胺合成酶(GS)和谷丙转氨酶(GPT)活性升高。相关分析表明,籽粒GS和GPT活性与醇溶蛋白含量呈极显著正相关,籽粒GPT活性与总蛋白含量呈极显著正相关,籽粒GS活性与谷/醇比显著负相关。表明高温、干旱及其复合胁迫下,籽粒GS和GPT活性变化影响醇溶蛋白含量及谷/醇比,从而影响蛋白质含量。
     六、灌浆期高温、干旱及其复合胁迫影响小麦籽粒谷蛋白大聚合体(GMP)积累,使成熟期籽粒GMP含量升高。不同胁迫对GMP粒度分布的影响存在品种间差异:强筋小麦郑麦366GMP小颗粒(<10μm)所占比例(体积、表面积)降低,大颗粒(>100μm)所占比例升高;而中筋小麦豫农949则相反。高温、干旱及其复合胁迫对两品种籽粒GMP数目分布的影响均较小。相关分析结果表明,GMP含量、蛋白质含量与<10μm的GMP颗粒体积、表面积百分比及<100μm的GMP颗粒表面积百分比呈极显著或显著负相关,与10-100μm和>100μm的GMP颗粒表面积百分比呈极显著或显著的正相关。说明逆境胁迫主要通过影响GMP大小颗粒体积、表面积分布,从而影响GMP含量和蛋白质含量。
     七、高温、干旱及其复合胁迫使小麦灌浆速率降低,从而降低千粒重、穗粒重和产量。高温干旱复合胁迫下,籽粒灌浆期缩短6d,对产量的影响较单一因子胁迫严重,表现出明显的叠加效应。同时,逆境胁迫亦导致小麦籽粒蛋白质和淀粉产量下降。其中郑麦366更易受高温胁迫的影响,豫农949受干旱胁迫的影响较大。蛋白质和淀粉是小麦产量的主要组成部分,对产量形成有重要影响。穗粒数、穗粒重、千粒重和盆产量与淀粉含量、淀粉产量及蛋白质产量均极显著正相关,与蛋白质含量极显著负相关。因此,高温、干旱及其复合胁迫下,淀粉和蛋白质积累受抑制是造成粒重和产量下降的重要原因。
To understand effects of post-anthesis high temperature (HT) and drought stress(DS) on wheat grain quality and yield, the present studies, two different wheatcultivars with strong-and mid-gluten (Zhengmai366and Yunong949) used,combined pot culture with climate-controlled greenhouse simulating high temperature,were carried out to characterize effects of HT, DS and their combination on the starchgranule distribution, glutenin macropolymer particle size distribution and keyenzymes relating to N metabolism in wheat grains, and analyse the variation in starchcomponents, characteristics and protein concentration, components as well as thegrain yield. This aimed to investigate the internal mechanisms and scope that stressinfluenced on the starch and protein quality in wheat grains, and make a theoryevidence for the wheat production of high yield and high quality resisting the stress.
     The main results are as follows:
     1. The present results showed that the number distribution showed one-peakcurve, while the volume and surface area distribution all showed two-peak curve indifferent treatments. High temperature, drought stress and the combination of thesestressors during grain filling stage mainly influenced the starch volume and surfacearea distribution, but had less effect on the number distribution. High temperature,drought stress and their combination all led to a significant reduction in the volumeproportion of A-type starch granules (>9.9μm) and the surface area proportion ofgranules <2.8μm, and a significant increase in the volume proportion of granules2.8-5.8μm and5.8-9.9μm in Zhengmai366with strong-gluten. Whereas, in Yunong949with mid-gluten, HT, DS and their combination all led to a significant increase inthe volume and surface area proportion of A-type starch granules, yet a significantdecrease in the volume proportion of granules2.8-5.8μm and5.8-9.9μm. The starchgranule distribution of Zhengmai366with strong-glutenin was more sensitive tostress than Yunong949. The degree of different stress influencing the starch volume distribution showed that the combination of HT and DS at early stage of grain fillingwas greater than other stresses, following were HT applied at early stage, DS, HTapplied at mid-stage of grain filling, and the last was the combination of HT and DSat mid-stage. The starch granules were notably distorted and volume reduced by HTand DS in scanning electron microscope.
     2. High temperature, drought stress and its combination significantly affected thestarch concentration and its components as well as the starch characteristics in wheatgrains. The concentrations of amylose, amylopectin and total starch all decreasedunder stress treatments, yet the amylose was less sensitive to stress than amylopectinand total starch, which led to the increase in ratio of amylose to amylopectin. Thepasting characteristics of peak viscosity, hold through, final viscosity, breakdown andsetback all significantly increased in Zhengmai366and decreased in Yunong949under DS, while, that significantly declined in Zhengmai366and Yunong949underHT and the combination of HT and DS. The swelling power declined in Zhengmai366and increased in Yunong949under DS, whereas, that decreased in the two wheatcultivars under HT and the combination of HT and DS. The starch concentration andstarch characteristics in Yunong949with mid-gluten were more sensitive to stresstreatments than Zhengmai366. The HT treatments had a greater effect on the starchquality than DS, and there was a notable additive effects between HT and DS. The HTapplied at early stage of grain filling stage had greater effects than that at mid-stage.
