用户名: 密码: 验证码:
小麦分蘖发生调控及构建合理群体结构的化控途径
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦是最基础的粮食作物之一。人口增长与社会发展对小麦产量呈刚性需求,同时种植面积难以持续扩大,决定了我国小麦生产发展必须以提高单产来增加总产。小麦群体的结构与质量是提高小麦单产的基础,其直接受小麦个体发育的影响。而植株个体生长发育呈异质性,小麦个体由主茎和一系列分蘖构成,由于茎蘖的不同空间位置和发生时间,决定了其生长发育的明显差异性,由此预示着其茎蘖间具有不同的生产力。因此,可通过以小麦优势茎蘖为基础构建合理的群体结构以提高小麦产量。为重组群体的茎蘖构成,关键在于调控小麦分蘖的发生与发育。小麦的分蘖由分蘖芽发育而来,激素在分蘖芽生长过程中起重要作用。因而,外施激素可作为调控分蘖发生发育的有效措施。为此,本研究中,通过两个不同类型小麦品种,评价茎蘖间生产力差异;分析外源激素对分蘖发生的影响及潜在机制;调查通过外源激素处理,改变小麦茎蘖构成后,对小麦产量的影响。明确了以上问题,可为通过重组小麦茎蘖构成以构建高产的合理群体结构提供理论基础与技术支持。主要研究结果如下:
     1小麦茎蘖生产力差异及其生理基础
     低位蘖(早发生蘖)比高位蘖(后发生蘖)具有较多的穗粒数,较多的可孕小穗数、较少的不孕小穗数及较高的粒重,直接决定了其保持较高的单穗产量。通过对不同蘖位单茎单穗产量及其构成因素进行系统聚类分析,山农15茎蘖可分为2组,一组定义为强势蘖,包括0、I和II,另一组定义为弱势蘖,包含III和I-p。而山农8355则可分为3组,0和I为强势蘖,II和III为中势蘖,I-p为弱势蘖。
     进一步分析产生差异的相关生理生化指标,结果显示,在小麦籽粒灌浆期,旗叶光合速率呈下降趋势,且低位蘖的旗叶光合速率明显高于同期高位蘖的光合速率。两小麦品种中,强势粒和弱势粒灌浆速率均先升高后降低,呈“∧”型,而粒重增加则呈“S”型。低位蘖籽粒较高位蘖籽粒有较高的灌浆速率,且较早到达最大灌浆速率。同时,粒重在整个灌浆进程中呈增加趋势,且低位蘖一直较高位蘖保持较高的粒重。通过分析小麦不同蘖位功能叶衰老特性得出,超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性随灌浆进程均呈下降趋势,且低位蘖功能叶较同期高位蘖功能叶保持较高的酶活性。与抗氧化酶活性变化相反,丙二醛(MDA)含量呈上升趋势,且低位蘖较高位蘖功能叶一直保持较低的MDA含量水平。而可溶性蛋白则在低位蘖功能叶中保持较高水平。随着蘖位的升高,单茎生物量表现下降趋势,与此类似,单茎经济系数也随蘖位的升高而降低。
     由此表明,小麦不同茎蘖间存在明显的产量差异。低位蘖较高位蘖具有较强的光合能力、灌浆能力、抗衰老能力以及较高的单茎生物量和经济系数,决定了前者在生产力上具有明显的优势。
     2外源激素对小麦分蘖发生生长的调控及作用机制
     两小麦品种在不同外源激素处理下分蘖I、II、III、I-p均能发生。而喷施IAA和GA3显著降低了分蘖IV、I-1、II-p、II-1的发生率。与外源IAA和GA3对分蘖发生率的影响不同,喷施ABA仅降低了分蘖IV、II-1的发生率,而对分蘖I-1、II-p的发生率无明显影响。小麦分蘖由分蘖芽发育而来,进一步分析外源激素对分蘖芽的调控效应,结果显示,外源IAA和GA3完全抑制分蘖芽的生长,而外源ABA明显减缓了分蘖芽的生长速率。
     激素在调控小麦分蘖芽生长中起关键作用。分蘖芽生长过程中,分蘖节中内源ZT含量呈明显上升趋势。喷施IAA和GA3显著降低了ZT含量。而ABA处理中,内源ZT含量于处理后缓慢上升,但明显低于CK处理。喷施IAA和GA3于处理后明显提高了分蘖节中IAA含量。CK和ABA处理,分蘖节中IAA含量略有升高或降低,无明显规律性。CK、IAA和ABA处理中,分蘖节中GA3含量基本保持不变,且处理间无显著差异;而喷施GA3处理后,分蘖节中GA3含量呈先升高后降低趋势,于处理后2d达到峰值,随后迅速下降。在分蘖芽生长过程中,分蘖节中ABA含量保持稳定,且IAA和CK处理间无显著性差异;而ABA和GA3处理中其含量均呈先升后降趋势。同时,分蘖发生不仅受激素绝对含量的影响,还取决于激素间相对含量。外源IAA和GA3较对照和ABA处理显著提高了分蘖节中IAA/ZT水平。随分蘖芽生长,分蘖节中ABA/ZT呈下降趋势,而IAA处理中其比值基本保持不变,GA3和ABA处理中其比值则呈现先升后降的趋势。其中,外源ABA处理后,ABA/ZT于处理后2d达到峰值,而GA3处理中其峰值出现在处理后4d。
     相关性分析显示,分蘖芽的生长与ZT呈显著的正相关,与IAA、IAA/ZT和ABA/ZT呈显著负相关,与GA3和ABA呈不显著的负相关。
     由此表明,IAA和ZT在小麦分蘖发生过程中起关键作用,外源激素主要通过影响内源IAA、ZT含量,以改变IAA/ZT和ABA/ZT来影响分蘖芽的生长,进而调控小麦分蘖的发生。
     3外源激素对小麦群体动态和籽粒产量影响
     从出苗到成熟,两小麦品种单位面积总茎数变化均先升高后降低,呈“∧”型。与对照相比,外施IAA、GA3和ABA可显著降低越冬期和拔节期单位面积总茎数;同时,IAA和GA3处理下单位面积总茎数又低于ABA处理,且IAA与GA3处理间无显著性差异。随后,单位面积总茎数迅速下降,至抽穗期和成熟期,各处理间无明显差异。
     外源激素处理后,两品种小麦单茎生物量均明显提高。此外,喷施外源激素对山农15各蘖位单茎的经济系数无明显影响;而显著提高了山农8355各蘖位单茎的经济系数。两小麦品种,单茎穗粒数、粒重随蘖位升高而呈下降趋势。与对照相比,外施IAA、GA3和ABA明显提高了各蘖位单茎穗粒数和粒重。然而,外施激素对小麦单位面积穗数无明显影响。喷施外源激素显著提高了小麦产量,且外源IAA的增产作用优于GA3和ABA处理。
     由此得出,外源激素主要通过改善群体结构促进小麦个体发育进而影响穗粒数和粒重以调控小麦产量。
     4基于重组小麦茎蘖组成构建合理群体结构的化控途径
     山农15的稳定穗数为750穗·m2左右,其优势蘖为0,I和II,为实现基于优势蘖重组群体的茎蘖构成,可提高种植密度至240株·m2的同时喷施外源IAA(60mg·L1),通过抑制分蘖发生而降低越冬期和拔节期单位面积总茎数,改善群体空间环境,促进单茎个体发育,提高单茎粒数、粒重,进而提高小麦产量。而山农8355,其稳定穗数为570穗·m-2左右,通过提高种植密度至270株·m2结合喷施外源IAA(60mg·L1)构建以优势蘖(0和I)为主的群体结构。
Wheat (Triticum aestivum L.) is one of the primary food crops. Social development andpopulation growth also indicate that there is rigid demand for high-yield wheat, which mainlyrely on raising yield per unit area at present. The structure and quality of wheat population arethe basis of increasing yield per unit area and directly influenced by individual plantdevelopment. Additionally, the development of individual plant is asynchronous. A wheatplant is composed of a number of tillers, which initiate at different times and differ in tillerposition. It indicates that the tillers of wheat have different production capacity, depending onthe occurrence time and spatial position of tillers. Therefore, for enhancing the yield potentialof wheat, a way is to construct rational population structure of wheat based on the superiortillers, which have superiority over the other tillers in terms of productive forces. Torestructure the tillers components of wheat population, the key is regulating the occurrenceand development of tillers. The tillers develop from tiller buds, and hormones play key rolesin regulating the growth of tiller buds. So, external hormone application can be used as aneffective measure to regulating the occurrence and development of tillers. In the present study,the objective was to elucidate the grain yield among tillers, analyse the underlyingmechanisms between endogenous hormones and the occurrence of wheat tiller induced byexogenous hormones, and investigate the effect of exogenous hormones on the grain yield ofwheat on the basis of changing the tillers components. A greater understanding of thatinformation can provide a theoretical basis to restructure the tillers components to obtain therational population structure of high-yield wheat. The main results were as follows:
