用户名: 密码: 验证码:
Nisin抗菌肽抑制致龋菌和根管感染致病菌的体外研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于细菌对抗生素的耐药性问题越来越严重,目前越来越多的人正在关注抗菌肽作用。Nisin抗菌肽是由益生菌乳酸链球菌(L. lactis)产生的34个氨基酸的多肽,具有很多优良的特性,是目前研究最为广泛的硫醚抗生素。然而目前有关nisin对口腔致病菌的作用研究报导较少。本研究我们着重对nisin抑制口腔致病菌的特性及其可能的机理进行了研究。
     首先,乳酸链球菌首次被引用抑制口腔中主要致龋菌变异链球菌(S.mutans)。我们发现乳酸链球菌在营养不足时可以竞争性抑制变链菌生长,并且变链菌代谢产物,包括一些外源性信号分子可以增强乳酸链球菌中nisin合成相关基因的表达。乳酸链球菌可以有效地粘附在牙釉质表面,但是对牙釉质表面侵蚀程度明显比变链菌小。第二,在最小抑菌浓度、最小杀菌浓度和Spot-on-lawn检测中,nisin对9种常见的致龋菌显示出了不同的抗菌作用,并且唾液中成份对nisin的抗菌性没有影响。此外场发射扫描电镜显示血链球菌、变链菌、发酵乳杆菌和嗜酸乳杆菌经过nisin处理后其形态和胞膜均受到不同程度的破坏。第三,在nisin和氟化钠或洗必泰协同性抑制变链菌的检测中,通过棋盘法、部分抑菌浓度、部分杀菌浓度检测,我们发现nisin和氟化钠具有协同性抑制变链菌的作用,而nisin和洗必泰则不具有协同性。在时间杀死研究中,变链菌经过nisin和氟化钠联合处理后,细菌生存率明显下降。场发射扫描电镜显示在不同药物单独或联合处理中,nisin和氟化钠对变链菌破坏程度是最显著的。此外,在抗变链菌生物膜检测中,氟化钠联合nisin对4h和16h的变链菌生物膜的作用比氟化钠单独作用显示出更强破坏能力。这些研究结果表明,乳酸链球菌和抗菌肽nisin在抑制口腔致龋菌和预防龋病发生中具有良好的应用前景。
     MTAD (A mixture of tetracycline isomer, acid and detergent,一种四环类类药物、酸和去污剂的混合物)是良好的根管冲洗剂,在MTADN(MTAD联合nisin)对与牙髓感染有密切相关的9种致病菌抑制研究中,MTADN显示出快速和明显的抗菌作用。粪肠球菌(E. faecalis)是引起继发性和持续性牙髓感染的主要致病菌,在抑制粪肠球菌作用中,我们利用棋盘法和部分抑菌浓度检测了nisin和常用根管冲洗液MTAD的协同抗菌作用,结果显示nisin可以显著提高MTAD对粪肠球菌抑菌作用。MTADN对粪肠球菌最小抑菌浓度比MTAD和MTAN(用nisin代替MTAD中的多西霉素)低。当多西霉素和nisin联合应用时,nisin对细菌胞膜形成的孔洞可以有利于多西霉素分子进入到细菌胞内,更好发挥抗菌作用,因而nisin和多西霉素结合具有协同性抑制粪肠球菌的作用。场发射扫描电镜也显示MTADN对粪肠球菌破坏程度最为明显。这些研究结果表明nisin和MTAD联合应用,作为根管冲洗液,可以有效清除根管内的致病菌。
More attention has increasingly been paid to the antibacterial peptide dueto bacterial resistance to some common antibiotics. Nisin, a34-residue peptideproduced by Lactococcus lactis, is emerged as one of the most extensivelystudied lantibiotics and possess many excellent properties. However, to ourknowledge, it appears to be no report that nisin was used to inhibit pathogens inoral cavity. In the present study, the antibacterial peptide nisin is considered toinhibit pathogens in oral cavity.