     3. The correlation analysis of starch granule distribution with starchconcentration in wheat grains showed that a negative correlation existed in A-typestarch volume and surface area distribution with concentrations of total starch,amylose and amylopectin in extremely significant level, yet a positive correlationexisted in starch volume and surface area distribution in diameter of2.8-5.8μm withthat. Which indicated that starch volume and surface area distribution were moreclosely related to starch concentrations, yet starch number distribution mainly affectedamylose concentration. Starch granule distribution also had a correlation with starchcharacteristics and starch number distribution was more closely correlated with thatthan others. The correlation analysis of starch characteristics with starch concentrationshowed that swelling power, peak viscosity, final viscosity, breakdown and setbackpositively correlated with concentrations of amylopectin and total starch, and negatively correlated with ratio of amylose to amylopectin in extremely significant orsignificant level. This indicated that starch granule distribution varied with the stresstreatments and influenced concentrations of amylopectin and total starch, leading tothe variation of the ratio of amylose to amylopectin, thus affected starchcharacteristics.
     4. High temperature, DS and its combination all notably enhanced the totalprotein concentration. Drought stress, high temperature and their combinationtreatments at early stage of grain filling all led to a reduction in ratio of glutenin togliadin. Whereas, HT and combination of HT and DS treatments at mid-filling stagesignificantly increased the ratio of glutenin to gliadin. Protein concentration andcomponents played an important role in flour color. The value of L*was negativelycorrelated with concentrations of total protein, globulin and glutenin in extremely orsignificant level, yet positively correlated with ratio of glutenin to gliadin insignificant level. The value of a*was positively correlated with concentrations oftotal protein and glutenin in extremely significant level. The value of b*waspositively correlated with concentrations of total protein, globulin and glutenin insignificant or extremely significant level, yet negatively correlated with ratio ofglutenin to gliadin in significant level. There were differences in effects on the valueof L*, a*and b*by stress. Under stress, total protein concentration increased andprotein components changed, thus influenced the value of c and L*, a*and b*leadingto the variation of flour color.
     5. The activities of Glutamine synthetase (GS) and Glutamic pyruvictransaminase (GPT) of wheat grain in two wheat cultivars were all enhanced in themass by DS, HT and their combination. The correlation analysis showed that theactivities of GS and GPT in wheat grains positively correlated with gliadinconcentration and that of GPT positively correlated with total protein concentration inextremely significant level, yet GS activity in wheat grain negatively correlated withratio of glutenin to gliadin in significant level. It indicated that the activities of GS andGPT were changed by HT, DS and its combination, and then mainly influencedgliadin concentration and ratio of glutenin to gliadin, thus led to protein concentrationchanged.
     6. The accumulation of glutenin macropolymer (GMP) was affected by HT, DSand its combination during grain filling stage leading to a increase of GMPconcentration at maturity in wheat grains. There were differences of GMP particledistribution by stress in different wheat cultivars. The volume and surface areaproportion of small GMP particle (<10μm) in Zhengmai366with strong-glutendeclined, while that of large particle (>100μm) increased under stress treatments.Whereas, the volume and surface area proportion of small GMP particle (<10μm) inYunong949with mid-gluten increased, still that of large particle (>100μm)decreased under stress treatments. The number distribution of GMP particle was lesssensitive to stress than others. Which indicated that the change of GMP particledistribution under stress mainly due to the variation of GMP volume and surface areaproportion, but not the change of number proportion. The correlation analysis showedthat concentrations of GMP and protein negatively correlated with the volume andsurface area proportion of GMP particle <10μm and with the surface area proportionof that <100μm in extremely significant or significant level, yet positively correlatedwith the surface area proportion of GMP particle10-100μm and>100μm. Itindicated that the concentrations of GMP and protein were influenced mainly due tothe volume and surface area proportion of GMP particle changes under stress.
     7. High temperature, DS and its combination all reduced the rate of grain filling,leading to the grain weight per spike, thousand grains weight and gain yield alldeclined. The duration of grain filling was shortened by6days under the combinationof HT and DS, which had greater effect on the grain yield than HT or DS. Thisindicated that there was notable superimposed effect between HT and DS. The stressalso led to a reduction in yields of protein and starch. The yield of Zhengmai366wasmore sensitive to HT, yet Yunong949was more sensitive to DS. The yields of starchand protein, main components of grain yield, played an important role in grain yield.It showed that spikes per plant, grains per spike, grain weight per spike, thousandgrains weight and grain yield per pot were all positively correlated with starchconcentration, starch yield and protein yield in extremely significant level, yetnegatively correlated with protein concentration. So it was mostly attributed to theaccumulation of starch and protein disturbed by HT, DS and its combination that thegrain yield declined.
引文
[1]王晨阳,马冬云,朱云集,等.冬小麦不同水氮运筹对面条煮制品质的影响[J].中国农业科学,2004,37(2):256-262.
    [2] Mary JG, Jeffrey CS. Relative sensitivity of spring wheat grain yield and quality parameters tomoisture deficit [J]. Crop Sci.,2001,41:327-335.
    [3] Johansson E, Prieto Lined ML, Jonsson JO. Effects of wheat cultivar and nitrogen applicationon storage protein composition and bread making quality [J]. Cereal Chem.,2001,78(1):19-44.
    [4]兰涛,姜东,谢祝捷,等.花后土壤干旱和渍水对不同专用型小麦籽粒品质的影响[J].水土保持学报,2004,18(1):193-196.