     1The difference in grain yield and the underlying mechanisms among tillers in wheat
     Low position tillers (early initiated tillers) had higher yield per spike than that of high position tillers (late initiated tillers) in both cultivars,which was attributed to more grainnumber per spike, more fertile spikelet per spike, less sterile spikelet per spike and highergrain weight in low position tillers. According to cluster analysis, tillers of SN15wereclassified into2groups, one was defined as superior tiller group, which included main stem(0), the first primary tiller (I) and the second primary tiller (II); the other one was inferiortiller group, which included the third primary tiller (III) and the first secondary tiller (I-p).Meanwhile, tillers of SN8355were classified into3groups as follows, superior tiller group (0,I), intermediate tiller group (II, III) and inferior tiller group (I-p).
     Further analyzing the biological basis of the difference, the results showed: The flag leafphotosynthetic rate gradually declined during the grain filling periods, and the flag leaf of lowposition tillers had higher photosynthetic rate than those of high position tillers. For twocultivars, the grain filling rate increased first and then decreased in both superior and inferiorgrain, showed the ‘∧’ model, while the grain weight increase showed the ‘S’ model duringthe grain filling. Additionally, grains (superior and inferior grain) of low position tillers hadhigher filling rate and reached a maximum filling rate earlier than those of high position tillersin both cultivars. Furthermore, the grain weight gradually increased during the whole grainfilling periods, and grains of low position tillers had greater grain weight than those of highposition tillers during the entire grain filling periods. Investigating the changes in leavessenescence characteristics with depth of canopy at different tiller positions in wheat, activityof superoxide dismutase (SOD), peroxidase (POD) and Catalase (CAT) showed decreasingtendency during the entire grain filling periods in the two cultivars, and the leaf of lowposition tillers had higher activity than those of high position tillers. Contrary to antioxidantenzyme activities, the content of methane dicarboxylic aldehyde (MDA) gradually increasedduring the grain filling period and the leaves of low position tillers had lower MDA contentsthan those in the high position tillers. Furthermore, in contrast to MDA, the soluble proteincontents in low position tillers were rather higher than those in high position tillers. Thesingle-stem biological yield was decreased with rising of tiller positions. Similar tosingle-stem biological yield, the low position tillers had higher single-stem economiccoefficient than those of high position tillers.
     These results suggested that the grain yield among tillers in wheat differed obviously. The low position tillers had stronger leaf photosynthetic capacity, more predominance in terms ofgrain filling, better senescence resistance, higher biological yield and larger economiccoefficient than those in high position tillers, determining that the former had superiority overthe latter in terms of productive forces.
     2The effect of exogenous hormones on the occurrence of wheat tiller and the actionmechanisms
     The occurrence of0, I, II, III and I-p were normal under different treatments. Thepercentage of IV, I-1, II-p and II-1occurrence tended to decline with external application IAAor GA3. As compared with the IAA and GA3treatment, external ABA only inhibited theoccurrence of IV and II-1. The tillers develop from tiller buds. Considering the two cultivars,exogenous IAA and GA3completely inhibited the tiller buds growth, while exogenous ABAsignificantly slowed the growth rate of tiller buds compared with the control.