     Firstly, the probiotic L. lactis was first used to inhibit the major cariogenicbacterium Streptococcus mutans. We found that L. lactis competitively inhibitedS. mutans growth under nutritional deficiency, and the metabolites of S. mutans,including several exogenous molecular signals, enhanced the expression ofgenes related to nisin synthesis in L. lactis. Additionally, L. lactis effectivelycolonized the surface of tooth enamel, which showed substantially less decaywith L. lactis adhesion compared to S. mutans adhesion. Secondly, in theminimal inhibitory concentration (MIC) and minimal bactericide concentration (MBC) and spot-on-lawn assay, nisin displayed different antimicrobial activityagainst the nine cariogenic bacteria. The antibacterial activity of nisin was notaffected by ingredient in saliva. Furthermore, morphology and membranes ofStreptococcus sanguinis, Streptococcus mutans, Lactobacillus fermenti andLactobacillus acidophilus with nisin treatment were observed and showeddifferent degrees of damage by a Field Emission Scanning Electron Microscope(FE-SEM). Thirdly, in an in vitro synergetic evaluation of nisin and sodiumfluoride or chlorhexidine against S mutans, a synergetic effect on S. mutans wasfound between nisin and sodium fluoride, but there was no interaction betweennisin and chlorhexidine by the checkerboard, the fractional inhibitoryconcentration (FIC) and the fractional bactericidal concentration (FBC) tests. S.mutans survival rates showed a significant decline after treatment with acombination of nisin and sodium fluoride in a time-kill study. FE-SEM showedthat the damage to S. mutans with the combined nisin and sodium fluoridetreatment was the most severe among all of the different single and combinedantimicrobial treatments. Furthermore, in the antibiofilm test, nisin incombination with sodium fluoride produced a stronger bactericidal effect on a S.mutans biofilm for4h and16h compared with sodium fluoride alone byconfocal laser scanning microscopy. The studies indicate that the probiotic Llactis and antibacterial peptide nisin have the potential to be new methods toinhibit cariogenic bacteria in oral cavity and prevent dental caries..
     MTAD (A mixture of tetracycline isomer, acid and detergent) is a higheffective intracanal irrigant. In the study of MTADN (nisin in combination withMTAD) against nisin common pathogens associated with dental pulp and rootcanal infection, MTADN showed a strong and rapid antibacterial activity. In thestudy of inhibtion of E. faecalis associated with the secondary and persistent root canal infection, the synergetic action between nisin and a commonintracanal irrigant, MTAD was evaluated by checkerboard and FIC, and theresult showed that nisin can markedly improve the bactericidal effect of MTADon E. faecalis. The MBC of MTADN against E. faecalis was lower than that ofMTAD and MTAN (substitution of doxycycline in MTAD with nisin). Whendoxycycline is applied in combination with nisin, the pores formed by nisin onthe surface of the cell membrane can facilitate the penetration of doxycyclinemolecules into the microorganism and exert its antibacterial role, and therebythe combination of nisin and doxycycline had a significantly synergeticantibacterial effect on E. faecalis. The morphological modification of FE-SEMalso showed that the most damage on E. faecalis was found with the treatmentof MTADN. The studies indicate that the drugs combination between nisin andMTAD has the potential to be as an effective intracanal irrigant.
引文
[1]. Wang Z, Wang G. APD: the Antimicrobial Peptide Database. Nucleic Acids Res2004;32(Database issue):D590-592.
    [2]. Martin E, Ganz T, Lehrer RI. Defensins and other endogenous peptide antibiotics ofvertebrates. J Leukoc Biol1995;58(2):128-136.
    [3]. Cunliffe RN, Mahida YR. Expression and regulation of antimicrobial peptides in thegastrointestinal tract. J Leukoc Biol2004;75(1):49-58.
    [4]. Elsbach P. What is the real role of antimicrobial polypeptides that can mediate severalother inflammatory responses? J Clin Invest2003;111(11):1643-1645.
    [5]. Yang D, Biragyn A, Kwak LW, et al. Mammalian defensins in immunity: more thanjust microbicidal. Trends Immunol2002;23(6):291-296.
    [6]. Koczulla R, von Degenfeld G, Kupatt C, et al. An angiogenic role for the humanpeptide antibiotic LL-37/hCAP-18. J Clin Invest2003;111(11):1665-1672.
    [7]. Hancock RE, Diamond G. The role of cationic antimicrobial peptides in innate hostdefences. Trends Microbiol2000;8(9):402-410.
    [8]. Cotter PD, Hill C, Ross RP. Bacteriocins: developing innate immunity for food. NatRev Microbiol2005;3(10):777-788.
    [9]. Riley MA. Molecular mechanisms of bacteriocin evolution. Annu Rev Genet1998;32:255-278.
    [10]. Qi F, Chen P, Caufield PW. The group I strain of Streptococcus mutans, UA140,produces both the lantibiotic mutacin I and a nonlantibiotic bacteriocin, mutacin IV.Appl Environ Microbiol2001;67(1):15-21.
    [11]. Sahl HG, Bierbaum G. Lantibiotics: biosynthesis and biological activities of uniquelymodified peptides from gram-positive bacteria. Annu Rev Microbiol1998;52:41-79.
    [12]. Qi F, Chen P, Caufield PW. Purification and biochemical characterization of mutacin Ifrom the group I strain of Streptococcus mutans, CH43, and genetic analysis ofmutacin I biosynthesis genes. Appl Environ Microbiol2000;66(8):3221-3229.
    [13]. Kailasapathy K, Chin J. Survival and therapeutic potential of probiotic organismswith reference to Lactobacillus acidophilus and Bifidobacterium spp. Immunol CellBiol2000;78(1):80-88.