    [5]张旭.作物生态育种学[M].北京:中国农业出版社,1998.
    [6] Genty B, Briantais JM, Baker NR. The relationship between the quantum yield ofphotosynthetic electron transport and photochemical quenching of chlorophyll fluorescence[J]. Biochimicaet Biophysica Acta,1989,9:87-92.
    [7]邓志英,田纪春,胡瑞波,等.基因型和环境对小麦主要品质性状参数的影响[J].生态学报,2006,26(8):2757-2763.
    [8]张春庆,李睛祺.影响普通小麦加工馒头质量的主要品质性状的研究[J].中国农业科学,1993(2):39-46.
    [9]邱永和,张联会,张立言,等.小麦淀粉之特性与制面适用性[J].食品工业,1988(9):44-45.
    [10]方克旋,王澄,毕桓武,等.小麦直链淀粉的测定及其含量对食用品质的影响[J].中国粮油食品,1985(2):27-28.
    [11]张春庆,李睛祺.影响普通小麦加工馒头质量的主要品质性状的研究[J].中国农业科学,1993,26(2):39-46.
    [12]陈绍军,吴兆苏.论小麦馒头的品质要求[J].种子,1990(4):32-33.
    [13] Konik CM. Relationship between physical starch properties and yellow alkaline noodlequality [J].Stirke,1994,16:292-299.
    [14] Crosbie GE. The relationship between starch swelling properties, paste viscosity and boilednoodle quality in wheat flour [J]. J. Cereal Sci.,1991,13:14-15.
    [15] Kifibuchi OC. Production of hexaploid wheats with waxy endosperm character [J]. CerealChem.,1997,74(1):72-74.
    [16] Morris D. Genotype and environment variation for flour swelling volume in wheat [J]. CerealChem.,1997,74(1): l6-21.
    [17]刘萍,郭文善,浦汉春,等.灌浆期短暂高温对小麦淀粉形成的影响[J].作物学报,2006,32(2):182-188.
    [18]闫素辉,王振林,戴忠民,等.两个直链淀粉含量不同的小麦品种籽粒淀粉合成及其相关酶活性的比较研究[J].作物学报,2007,33(1):84-89.
    [19] Bechtel DB, Zayas I, Kaleikau L, et al. Size-distribution of wheat starch granules duringendosperm development [J]. Cereal Chem.,1990,67:59-63.
    [20] Jenner CF. Effects of exposure of wheat ears to high temperature on dry matter accumulationand carbohydrate metabolism in the grain of two cultivars: I. Immediate responses [J]. Aust. J.Plant Physiol.,1991,18:165-177.
    [21]闫素辉,尹燕枰,李文阳,等.灌浆期高温对小麦籽粒淀粉的积累、粒度分布及相关酶活性的影响[J].作物学报,2008,34(6):1092-1096.
    [22] Altenbach SB, Dupont FM. Temperature, water and fertilizer influence the timing of keyevents during grain development in a US spring wheat [J]. J. Cereal Sci,2003,37:9-20.
    [23] Bhullar SS, Jenner CF. Effects of temperature on the conversion of sucrose to starch in thedeveloping wheat endosperm [J]. Aust. J. Plant Physiol.,1986,13:605-615.
    [24] Eliasson AC, Karlsson R. Gelatinization properties of different size classes of wheat starchgranules measured with differential scanning calorimetry [J]. Starch,1983,35:130-133.
    [25] Dengate H, Meredith P. Variation in size distribution of starch granules from wheat grain [J].J. Cereal Sci.,1984,2:83-90.
    [26] Blumenthal CS, Bekes F, Gras PW, et al. Identification of wheat genotypes tolerant to theeffects of heat stress on grain quality [J]. Cereal Chem.,1995,72:539-544.
    [27] Hurkman WJ, McMue KF, Altenbach SB, et al. Effect of temperature on expression of genesencoding enzymes for starch biosyntheses in developing wheat endosperm [J]. Plant Sci.,2003,1-9.
    [28]郭天财,冯伟,赵会杰,等.水氮运筹对干旱年型冬小麦旗叶生理性状及产量的交互效应[J].应用生态学报,2004,15(3):453-457.
    [29]姜东,谢祝捷,曹卫星,等.花后干旱和渍水对冬小麦光合特性和物质运转的影响[J].作物学报,2004,30(2):175-182.
    [30]兰涛,姜东,谢祝捷,等.花后土壤干旱和渍水对不同专用小麦籽粒品质的影响[J].水土保持学报,2004,18(1):193-196.
    [31]马新明,熊淑萍,李琳,等.土壤水分对不同专用小麦后期光合特性及产量的影响[J].应用生态学报,2005,16(1):83-87.
    [32]刘晓冰, Chopra RK, Maheshwari M.水分胁迫对小麦不同种籽粒代谢的影响[J].干旱地区农业研究,1994,12(1):92-96.
    [33] Duffus CM. Control of starch biosynthesis in developing cereal grain [J]. Biochem. SocietyTransactions,1992,20:13-18.
    [34] Jenner CF, Rathjen AJ. Factors regulating the accumulation of starch in ripening wheat grains[J]. Aust. J. Plant Physiol.,1975,2:311-322.