     Hormones play key roles in regulating the growth of tiller buds. The ZT contents in thetiller nodes increased as the growth of tiller buds. Exogenous IAA and GA3significantlyreduced ZT contents after treatment. While, ABA treatment increased the ZT content in tillernodes, but the levels remained lower than that in the control plants after treatment. Theapplication of IAA and GA3significantly increased the IAA levels in the tiller nodes aftertreatment. In addition, there were irregular changes in the IAA level under the CK and ABAtreatments. The GA3levels in the tiller nodes remained nearly constant during the entireexperiment period, and had no significant difference among the CK, IAA and ABA treatmentgroups. However, the content of GA3significantly increased after GA3treatment, reaching apeak at2d post treatment and then decreasing gradually. The ABA levels remainedapproximately constant during the entire experiment period and showed no significantdifference among the CK and IAA treatment groups. While, the content of ABA increasedfirst and then decreased under ABA and GA3treatments. Numerous studies have also shownthat the mechanisms of the tiller occur depend on the balance between endogenous hormonesrather than the absolute level of an individual hormone. External IAA and GA3significantlyincreased the IAA/ZT level in the tiller nodes compared with the CK and ABA treatmentgroups. The ABA/ZT levels in the tiller nodes of the control plants gradually decreased duringthe entire experiment period. The ratio remained nearly constant in the IAA treatment groups after treatment. However, the application of ABA and GA3significantly increased the ratiofirstly, reaching a peak at2d post treatment and4d post treatment, respectively, and thendecreasing gradually.According to correlation analysis, the tiller buds growth was significantly and positivelycorrelated with the content of ZT, whereas significantly and negatively correlated with theIAA contents and the ratios of IAA to ZT and ABA to ZT. Moreover, no significantcorrelation was observed between the tiller buds growth and the contents of GA3and ABA.
     These results suggested that IAA and ZT play key roles in regulating the occurrence of tiller,and exogenous hormones regulated the growth of wheat tiller buds via affecting the contentsof IAA and ZT, the ratio of IAA to ZT and ABA to ZT in tiller nodes, thus regulating the tilleroccur in wheat.
     3The effect of exogenous hormones on the population dynamics and grain yield ofwheat
     For two cultivars, the stem number per square meter increased first and then decreasedfrom seedling emergence to maturity, showed the ‘∧’ model. At the stages of wintering andjointing, the number of stem per square meter obviously decreased with external applicationof IAA, GA3and ABA compared with those under the control. And the stem number persquare meter under IAA and GA3treatment markedly lower than that in ABA groups, whilethe differences of numbers between IAA and GA3groups were not significant. Then thenumber of stem decreased rapidly. At the stages of heading and maturity, there were nosignificant differences in the stem numbers per square meter from the IAA, GA3, ABA andcontrol treatments.
     The single-stem biological yield all increased under exogenous hormones treatmentcompared with the control. In addition, for SN15, there were no significant differences in thesingle-stem economic coefficient from the IAA, GA3, ABA and control treatments. However,the single-stem economic coefficient obviously increased under the application of IAA, GA3and ABA when compared with those under the control in SN8355. The number of grain perspike and single-kernel weight tended to decline with rising of tiller position in the twocultivars. Compared with the control, the application of IAA, GA3and ABA obviouslyincreased the grain number per spike and single-kernel weight. However, there were no significant differences in the spike number per square meter from the IAA, GA3, ABA andcontrol treatments. Moreover, grain yield increased with external IAA, GA3, ABA application,while external IAA was more beneficial to improve the grain yield than GA3and ABAtreatments.
     These results suggested that exogenous hormones regulated the number of grain per spikeand single-kernel weight via promoting the growth of individual plant, which affected bypopulation density, thus regulating the grain yield of wheat.
     4The path of chemical control of constructs the rational population structure based onchanges of tillers components of wheat population