    [35] Sofield I, Evans LT, Cook MG, et al. Factors influencing the rate and duration of grain fillingin wheat [J]. Aust. J. Plant. Physiol.,1977,4:785-797.
    [36] Lingle SE, Chevalier P. Movement and metabolism of sucrose in developing barley kernels[J]. Crop Sci.,1984,24:315-319.
    [37]许振柱,于振文,张永丽.土壤水分对小麦籽粒淀粉合成和积累特性的影响[J].作物学报,2003,29(4):595-600.
    [38] Umemoto T, Nakamura Y, Ishikura N. Effect of grain location on the panicle on activitiesinvolved in starch synthesis in rice endosperm [J]. Phytochemistry,1994,36:843-847.
    [39]李永庚,于振文,姜东,等.冬小麦旗叶蔗糖和籽粒淀粉合成动态及与其有关的酶活性的研究[J].作物学报,2001,27(5):658-664.
    [40] Ahmadi A, Baker DA. The effect of water stress on the activities of key regulatory enzymesof t he sucrose to starch pathway in wheat [J]. Plant Growth Regul.,2001,35(1):81-91.
    [41]谢祝捷,姜东,曹卫星,等.花后土壤水分状况对小麦籽粒淀粉和蛋白质积累关键调控酶活性的影响[J].植物生理与分子生物学报,2003,29(4):309-316.
    [42]王绍中,郑天存,郭天财.河南小麦育种栽培研究进展[M].北京:中国农业科学技术出版社,2007:8-9.
    [43]于振文.小麦产量与品质生理及栽培技术[M].北京:中国农业出版社,2006,12:59-60.
    [44] B. S. Khatkar, Fido, R. J., et al. Functional properties of wheat gliadins. I. Effect on mixingcharacteristics and bread making quality [J]. J. Cereal Sci.,2002,35:299-306.
    [45] Shewry, P. R., Tatham, et al. Biotechnology of wheat quality [J]. J. Sci. Food Agric.,1997,73:397-406.
    [46] Kolster P, Krechting CF, Gelder WMJ. Quantification of individual high molecular weightsubunits of wheat glutenin using SDS-PAGE and scanning densitometry [J]. J. Cereal Sci.,1992,15:49-61.
    [47] Payne PI. Allelic variation of glutenin subunits and gliadins and its effect on bread makingquality in wheat: Analysis of F5progeny from Chinese Spring×Chinese Spring (Hope1A)[J].J. Cereal Sci.,1987,6:103-118.
    [48] Hou G, Ng PK W. Quantification of glutenin subunits by sequence acetone precipitation andby sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) coupled withdensitometry using a known quality of glutenins as a standard [J]. Cereal Chem.,1995,72(6):545-551.
    [49] Cren M, Hirel B. Glutamine synthetase in higher plant: Regulation of gene and proteinexpression from the organ to the cell [J]. Plant Cell Physiol.,1999,40:1187-1193.
    [50]王月福,于振文,李尚霞,等.氮素营养水平对冬小麦氮代谢关键酶活性变化和籽粒蛋白质含量的影响[J].作物学报,2002,28(6):743-748.
    [51]王旭东,于振文,石玉,等.磷对小麦旗叶氮代谢有关酶活性和籽粒蛋白质含量的影响[J].作物学报,2007,32(3):339-344.
    [52]赵辉,荆奇,戴廷波,等.花后高温和水分逆境对小麦籽粒蛋白质形成及其关键酶活性的影响[J].作物学报,2007,33(12):2021-2027.
    [53]谢祝捷,姜东,曹卫星,等.花后土壤水分状况对小麦籽粒淀粉和蛋白质积累关键调控酶活性的影响[J].植物生理与分子生物学报,2003,29(4):309-316.
    [54]范雪梅,姜东,戴廷波.花后干旱和渍水下氮素供应对小麦籽粒蛋白质和淀粉积聚调控酶活性的影响[J].中国农业科学,2005,38(6):1132-1141.
    [55]扬延兵,高荣岐,尹燕枰.不同基因型小麦籽粒蛋白质合成动态及相关酶活性的研究[J].华北农学报,2007,22(3):43-47.
    [56]王月福,姜东,于振文,等.氮素水平对小麦籽粒产量和蛋白质含量的影响及其生理基础[J].中国农业科学,2003,36(5):513-520.
    [57]马新明,李琳,赵鹏,等.土壤水分对强筋小麦“豫麦34”氮素同化酶活性和籽粒品质的影响[J].植物生态学报,2005,29(1):48-53.
    [58] Altenbach SB, Kothari KM, Lieu D. Environmental conditions during wheat graindevelopment alter temporal regulation of major gluten protein genes [J]. Cereal Chem.,2002,79:279-285.
    [59] Bhullar SS, Jenner CF. Effects of temperature on the conversion of sucrose to starch in thedeveloping wheat endosperm [J]. Aust. J. Plant Physiol.,1986,13:605-615.
    [60] Stone PJ, Nicolas ME. The effect of duration of heat stress during grain filling on two wheatvarieties differing in heat tolerance: grain growth and fractional protein accumulation [J].Aust. J. Plant Physiol.,1998,25:13-20.
    [61] Randall PJ, Moss HJ. Some effects of temperature regime during grain filling on wheatquality. Aust. J. Agric. Res.,1990,41:603-617.