     The relatively stable spike numbers per area of Shannong15was about750spikes m2. Theresult showed that0, I and II were superior tiller in SN15, which had superiority over theother tillers in terms of productive forces. Therefore, the plant density was designed,240plants m2. To restructure the tillers components of wheat population based on superior tiller,increasing plant density to240plants m2with external application of IAA (60mg L1IAA)could reduce the number of stem per square meter at the stages of wintering and jointing viainhibiting more tillers occur, which could promote the development of individual plant. Thenthe wheat plant had more grain number and higher single-kernel weight than those in the highplant density treatment, resulted in increasing in grain yield. For SN8355, the relatively stablespike numbers per area was about570spikes m2. To restructure the tillers components ofwheat population based on superior tiller (0and I), the plant density was set to270plants m2,meanwhile with external application of60mg L1IAA.
引文
代西梅,尚玉磊,赵保风.不同分蘖特性小麦内源激素变化动态及其与分蘖发生关系的研究.河南师范大学学报(自然科学版),2000,28(3):78-82
    董树亭.高产麦田群体结构与光合作用的关系.山东农业大学学报,1992,23(1):27-30
    陈雨海,余松烈,于振文.小麦生长后期群体光截获量及其分布与产量的关系.作物学报,2003,29(5):730-734
    冯惟珠.小麦高产群体质量及其优化控制技术研究与应用研究报告.江苏农学院学报,1995,(16):52-63
    高德全,夏镇澳.群体条件下小麦各生育时期光合产物的运输分配.小麦丰产研究论文集,上海科学技术出版社,1965,126-132
    高松洁,王文静,郭大财,韩锦峰.不同穗型冬小麦品种灌浆期旗叶碳氮代谢特点及籽淀粉积累动态.作物学报,2003,29(3):427-431
    高翔,宁锟.小麦高产品种分蘖特性与成穗规律的研究.西北农业学报,1994,3(4):17-22
    郜庆炉,薛香,吴玉娥,茹振钢.暖冬条件下播期对不同幼穗分化的影响.应用生态学报,2003,14(10):1627-1631
    郭天财,彭羽,朱云集,刘万代,崔金梅.播期对不同穗型、筋型优质冬小麦影响效应的研究.耕作与栽培,2001,(2):19-20
    郭天财,王之杰,胡延积,朱云集,王晨阳,王化岑,王永华.不同穗型小麦品种群体光合特性及产量性状的研究.作物学报,2001,27(5):632-639
    韩胜芳,李淑文,文宏达,李雁鸣,肖凯.不同氮效率小麦品种的光合碳同化特性.植物营养与肥料学报,2006,12(6):797-804
    黄高宝.集约栽培条件下间套作的光能利用理论发展及其应用.作物学报,1999,25(1):16-24
    黄凤莲,戴良英,罗宽.药剂诱导水稻幼苗抗寒机制研究.作物学报,2000,26(1):92-97
    洪晓富,蒋彭炎,郑寨生,卢昌银,王撮明.水稻分蘖期喷施赤霉素(GA3)对控制分蘖和提高成穗率的效果.浙江农业科学,1998,(1):3-5
    姜东,于振文.高产小麦营养器官临时贮存物质积运及其对粒重的贡献.作物学报,2003,29(1):31-36
    金善宝.中国小麦学.北京:中国农业出版社,1996
    康书江,赵春江,郭晓维.植物内源激素对小麦生长发育调控机理的研究Ⅱ.冬小麦拔节前植物内源激素变化规律的初步研究.麦类作物,1999,19(4):51-53
    卢布.小麦成穗研究进展.麦类作物,1998,18(6):39-42
    李春喜,赵光才,代西梅.小麦分蘖与内源激素关系的研究.作物学报,2000,26(6):963-968
    李伏生,康绍忠,张富仓.大气CO2浓度和温度升高对作物生理生态的影响.应用生态学报,2002,13(9):169-173
    李娜娜,田奇卓,王树亮,谢连杰,裴艳婷,李慧.两种类型小麦品种分蘖成穗对群体环境的响应与调控.植物生态学报,2010,34(3):289-297
    李永庚,蒋高明,杨景成.温度对小麦碳氮代谢、产量及品质影响.植物生态学报,2003,27(2):164-169
    李永攀,罗培高,任正隆.小麦持绿性及其与产量关系研究.西南农业学报,2008,21(5):1121-1125
    梁银丽,康绍忠,张成娥.不同水分条件下小麦生长特性及氮磷营养的调节作用.干旱地区农业研究,1999,17(4):58-64
    梁振兴,马兴林.冬小麦分蘖发生过程中内源激素作用的研究.作物学报,1998,24(6):788-792
    凌启鸿.水稻高产群体质量及其优化控制初论.南京:江苏省农林厅、江苏农学会,1991
    刘丰明,陈明灿,郭香凤.高产小麦粒重形成的灌浆特性分析.麦类作物,1997,17(6):38-41
    刘洪展,郑风荣,赵世杰.不同衰老类型小麦品种在衰老过程中光合特性的变化.华北农学报,2006,21(3):13-15
    刘杨,王强盛,丁艳锋,刘正辉,李刚华,王绍华.氮素和6-BA对水稻分蘖芽发育的影响及其生理机制.作物学报,2009,35(10):1893-1899
    刘杨,丁艳锋,王强盛,李刚华,许俊旭,刘正辉,王绍华.植物生长调节剂对水稻分蘖芽生长和内源激素变化的调控效应.作物学报,2011,37(4):670-676
    陆增根,戴廷波,姜东,荆奇,吴正贵,周培南,曹卫星.氮肥运筹对弱筋小麦群体指标与产量和品质形成的影响.作物学报,2007,33(4):590-597
    罗陪高,任正隆,吴先华.延缓小麦衰老的结构和生物化学机制.科学通报,2006,51(18):2154-2160
    骆兰平,于振文,王东,张永丽,石玉.土壤水分和种植密度对小麦旗叶光合性能和干物质积累与分配的影响.作物学报,2011,37(6):1049-1059
    马兴林,梁振兴.冬小麦分蘖衰亡过程中内源激素作用的研究.作物学报,1997,23(2):200-207
    苗果园.试论超高产育种与栽培的结合.作物杂志,(1):8-9
    潘洁,姜东,曹卫星,孙传范.小麦穗籽粒数、单粒重及单粒蛋白质含量的小穗位和粒位效应.作物学报,2005,31(4):431-437
    裴雪霞,王姣爱,党建友,张定一.基因型和播期对优质小麦生长发育及产量的影响.中国生态农业学报,2008,16(5):1109-1115
    屈会娟,李金才,沈学善,魏凤珍,王成雨,郅胜军.种植密度和播期对冬小麦品种兰考矮早八干物质和氮素积累与转运的影响.作物学报,2009,35(1):124-131
    尚玉磊,李春喜,邵云.禾本科主要作物生育初期内源激素动态及其作用的比较.华北农学报,2004,19(4):47-50
    申丽霞,王璞.玉米穗位叶碳氮代谢的关键指标测定.中国农学通报,2009,25(24):155-157
    申玉香,郭文善,周影,朱新开,封超年,彭永欣,封功能.氮素和基本苗对宁盐一号小麦籽粒产量、群体质量与蛋白质及其组分含量的影响.麦类作物学报,2007,27(1):134-137
    石佰达,周素英,吴健.小麦群体指标及优质高产规范化栽培技术的实践与探讨.安徽农业科学,2000,28(6):718-719
    史宏志,韩锦峰.烤烟碳氮代谢几个问题的探讨.烟草科技,1998,(2):34-36
    司纪升,王法宏,李升东,冯波,孔令安.不同种植方式对小麦群体质量和产量结构的影响.麦类作物学报,2006,26(6):136-139
    孙传范,戴廷波,曹卫星.不同施氮水平下增铵营养对小麦生长和氮素利用的影响植物营养与肥料学报,2003,9(1):33-38
    孙海国,张福锁.不同施磷方式对小麦生长的影响.土壤肥料,2000,(6):46-46
    孙宏勇,刘昌明,张喜英,陈素英,裴冬.不同行距对冬小麦麦田蒸发、蒸散和产量的影响.农业工程学报,2006,22(3):22-26
    唐家斌,万勇,王文明,马炳田,刘勇,李浩杰,夏红爱,李平,朱立煌.水稻寡分蘖突变体的遗传分析和基因定位.中国科学·C辑,2001,31(3):208-212
    王东,于振文,贾效成.播期对强筋冬小麦籽粒产量和品质的影响.山东农业科学,2004,(2):25-26
    王法宏,赵君实.不同熟相小麦品种生育后期的群体光合强度及同化物的运转分配.核农学报,1996,10(2):89-92
    王光明,刘保国,陈静,任昌福.内源激素ABA对水稻再生芽萌发的影响.西南农业大学学报,1997,19(4):338-342
    王如芳,张吉旺,吕鹏,董树亭,刘鹏,赵斌.不同类型玉米品种分蘖发生过程中内源激素的作用.中国农业科学,2012,45(5):840-847
    王绍华,揭水通,丁艳锋,王强盛.控蘖剂调控水稻分蘖发生的效果.江苏农业学报,2002,18(1):29-32
    王秀莉,胡兆荣,彭惠茹,杜金昆,孙其信,王敏,倪中福.普通小麦光合碳同化与产量性状杂种优势的关系.作物学报,2010,36(6):1003-1010