    [62] Daniel C, Tribo E. Effects of temperature and nitrogen nutrition on the accumulation ofgliadins analysed by RP-HPLC [J]. Aust. J. Plant Physiol.,2001,28:1197-1205.
    [63] Blumenthal CS, Bekes F, Gras PW, et al. Identification of wheat genotypes tolerant to theeffects of heat stress on grain quality [J]. Cereal Chem.,1995,72:539-544.
    [64] Lindsay MP, Skerritt JH. The glutenin macropolemer of wheat flour dough: structure-functionperspectives [J]. Trends Foods Sci. Tech.,1999,10:247-253.
    [65] Fu BX, Sapirstein HD. Procedure f or isolation monomeric protein and polymeric glutenin ofwheat flour [J]. Cereal Chem.,1996,73(1):143-152.
    [66] Zhu J, Khan K. Characterization of glutenin protein fractions from sequential extraction ofhard red spring wheat s of different bread making quality [J]. Cereal Chem.,2004,81(6):681-685.
    [67] Comec M, Popineau Y, Lefebvre. Characterization of glutenin subfractions by SE-HPLC anddynamic rheological analysis in shear [J]. J. Cereal Sci.,1994,19:131-139.
    [68] Gupta R B, Khan K, MacRitchie F. Biochemical basis of flour properties in bread wheat.Effect of variation in the quantity and size distribution of polymeric protein [J]. J. Cereal Sci.,1993,18:23-41.
    [69] Ciaffi M, Tozzi L, Lafiandra D. Relationship between flour composition determined bysize-exclusion high-performance liquid chromatography and dough rheological parameters[J]. Cereal Chem.,1996,73:346-351.
    [70] Gupta RB, Masci S, Lafiandra D, et al. Accumulation of protein subunits and their polymersin developing grains of hexaploid wheats [J]. J. Experi. Bot.,1996,47:1377-1385.
    [71] Naeem HA, MacRitchie F. Heat stress effects on wheat proteins during grain development
    [C]. Proceedings of10th International Wheat Genetics Symposium.1-6September, Poestum,Italy.2003.455-458.
    [72] Ciaffi M, TozziL, Borghi B, et al. Effects of heat shock during grain filling on the glutenprotein composition of bread wheat [J]. J.Cereal Sci.,1996,24:91-100.
    [73] Corbellini M, Mazza L, Ciaffi M, et al. Effect of heat shock during grain filling on proteincomposition and technological quality of wheats [J]. Euphytica,1998,100:147-154.
    [74]许振柱,王崇爱,李晖.土壤干旱对小麦叶片光合和氮素水平及其转运效率的影响[J].干旱地区农业研究,2004,22(4):75-79.
    [75] Desai RM, Bhatia CR. Nitrogen uptake and nitrogen harvest index in durum wheat cultivarsvarying in their grain protein concentration [J]. Euphytica,1978,27:561-566.
    [76]许振柱,于振文,王东,等.灌溉条件对小麦籽粒蛋白质组分积累及其品质的影响[J].作物学报,2003,29(5):682-687.
    [77]张保军,樊虎玲.环境条件对小麦蛋白质的影响研究进展水土保持研究[J].2002,9(2):61-63.
    [78]范雪梅,姜东,戴廷波.花后干旱和渍水对不同品质类型小麦籽粒品质形成的影响[J].植物生态学报,2004,28(5):680-685.
    [79] Lea DJ, Robinson SA, Stewart GR. The enzymology and metabolism of glutamine, glutamate,and asparagines [J]. Biochemistry-US,1990,16:121-159.
    [80] Cren M, Hirel B. Glutamine synthetase in higher plant: Regulation of gene and proteinexpression from the organ to the cell [J]. Plant Cell Physiol.,1999,40:1187-1193.
    [81]范雪梅,姜东,戴廷波,等.花后干旱和渍水下氮素供应对小麦籽粒蛋白质和淀粉积聚关键调控酶活性的影响[J].中国农业科学,2005,38(6):1132-1141.
    [82]戴廷波,赵辉,荆奇,等.灌浆期高温和水分逆境对冬小麦籽粒蛋白质和淀粉含量的影响[J].生态学报,2006,26(11):3670-3676.
    [83]张立言,张建平,李雁鸣.中国小麦栽培研究新进展[M].北京:农业出版社,1993.
    [84]彭永欣,姜雪忠,郭文善.小麦栽培与生理[M].南京:东南大学出版社,1992.
    [85] Chattopadhyay R, Harit RC, Kalra N. Evaluation of water and nitrogen production functionsfor assessing yield and growth of wheat [J]. Fertilizer News,2001,46(2):43-53.
    [86]邓志英,田纪春,胡瑞波,等.适度高温对不同筋力冬小麦蛋白组分、面粉品质和面条加工品质的影响[J].中国粮油学报,2006,21(4):25-31.
    [87]李永庚,于振文,张秀杰,等.小麦产量和品质对灌浆期不同阶段低光照强度的响应[J].植物生态学报,2005,29(3):461-466.
    [88]郭文善,施劲松,彭永欣,等.灌浆期高温对小麦光合产物运转的影响[J].核农学报,1998,12(1):21-27.
    [89]封超年,郭文善,施劲松.小麦花后高温对籽粒胚乳细胞发育及粒重的影响[J].作物学报,2000,26(4):399-405.
    [90]郑飞,何钟佩.高温胁迫对冬小麦灌浆期物质运输与分配的影响[J].中国农业大学学报,1999,4(1):73-76.
    [91]山仑,陈培元.旱地农业生理生态基础[M].北京:科学出版社,1998.
    [92]王立秋,靳占忠,曹敬山,等.水肥因子对小麦耔粒及面包烘烤品质的影响[J].中国农业科学,1997,30(3):67-73.
    [93]王晨阳,郭天财,彭羽,等.花后灌水对小麦籽粒品质性状及产量的影响[J].作物学报,2004,30(10):1031-1035.
    [94]王俊儒,龚月桦,翟丙年,等.生育后期干旱对冬小麦产量和生理特性的影响[J].土壤通报,2005,36(6):908-912.
    [95]刘祖贵.不同时期干旱对强筋小麦产量与品质特性的影响[J].麦类作物学报,2008,28(5):877-882.
    [96]赵辉,戴廷波,姜东,等.高温下干旱和渍水对冬小麦花后旗叶光合特性和物质转运的影响[J].应用生态学报,2007,18(2):333-338.
    [97]张春庆,李睛棋.影响普通小麦加工馒头质量的主要品质性状的研究[J].中国农业科学,l993,(2):39-46.
    [98]戴忠民,王振林,张敏,等.不同品质类型小麦籽粒淀粉粒度的分布特征[J].作物学报,2008,34(3):465-470.
    [99] Evers AD. Scanning electron microscopy of wheat starch: Granule development in theendosperm [J]. Ⅲ Starch,1971,23:157-160.
    [100] Stoddard FL. Survey of starch particle-size distribution in wheat and related species [J].Cereal Chem.,1999,76:145-149.
    [101] Ellis RP, Cochrane MP, Dale MFB, et al. Starch production and industrial use [J]. J. Sci.Food Agric.,1998,77:289-3l1.
    [102] Raeker MO, Gaines CS, Finney PL, et al. Granule size distribution and chemicalcomposition of starches from12soft wheat cultivars [J]. Cereal Chem.,1998,75:721-728.
    [103] Morrison WR, Gadan H. The amylose and lipid contents of starch granules in developingwheat endosperm [J]. J. Cereal Sci.,1987,5:263-275.
    [104] Gaines CS, Raeker MO, Tuley M. Associations of starch gel hardness, granule size, waxyallelic expression, thermal pasting, milling quality, and kernel texture of12soft wheatcultivars [J]. Cereal Chem.,2000,77:163-168.
    [105] Sahlstrom S, Brathen E, Lea P. Influence of starch granule size distribution on breadcharacteristics [J]. J. Cereal Sci.,1998,157-164.
    [106]王晨阳,郭天财,阎耀礼,等.花后短期高温胁迫对小麦叶片光合性能的影响.作物学报,2004,30(1):88-91.
    [107]苗建利,王晨阳,郭天财,等.高温与干旱互作对两种筋力小麦品种籽粒淀粉及其组分含量的影响[J].麦类作物学报,2008,28(2):254-259.
    [108] Peng M., Gao M., Abdel-aal, et al. Separation and characterization of A-and B-type starchgranules in wheat endosperm [J]. Cereal Chem.,1999,76:375-379.
    [109] Malouf RB, Hoseney RC. Wheat hardness. I. A method to measure endosperm tensilestrength using tablets made from wheat flour [J]. Cereal Chem.,1992,69:164-168.
    [110]何照范.粮油籽粒品质及其分析技术[M].北京:中国农业出版社.1985.
    [111]尹燕枰,戴忠民,张敏,等.旱作和灌溉条件下小麦籽粒淀粉粒粒度的分布特征[J].作物学报,2008,34(5):795-802.
    [112] Panozzo JF, Eagles HA. Cultivar and environmental effects on quality characters inwheat:Ⅰ. Starch [J]. Aust. J. Agri. Res.,1998,49:757-766.
    [113]张传辉,姜东,戴廷波,等.小麦籽粒淀粒粒级分布特征及其与淀粉理化特性关系研究进展[J].麦类作物学报,2005,25(6):130-133.
    [114] Ross AS, Quail KJ, Crosbie GB. Physicochemical properties of Australian flours influencingthe texture of yellow alkaline noodles [J]. Cereal Chem.,1997,74:814-820.
    [115] Toyokawa H, Rubenthaler GL, Powers JR, et al. Japanese noodle qualities. Ⅱ. Starchcomponents [J]. Cereal Chem.,1989,66:387-391.
    [116]马冬云,郭天财,王晨阳,等.不同筋力小麦品种在不同生态环境下籽粒淀粉糊化特性分析[J].西北植物学报,2004,24(5):798-802.
    [117]姚大年,李保云,朱金宝,等.小麦品种主要淀粉性状及面条品质预测指标的研究[J].中国农业科学,1999,32(6):84-88.
    [118]李韬,徐辰武,胡治球,等.小麦杂种面粉糊化特性及其与亲本的关系[J].麦类作物学报,2003,23(1):17-20.
    [119] Oda M, Yasuda Y, Okazaki S, et al. A method for flour quality assessment for Japanesenoodles [J]. Cereal Chem.,1980,57:253-255.
    [120] McCormick KM, Panozzo JF, Hong SH. A swelling power test for selecting potential noodlequality wheat [J]. Aust. J. Agr. Res.,1991,42:317-323.