    王旭东,于振文.施磷对小麦产量和品质的影响.山东农业科学,2003,(6):35-36
    王义芹,谭伟,杨兴洪,李滨,童依平,李振声.不同年代小麦品种旗叶的光合特性及抗氧化酶活性研究.西北植物学报,2007,27(12):2484-2490
    王永胜,王景,段静雅,王金发,刘良式.水稻极度分蘖突变体的分离和遗传学初步研究.作物学报,2002,28(2):235-239
    王月福,于振文,李尚霞,余松烈.氮素营养水平对小麦旗叶衰老过程中蛋白质和核酸代谢的影响.植物营养与肥料学报,2003,9(2):178-183
    王志敏,王树安.小麦穗茎生长与穗粒数的关系.北京农业科学,1996,14(3):4-7
    魏育明,郑有良.植物内源激素对小麦分蘖成穗的影响研究.第四届青年作物遗传育种学术会议论文集,1997:87-91
    吴梅菊,刘荣根.磷肥对小麦分蘖动态和产量的影响.江苏农业科学,1998,(1):48-49+57
    吴玉娥,薛香,郜庆炉,段爱旺,杨文平.行距对超高产小麦产量和品质的影响.麦类作物学报,2004,24(3):84-86
    徐丽娜,冯伟,盛坤,朱云集,马冬云,郭天财.不同种植密度下兰考矮早八茎蘖叶片内源激素差异及其与分蘖成穗的关系.作物学报,2010,36(9):1596-1604
    杨国敏,孙淑娟,周勋波,陈雨海,齐林,高会军,刘岩.群体分布和灌溉对冬小麦农田光能利用的影响.应用生态学报,2009,20(8):1868-1875
    杨卫兵,王振林,尹燕枰,李文阳,李勇,陈晓光,王平,陈二影,郭俊祥,蔡铁,倪英丽.外源ABA和GA对小麦籽粒内源激素含量及其灌浆进程的影响.中国农业科学,2011,44(13):2673-2682
    杨文平,郭天财,刘胜波,王晨阳,王永华,马冬云.行距配置对‘兰考矮早八’小麦后期群体冠层结构及其微环境的影响.植物生态学报,2008,32(2):485-490
    杨文钰,樊高琼,任万君,赵莉,董兆勇,韩惠芳.烯效唑干拌种对小麦光合作用和14C同化物分配的影响.作物学报,2005,31(9):1173-1178
    杨文钰,韩惠芳,任万君,赵莉,樊高琼.烯效唑干拌种对小麦分蘖期间内源激素及糖氮比的影响.作物学报,2005,31(6):760-765
    杨小利,蒲金涌,王立科,张谋草.光温因子对冬小麦发育·产量的影响.安徽农业科学,2009,37(26):12451-12453
    叶优良,韩燕来,谭金芳.中国小麦生产与化肥施用状况研究.麦类作物学报,2007,27(1):127-133
    于振文.作物栽培学各论.中国农业出版社,2003
    余松烈,赵君实,王吉云.山东小麦.北京农业出版社,1990
    张国平,张光恒.小麦氮素利用效率的基因型差异研究.植物营养与肥料学报,1996,2(4):331-336
    张晶,王妓爱,党建友,张定一.冬小麦主茎和分蘖产量和品质差异的研究.麦类作物学报,2010,30(3):526-528
    张黎萍,荆奇,戴廷波,姜东,曹卫星.温度和光照强度对不同品质类型小麦旗叶光合特性和衰老的影响.应用生态学报,2008,19(2):311-316
    张嵩午,王长发,姚有华.小麦叶片的非顺序性衰老.自然科学进展,2009,19(7):711-717
    张嵩午,王长发,姚有华.小麦叶片的逆向衰老.中国农业科学,2010,43(11):2229-2238
    张维城,王志和,任永信,朱明哲.有效分集终止期控制措施对小麦群体质量影响的研究.作物学报,1998,24(6):903-907
    张永丽,肖凯,李雁鸣.种植密度对杂种小麦C6-38/Py85-l旗叶光合特性和产量的调控效应其生理机制.作物学报,2005,31(4):498-505
    张志良.植物生理学实验指导.北京:高等教育出版.2003
    张祖德.提高水稻成穗率的化学调控技术研究.福建稻麦科技,2006,(6):10-13
    张作仿,姜文武,王自旺,张传海,陈久月.小麦新品种皖麦17选育的理论与实践.遗传学报,1996,23(5):387-396
    赵昌平,董克勤,诸德辉.小麦不同生育期光合产物的分配特性研究,北京农业科学,1995,13(4):12-15
    赵广才.冬小麦主茎和分蘖的植株性状及分蘖合理利用的研究.莱阳农学院学报,1993,10(1):6-8
    赵会杰,郭天财,邹琦.不同穗型小麦品种分桑发育的代谢基础研究.西北植物学报,2002,22(2):215-220
    郑光华.植物栽培生理.山东科学技术出版社,1980
    郑湘如,王丽.植物学.北京:中国农业大学出版社,2001
    周传凤,李扬瑞,杨丽涛.乙烯利对甘蔗分蘖期茎三种酶活性的影响及其与分蘖的关系.广西植物,2007,27(4):649-652
    周鸿凯,郭建夫,黎华寿,吴钿,张建中.光温因子与杂交水稻生态群体的产量和品质性状的典型相关分析.应用生态学报,2006,17(4):663-667
    周顺利,张福锁,王兴仁.高产条件下不同品种小麦冬小麦氮素吸收与利用特性的比较研究.土壤肥料,2000,(6):20-23
    周羊梅,郭文善,封超年,朱新开,吴红炎,葛才林,罗时石,彭永欣.不同生育时期小麦茎蘖光合产物的分配.麦类作物学报,2004,24(3):60-63
    朱根海.叶片含氮量与光合作用.植物生理学通讯,1985,(2):9-12
    朱庆森,曹显祖,骆亦其.水稻籽粒灌浆的生长分析.作物学报,1988,14(3):182-192
    朱云集,郭汝礼,郭天财,张庆友,王之杰,王永华.行距配置与密度对兰考906群体质量及产量的影响.麦类作物学报,2001,21(2):62-66
    朱云集,郭汝礼,郭天财.两种穗型冬小麦品种分蘖成穗与内源激素之间关系的研究.作物学报,2002,28(6):783-788
    朱中华,段留生,冯雪梅,韩碧文,何钟佩.内源激素对小麦叶片衰老调控的系统分析.作物学报,1998,24(2):176-181
    Aroca R., Vernieri P., Irigoyen J. J, Sanchez M., Tognoni F., Pardossi A. Involvement ofabscisic acid in leaf and root of maize (Zea mays L.) in avoiding chilling-induced waterstress. Plant Science,2003,165(3):671-679
    Bangerth F. Response of CK concentration in the xylem exudates of bean (Phaseolus vulgarisL.) plants to decapitation and auxin treatment, and relationship to apical dominance.Planta,1994,194(3):439-442
    Beyer W. F., Fridovich I. Assaying for superoxide dismutase activity: some largeconsequences of minor changes in conditions. Analytical biochemistry,1987,161(2):559-566
    Bowler C., Montagu M. V., Inze D. Superoxide dismutase and stress tolerance. Annual Reviewof Plant Physiology and Plant Molecular Biology,1992,43(1):83-116
    Bradford M. A rapid and sensitive method for the quantization of microgram quantities ofprotein utilizing the principles of protein dye binding. Analytical biochemistry,1976,72(1):248-254
    Cabrera-Bosquet L., Albrizio R., Araus J. L., Salvador N. Photosynthetic capacity offield-grown durum wheat under different N availabilities: A comparative study from leafto canopy. Environmental and Experimental Botany,2009,67(1):145-152
    Calderini D. F., Reynolds M. P. Changes in grain weight as a consequence of de-grainingtreatments at pre-and post-anthesis in synthetic hexaploid lines of wheat. AustralianJournal of Plant Physiology,2000,27(3):183-191
    Chalfun J. A., Franken J., Mes J. J. ASYMMETRIC LEAVES2-LIKE1gene, a member of theAS2/LOB family, controls proximal–distal patterning in Arabidopsis petals. PlantMolecular Biology,2005,57(4):559-575
    Chatfield S. P., Stirnberg P., Forde B. G., Leyser O. The hormonal regulation of axillary budgrowth in Arabidopsis. The Plant Journal,2000,24(2):159-169
    Chen K. M., Wang F., Wang Y. H., Chen T., Hu Y. X., Lin J. X. Anatomical and chemicalcharacteristics of foliar vascular bundles in four reed ecotypes adapted to differenthabitats. Flora,2006,201(7):555-569
    Chrispeels M., Varner J. Inhibition of gibbrerllic acid induced formation of alpha-amylase byabscisin II. Nature,1966,212:1066-1067
    Cline M. G. Exogenous auxin effects on lateral bud outgrowth in decapitated shoots. Annals ofBotany,1996,78(2):256-266
    Cline M. G., Chatfield S. P., Leyser O. NAA restores apical dominance in the axr3-1mutantof Arabidopsis thaliana. Annals of Botany,2001,87(1):61-65
    Dash S., Mohanty N. Response of seedlings to heat-stress in cultivars of wheat: Growthtemperature dependent differentia modulation of photosystem1and2activity and foliarantioxidant defense capacity. Journal of Plant Physiology,2002,159(1):49-59
    Emery R. J. N., Longnecler N. E., Atkins C. A. Branch development in Lupinus angustifoliusL.: II. Relationship with endogenous ABA, IAA and CKs in axillary and main stem buds.Journal of Experimental Botany,1998,49(320):555-562
    Evans J, R. Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L). Plantphysiology,1983,72(2):297-302
    Fang Y., Xu B. C., Turnerd N. C., Li F. M. Grain yield, dry matter accumulation andremobilization, and root respiration in winter wheat as affected by seeding rate and rootpruning. European Journal of Agronomy,2010,33(4):257-266
    Florent T., Beatriz D. S. P., Marcel D. R., Michael D. Leaf blade dimensions of rice (Oryzasativa L. and Oryza glaberrima Steud.) relationships between tillers and the main stem.Annals of Botany,2001,88(3):507-511
    Foulkes M. J., Sylvester-Bradley R., Scott R. K. Evidence for differences between winterwheat cultivars in acquisition of soil mineral nitrogen and uptake and utilization ofapplied fertilizer nitrogen. The Journal of Agricultural Science,1998,130(1):29-44
    Foyer C. H., Descourvieres P., Kunert K. J. Protection against oxygen radicals: An importantdefense mechanism studied in transgenic plants. Plant Cell Environ,1994,17(5):507-523
    Fu J., Yan Y., Lee B. Physiological characteristics of a functional stay-green rice “SNU-SG1”during grain filling period. Journal of Crop Science and Biotechnology,2009,12(1):47-52
    Gelang J., Pleijel H., Slid E., Danielsson H., Younis S., Sellden G. Rate and duration of grainfilling in relation to flag leaf senescence and grain yield in spring wheat (Triticumaestivum L.) exposed to different concentrations of ozone. Physiologia Plantarum,2000,110(3):366-375
    Gillian N, Thorne. Survival of tillers and distribution of dry matter between ears and shoots ofbarley varieties. Annals of Botany,1962,26(1):37-54
    Groot S. P. C., Keizer L. C. P., Ruiter W. Seed and fruit set of the lateral suppressor mutant ofto mato. Scientia Horticulturae,1994,59(2):157-162
    Hagar H., Ueda N., Shal S. V. Role of reactive oxygen metabolites in DNA damage and celldeath in chemical hypoxic injury LLC-PK1cell. American Journal of Physiology,1996,271(1):209-215
    Hanft J. M., Jones R. J., Stumme A. B. Dry matter accumulation and carbohydrateconcentration patterns of field-grown and in vitro cultured maize kernels from the tip andmiddle ear positions. Crop Science,1986,26(3):568-572
    Hay R. K. M., Ellis R. P. The control of flowering in wheat and barley: what recent advancesin molecular genetics can reveal. Annals of Botany,1998,82(5):541-554
    Hiltbrunner J., Streit B., Liedgens M. Are seeding densities an opportunity to increase grainyield of winter wheat in a living mulch of white clover. Field Crops Research,2007,102(3):163-171
    Hu X. L., Jiang M. Y., Zhang A. Y., Lu J. Abscisic acid-induced apoplastic H2O2accumulationup-regulates the activities of chloroplastic and cytosolic antioxidant enzymes in maizeleaves. Planta,2005,223(1):57-68
    Jiang M., Zhang J. Effect of abscisic acid on active oxygen species, antioxidative defencesystem and oxidative damage in leaves of maize seedlings. Journal of Plant CellPhysiology,2001,42(11):1265-1273
    Jin D. M., Wang W. J., Lan S. Y., Xu Z. X.,Yang S. H. Dynamie Status of Endogenous IAA,ABA and GA level sin superiorand inferior spikelets of heavy panicle hybrid rice duringgrain filling. Journal of Plant Physiology and Molecular Biology,2002,28(3):215-220
    Jin H, Martin C. Multi-functional it yand diversity with in the plant MYB-gene family. PlantMolecular Biology,1999,41(5):577-585
    Jones D. B., Peterson M. L., Geng S. Association between grain filling rate and duration andyield components in rice. Crop Science,1979,19(5):641-644
    Kariali E., Mohapatra P. K. Hormonal regulation of tiller dynamics in differentially tilleringrice cultivars. Plant Growth Regulation,2007,53(3):215-223