    [121]张勇,何中虎.我国春播小麦淀粉糊化特性研究[J].中国农业科学,2002,35(5):471-475.
    [122]马冬云,郭天财,王晨阳,等.不同麦区小麦品种籽粒淀粉糊化特性分析[J].华北农学报,2004,19(4):59-61.
    [123]阎俊,张勇,何中虎.小麦品种糊化特性研究[J].中国农业科学,2001,34(1):1-4.
    [124]姚大年,刘广田,朱金宝,等.基因型和环境对小麦品种籽粒性状及馒头品质的影响[J].中国粮油学报,2000,15(2): l-4.
    [125]刘建军,何中虎,杨金,等.小麦品种淀粉特性变异及其与面条品质关系的研究[J].中国农业科学,2003,36(1):7-12.
    [126] Peterson DG, Fulcher RG. Variation in Minnesota HRS wheats: starch granule sizedistribution [J]. Food Res. Int.,2001,34:357-363.
    [127] Whattam J, Cornell HJ. Distribution and composition of lipids in starch fractions fromwheat flour [J]. Starch,1991,43:152-156.
    [128] Sebecic B. Wheat flour starch granule size distribution and rheological properties of dough
    [A]. Amylographic measurements [C]. Die Nahrung,1996,40:209-212.
    [129]王宪泽,阚世红.部分山东小麦品种面粉粘度性状及其与面条品质相关性的研究[J].中国粮油学报,2004,196,8-10.
    [130]常成,马传喜,李保云,等.小麦粉碱性水保持力和膨胀势与其他品质性状的相关研究[J].中国农业大学学报,2005,10(2):30-35.
    [131]朱云集,马冬云,李向阳,等.两种冠温型冬小麦籽粒蛋白质和淀粉组分积累动态[J].植物生态学报,2006,30(2):352-358.
    [132]马冬云,郭天财,朱云集,等.施氮水平对两个冬小麦品种面色色泽及面条品质的影响[J].作物学报,2007,33(6):987-990.
    [133] Jenner CF. The physiology of starch and protein deposition in the endosperm of wheat [J].Aust. J. Plant Physiol.,1991,18:211-226.
    [134]李保云,刘桂芳,王岳光,等.小麦高分子量谷蛋白亚基的遗传规律研究[J].中国农业大学学报,2000,5(1):58-62.
    [135]邹奇.《植物生理学实验指导》[M].北京:中国农业出版社,2000.
    [136]吴良欢,蒋式洪,陶勤南.植物转氨酶(GOT和GPT)活度比色测定方法及其应用[J].土壤通报,1998,29((3):136-138.
    [137]孙辉,姚大年,李保云,等.普通小麦谷蛋白大聚合体的含量与烘烤品质的相关关系[J].中国粮油学报,1998,136:13-16.
    [138] Don C, Lichtendonk WJ, Plijter JJ, et al. Glutenin macropolymer: a gel formed by gluteninparticles [J]. J. Cereal Sci.,2003,37:1-7.
    [139] Don C, Lookhart G, Naeem H, et al. Heat stress and genotype affect the gluten in particlesof the gluten in macropolymer-gel fraction [J]. J. Cereal Sci.,2005,42:69-80.
    [140] Don C, Mann G, Bekes F, et al. HMW-GS affects the properties of glutenin particles in GMP and thus flour quality [J]. J. Cereal Sci.,2006,44:127-130.
    [141]孙辉,姚大年,李保云,等.基因型和环境因子对谷蛋白大聚合体含量的影响[J].麦类作物学报,2000,20(2):23-27.
    [142]赵琦,李勇,李文阳,等.水氮互作对不同基因型小麦HMW-GS含量及GMP粒度分布的影响[J].中国农业科学,2011,44(8):1571-1584.
    [143]梁太波,邬云海,尹燕枰,等.不同土壤条件下山农12小麦籽粒HMW-GS积累及GMP粒度分布特征[J].作物学报,2008,34(12):2160-2167.
    [144]倪英丽,陈晓光,王振林,等.磷肥对小麦籽粒HMW-GS积累及GMP粒度分布的影响[J].作物学报,2010,36(6):1055-1060.
    [145]蔡铁,倪英丽,王振林,等.氮硫肥配施对小麦籽粒谷蛋白大聚合体含量及粒度分布的影响[J].作物学报,2011,37(6):1060-1068.
    [146]崔志青,贺德先,蔡铁,等.喷施ABA对小麦籽粒谷蛋白组分含量及GMP粒度分布的影响[J].中国农业科学,2010,43(12):2595-2602.
    [147] Weegels PL, Hamer RJ, Schofield JD. RP–HPLC and capillary electrophoresis of subunitsfrom glutenin isolated by SDS and osborne fractionation [J]. J. Cereal Sci.,1995,22:211-224.
    [148] Don C, Lichtendonk WJ, Plijter JJ, et al. The effect of mixing on glutenin particle properties:aggregation factors that affect gluten function in dough [J]. J. Cereal Sci.,2004,1:69-83.
    [149] Zhu JB, Khan K. Characterization of nonnumeric and glutenin polymeric proteins of hardred spring wheats during grain development by multitasking SDS-PAGE and capillary zoneelectrophoresis [J]. Cereal Chem.,1999,76:261-269.