    Karrou, Maranville J. W. Response of wheat cultivars to different soil nitrogen and moistureregimes: Nitrogen uptake, partitioning and influx. Plant Nitrition,1994,17(5):745-761
    Kato T. Effect of spikelet removal on the grain filling of Akenohoshi, a rice cultivar withnumerous spikelets in a panicle. Journal of Agricultural Science,2004,142(2):177-181
    Keller T., Abbott J., Moritz T., Doerner P. Arabidopsis REGULATOR OF AXILLARYMERISTEMS1controls a leaf axil stem cell niche and modulates vegetative development.The Plant Cell Online,2006,18(3):598-611
    Kemp D. R. Comparison of growth rates and sugar and protein concentrations of theextension zone of main shoot and tiller leaves of wheat. Journal of Experimental Botany,1982,32(1):151-158
    Kim J., Shon J., Lee C. K., Yang W., Yoon Y., Yang W. H., Kim Y. G., Lee B. W. Relationshipbetween grain filling duration and leaf senescence of temperate rice under hightemperature. Field Crops Research,2011,122(3):207-213
    Langer R., Prasad P., Laude H. Effects of kinetin on tiller bud elongation in wheat (Triticumaestivum L.). Annals of Botany,1973,37(3):565-571
    Laude H. M. Tiller senescence and grain development in barley. Crop Science,1976,7(3):261-263
    Lea P. J., Miflin. Alternative route for nitrogen in higher plants. Nature,1974,251:614-616
    Leopold A., Kamien E. N., Janick J. Experimental modification of plant senescence. PlantPhysiology,1959,34(5):570-573
    Leopold A. The control of tillering in grasses by auxin. American Journal of Botany,1949,36(6):437-440
    Li J. Y., Qian Q., Fu Z. M. Control of tillering in rice. Nature,2003,422(6932):618-621
    Limon-Ortega A., Sayre K. D., Francis C. A. Wheat nitrogen use efficiency in a bed-plantingsystem in northwest Mexico. Agronomy Journal,2002,92(2):303-308
    Liu H. J., Wang S. F., Yu X. B. ARL1, a LOB-domain protein required for adventitious rootformation in rice. Plant Journal,2005,43(1):47-56
    Liu Y., Ding Y. F., Wang Q. S., Meng D. X., Wang S. H. Effects of nitrogen and6-Benzylaminopurine on rice tiller bud growth and changes in endogenous hormonesand nitrogen. Crop science,2011,51(2):786-792
    Lwakawa H., Ueno Y., Semiarti E., Onouchi H., Kojima S., Tsukaya H., Machida Y. TheASYMMETRIC LEAVES2gene of Arabidopsis thaliana, required for formation of asymmetric flat leaf lamina, encodes a member of a novel family of proteins characterizedby cysteine repeats and a leucine zipper. Plant and Cell Physiology,2002,43(5):467-478
    Martin P. N., Gent, Riehard K. Kivomoto. Assimilation and distribution of photosynthate inwinter wheat cultivars differing in harvest Index. Crop Science,1989,29(1):120-125
    Medford J. I., Horgan R., El-Sawi Z., Klee H. J. Alterations of endogenous cytokinins intransgenic plants using a chimeric isopentenyl transferase gene. The Plant Cell Online,1989,1(4):403-413
    Medford J. I., Klee H. J. Manipulation of endogenous auxin and cytokinin levels in transgenicplants. In The Molecular Bases of Plant Development (R.Goldberg, ed.),1989,211-220
    Michael G., Beringer H. The role of hormones in yield formation, physiological aspects ofgroup productivity//Proceeding of the Colloquium of the International Potash InstituteHeld in Wageninien. The Nether Lands,1980,28:252-279
    Morris G. C., Choonseok O. H. A reappraisal of the role of abscisic acid and its interactionwith auxin in apical dominance. Annals of Botany,2006,98(4):891-897
    Moulia B., Loup C., Chartier M., Allirand J. M., Edelin C. Dynamics of architecturaldevelopment of isolated plants of maize (Zea mays L.), in a non-limiting environment:The branching potential of modern maize. Annals of Botany,1999,84(5):645-656
    Muller D., Hmitz G., Theres K. Blind homologous R2R3Myb genes control the pattern oflateral meristem initiation in Arabidopsis. Plant Cell,2006,18(3):586-597
    Nass H. G., Reisser B. Grain filling period and grain yield relationship in spring wheat.Canadian Journal of Plant Science,1975,55(3):673-678
    Nooden L. D., Guianent J., John I. Senescence mechanisms. Plant Physiology,1997,101(4):746-753
    Park J., Lee B. Genotypic difference in leaf senescence during grain filling and its relation tograin yield of rice. Korean Journal of Crop Science.2003,48(3):224-231
    Parry M. L., Carter T. R. An assessment of the effects of climate change on agriculture.Climate Change,1989,15:95-116
    Patterson T. G., Moss D. V., Brume W. A. Enzymatic changes during the senescence of filedgrown wheat. Crop Science,1980,20(1):15-220.
    Pei Z. M., Ghassemian M., Kwak C. M. Role of farnesyl transferase in ABA regulation ofguard cell anion channels and plant water loss. Science,1998,282(5387):287-290
    Phillios I. D. J. Apocal dominance. Annual Review of Plant Physiology,1975,26:341-347
    Quiles M. J., López N. I. Photoinhibition of photosystems I and II induced by exposure tohigh light intensity during oat plant grown effects on the chloroplastic NADHdehydrogenase complex. Plant Science,2004,166(3):815-823
    Rahman M. S., Yoshida S. Effect of water stress on grain filling in rice. Soil Science and PlantNutrition,1985,31(4):497-511
    Rood, S. B. Application of gibberellic acid to control tillering in early-maturing maize.Canadian Journal of Plant Science,1985,65(4):901-911
    Santiveri F., Royo C., Romagosa I. Patterns of grain filling of spring and winter hexaploidtriticales. European Journal of Agronomy,2002,16(3):219-230
    Sayre K D, Moreno Ramos O. H. Application of raised bed-planting system to wheat. In:CIMMYT Wheat Program Special Report. Mexico: CIMMYT,1997
    Sayre K. D., Rajaram S., Fischer R. A. Yield potential progress in short bread wheats inNorthwest Mexico. Crop Science,1997,37(1):36-42
    Scandalios J. G. Oxygen stress and Superoxide dismutases. Plant physiology,1993,101(1):7-12
    Shearman V. J., Sylvester-Bradley R., Scott R. K., Foulkes M. J. Physiological processesassociated with wheat yield progress in the UK. Crop Science,2005,45(1):175-185
    Shimizu S. S., Mori H. Control of outgrowth and dormancy in axillary buds. Plant Physiology,2001,127(4):1405-1413
    Shuai B., Reynaga-Peia C. G., Springer P. S. The lateral organ boundaries gene defines anovel, plant-specific gene family. Plant Physiology,2002,129(2):747-761
    Sorce C., Lombardi L., Giorgetti L., Paris B., Ranalli P., Lorenzi R. Indoleacetic acidconcentration and metabolism changes during bud development in tubers of two potato(Solanum tuberosum) cultivars. Journal of Plant Physiology,2009,166(10):1023-1033
    Steven P., Chatfied, Petra Stirnberg Brian G., Forde, Ottoline Leyser. The hormonal regulationof axillary bud growth in Arabidopsis. The Plant Journal,2000,24(2):159-169
    Tanaka M., Takei K., Kojima M., Sakakibara H., Mori H. Auxin controls local cytokininbiosynthesis in the nodal stem in apical dominance. The Plant Journal,2006,45(6):1028-1036
    Travaglia C., Reinoso H., Cohen A., Luna C., Tommasino E., Castillo C., Bottini R.Exogenous ABA increases yield in field-grown wheat with moderate water restriction.Journal of Plant Growth Regulation,2010,29(3):366-374
    Verma D. P. S. Control of gene expression. Boca Ratom: CRC Press,1993, pp425-479
    Wang J., Zhu J. M., Lin Q. G., Li X. J., Teng N. J., Li Z. S., Li B., Zhang A. M., Lin J. X.Effects of stemtructure and cell wall components on bending strength in wheat. ChineseScience Bulletin,2006,51(7):815-823
    Wang F., Cheng F. M., Zhang G. P. Difference in grain yield and quality among tillers in ricegenotypes. Rice Science,2007,14(2):135-140
    Wang G., Romheld V., Li C., Bangerth F. Involvement of auxin and CKs in boron deficiencyinduced changes in apical dominance of pea plants. Journal of Plant Physiology,2006,163(6):591-600
    Whaley J. M., Kirby E. J. M., Spink J. H., Foulkes M. J., Sparkes D. L. Frost damage towinter wheat in the UK: the effect of plant population density. European Journal ofAgronomy,2004,21(1):105-115
    Whingwiri E. E., Kuo J., Stern W. R. The vascular system in the rachis of a wheat ear. Annalsof Botany,1981,48(2):189-202
    Woodward E., Marshall C. Effects of plant growth regulators and nutrient supply on tiller budoutgrowth in barley (Hordeum distichum L.). Annals of Botany,1998,61(3):347-354
    Wu G. W., Wilson L. T., McClung A. M. Contribution of rice tillers to dry matteraccumulation and yield. Agronomy Journal,1998,90(3):317-323
    Yang Y., Yu X. B., Wu P. Comparison and evolution analysis of two rice subspecies LATERALORGAN BOUNDARIES domain gene family and their evolutionary characterizationfrom Arabidopsis. Molecular Phylogenetics and Evoltion,2006,39(1):248-262
    Yang J. C., Zhang J. H., Ye Y. X., Wang Z. Q., Zhu Q. S., Liu L. J. Involvement of abscisicacid and ethylene in the responses of rice grains to water stress during filling. Plant, Cell&Environment,2004,27(8):1055-1064
    Yang T. X., Wei A. Z., Zheng Y., Yang H., Yang X. N., Zhang R. Simultaneous determinationof endogenous hormone sin apricot floral bud by high performance liquidchromatography. Journal of Analytical Chemistry,2007,35(9):1359-1361
    Yang W., Peng S., Dionisio-Sese M. L., Laza R. C., Visperas R. M. Grain filling duration, acrucial determinant of genotypic variation of grain yield in field-grown tropical irrigatedrice. Field Crops Research,2008,105(3):221-227
    Yin X. Y., Guo W. S., Spiertz J. H. A quantitative approach to characterize sink–sourcerelationships during grain filling in contrasting wheat genotypes. Field Crops Research,2009,114(1):119-126
    Zadoks J. C., Chang T. T., Konzak C. F. A decimal code for the growth stages of cereals. WeedResearch,1974,14(6):415-421
    Zhang G. P. Gibberellic Acid3Modifies Some Growth and Physiologic Effects ofPaclobutrazol (PP333) on Wheat. Journal of Plant Growth Regulation,1997,16(1):21-25
    Zhang H. P., Neil C., Turner Poole M. L. Increasing the harvest index of wheat in the highrainfall zones of southern Australia. Field Crops Research,2012,129:111-123
    Zhang H., Tan G. L., Yang L. N., Yang J. C., Zhang J. H., Zhao, B. H. Hormones in the grainsand roots in relation to post-anthesis development of inferior and superior spikelets injaponica/indica hybrid rice. Plant Physiology and Biochemistry,2009,47(3):195-204
    Zhao S. J., Xu C. C., Zou Q., Meng Q. W. Improvements of method for measurement ofmalondialdehvde in plant tissues. Plant Physiology Communications,1994,30(3):207-210
    Zhou W. J., Melakeselam L. Uniconazole-induced tolerance of rape plants to heat stress inrelation to changes in hormonal levels, enzyme activities and lipid peroxidation. PlantGrowth Regulation,1999,27(2):99-104

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700