    [150] Jiang D, Yue H, Wollenweber B, et al. Effects of post-anthesis drought and waterlogging onaccumulation of high molecular weight glutenin subunits and glutenin macropolymer sizedistribution in wheat grain [J]. J. Agron. Crop Sci.,2009,5:89-97.
    [151] Carceller JL, Aussenac T. Size characterization of glutenin polymers by HPSEC-MALLS[J]. J. Cereal Sci.,2001,33:131-142.
    [152]赵惠贤,胡胜武,吉万全,等.小麦谷蛋白聚合体粒度分布与面粉揉面特性关系的研究[J].中国农业科学,2001,34(5):465-468.
    [153] Bean SR, Lyne RK, Tilley KA, et al. A rapid method for quantitation of insoluble polymericproteins in flour [J]. Cereal Chem.,1998,75:374-379.
    [154] Don C, Lichtendonk WJ, Plijter JJ, et al. Understanding the link between GMP and dough:from glutenin particles in flour towards developed dough [J]. J. Cereal Sci.,2003,38:157-165.
    [155] Weegels PL, Pijpekamp AM, Graveland A, et al. Depolymerisation and re-polymerisation ofwheat glutenin during dough processing.I. relationships between glutenin macropolymercontent and quality parameters [J]. J. Cereal Sci.,1996,23:103-111.
    [156] Deng Z, Tian J, Zhao L, Zhang Y, Sun C. High temperature-induced changes in highmolecular weight glutenin subunits of chinese winter wheat and its influences on the textureof chinese noodles [J]. J. Agronomy Crop Sci.,2008,194:262-269.
    [157] Wheeler TR, Hong TD, Ellis RH. The duration and rate of grain growth, and harvest indexof wheat in response to temperature [J]. J Exp. Bot.,1996,47:623-630.
    [158] Shah NH, Paulsen GM. Interaction of drought and high temperature on photosynthesis andgrain-filling of wheat [J]. Plant and Soil.2003,257(1):219-226.
    [159]王晨阳,郭天财,阎耀礼,等.花后短期高温对小麦旗叶光合特性的影响[J].作物学报,2004,30(1):111-114.
    [160]吴少辉,高海涛,王书子,等.干旱对冬小麦粒重形成的影响及灌浆特性分析[J].干旱地区农业研究,2002,20(2):49-51;64.
    [161] Peterson DG, Fulcher RG. Variation in Minnesota HRS wheats: starch granule sizedistribution [J]. Food Res. Int.,2001,34:357-363.
    [162] D Appolonia BL, Gilles KA. Effect of various starch in baking [J]. Cereal Chem.,1971,48:625-636.
    [163] Tang H, Watanabe K, Mitsunaga T. Structure and functionality of large, medium and smallgranule starches in normal and waxy barley endosperms [J]. Carbohydrate Polymers,2002,49:217-224.
    [164] Verwimp T, Vandeputte GE, Marrant K, et al. Isolation and characterisation of rye starch [J].J. Cereal Sci.,2004,39:85-90.
    [165] Johanson E, Svensson G, Tsegaye S. Genotype and environment effects on bread makingquality of Swedish—grown wheat cultivars containing high-molecular weight gluteninsubunits2+12or5+10[J]. J. Soil Plant Sci.,1999,49(4):225-233.
    [166] Payne PI. Relationship between HMW glutenin subunit composition and the bread-makingquality of British-grown wheat varieties [J]. J. Sci. Food Agric.,1987,40:51-65.
    [167]赵友梅,王淑俭.高分子量麦谷蛋自亚基的SDS-PAGE图谱在小麦品质研究中的应用[J].作物学报,1990,16(3):208-218.
    [168]石玉,张永丽,于振文.小麦籽粒蛋白质组分含量及其与加工品质的关系[J].作物学报,2009,35(7):1306-1312.
    [169]邓志英,田纪春,刘现鹏.不同高分子量谷蛋白亚基组合的小麦籽粒蛋白组分及其谷蛋白大聚合体的积累规律[J].作物学报,2004,30(5):481-486.
    [170] DuPont FM, Hurkman WJ, Vensel WH, et al. Protein accumulation and composition inwheat grains: effects of mineral nutrients and high temperature [J]. Eur. J. Agron.,2006,25:96-107.
    [171] Spiertz J H J, Hamer R J, Xu H, et al. Heat stress in wheat (Triticum aestivum L.): effects ongrain growth and quality traits [J]. Eur. J. Agron.,2006,25:89-95.
    [172]张庆江,张立言,毕桓武.普通小麦碳氮物质积累分配特征及与籽粒蛋白质的关系[J].华北农学报,1996,11(3):57-62.
    [173]杜金哲,李文雄,胡尚连.春小麦不同品质类型氮的吸收、转化利用及与籽粒产量和蛋白质含量的关系[J].作物学报,2001,27(2):253-260.
    [174] Barbotin A, Lecomte C, Bouchard C, et al. Nitrogen remobilization during grain filling inwheat: Genotypic and environmental effects [J]. Crop Sci.,2005,45:1141-1150.
    [175]常江.小麦湿害营养及其营养调控效应研究[J].应用生态学报,2000,11(3):373-376.
    [176] Liu HS, Li FM. Root respiration, photosynthesis and grain yield of two spring wheat in response to soil drying [J]. Plant Growth Regulation,2005,46:233-240.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700