    [14]. Quadri LE. Regulation of antimicrobial peptide production by autoinducer-mediatedquorum sensing in lactic acid bacteria. Antonie Van Leeuwenhoek2002;82(1-4):133-145.
    [15]. Kleerebezem M. Quorum sensing control of lantibiotic production; nisin and subtilinautoregulate their own biosynthesis. Peptides2004;25(9):1405-1414.
    [16]. Li H, O'Sullivan DJ. Heterologous expression of the Lactococcus lactis bacteriocin,nisin, in a dairy Enterococcus strain. Appl Environ Microbiol2002;68(7):3392-3400.
    [17]. Zhou XX, Li WF, Ma GX, et al. The nisin-controlled gene expression system:construction, application and improvements. Biotechnol Adv2006;24(3):285-295.
    [18]. Delves-Broughton J, Blackburn P, Evans RJ, et al. Applications of the bacteriocin,nisin. Antonie Van Leeuwenhoek1996;69(2):193-202.
    [19]. Ruhr E, Sahl HG. Mode of action of the peptide antibiotic nisin and influence on themembrane potential of whole cells and on cytoplasmic and artificial membranevesicles. Antimicrob Agents Chemother1985;27(5):841-845.
    [20]. Breukink E, de Kruijff B. Lipid II as a target for antibiotics. Nat Rev Drug Discov2006;5(4):321-332.
    [21]. Hsu ST, Breukink E, Tischenko E, et al. The nisin-lipid II complex reveals apyrophosphate cage that provides a blueprint for novel antibiotics. Nat Struct MolBiol2004;11(10):963-967.
    [22]. Brotz H, Josten M, Wiedemann I, et al. Role of lipid-bound peptidoglycan precursorsin the formation of pores by nisin, epidermin and other lantibiotics. Mol Microbiol1998;30(2):317-327.
    [23]. Bonev BB, Breukink E, Swiezewska E, et al. Targeting extracellular pyrophosphatesunderpins the high selectivity of nisin. FASEB J2004;18(15):1862-1869.
    [24]. Hasper HE, de Kruijff B, Breukink E. Assembly and stability of nisin-lipid II pores.Biochemistry2004;43(36):11567-11575.
    [25]. FDA. Food and Drug Administration. Nisin preparation: Affirmation of GRAS statusas a direct human food ingredient.11251ed,1988.
    [26]. Rojo-Bezares B, Saenz Y, Zarazaga M, et al. Antimicrobial activity of nisin againstOenococcus oeni and other wine bacteria. Int J Food Microbiol2007;116(1):32-36.
    [27]. Zottola EA, Yezzi TL, Ajao DB, et al. Utilization of cheddar cheese containing nisinas an antimicrobial agent in other foods. Int J Food Microbiol1994;24(1-2):227-238.
    [28]. Tanner AC, Milgrom PM, Kent R, et al. The microbiota of young children from toothand tongue samples. J Dent Res2002;81(1):53-57.
    [29]. Tanner AC, Milgrom PM, Kent R, et al. Similarity of the oral microbiota ofpre-school children with that of their caregivers in a population-based study. OralMicrobiol Immunol2002;17(6):379-387.
    [30]. Welin J, Wilkins JC, Beighton D, et al. Effect of acid shock on protein expression bybiofilm cells of Streptococcus mutans. FEMS Microbiol Lett2003;227(2):287-293.
    [31]. Len AC, Harty DW, Jacques NA. Stress-responsive proteins are upregulated inStreptococcus mutans during acid tolerance. Microbiology2004;150(Pt5):1339-1351.
    [32]. McNeill K, Hamilton IR. Effect of acid stress on the physiology of biofilm cells ofStreptococcus mutans. Microbiology2004;150(Pt3):735-742.
    [33]. Hamada S, Slade HD. Biology, immunology, and cariogenicity of Streptococcusmutans. Microbiol Rev1980;44(2):331-384.
    [34]. Loesche WJ. Role of Streptococcus mutans in human dental decay. Microbiol Rev1986;50(4):353-380.
    [35]. Tanzer JM, Livingston J, Thompson AM. The microbiology of primary dental cariesin humans. J Dent Educ2001;65(10):1028-1037.
    [36]. Nyvad B. Microbial colonization of human tooth surfaces. APMIS Suppl1993;32:1-45.
    [37]. Bowden GH. Does assessment of microbial composition of plaque/saliva allow fordiagnosis of disease activity of individuals? Community Dent Oral Epidemiol1997;25(1):76-81.
    [38]. Aas JA, Griffen AL, Dardis SR, et al. Bacteria of dental caries in primary andpermanent teeth in children and young adults. J Clin Microbiol2008;46(4):1407-1417.
    [39]. Becker MR, Paster BJ, Leys EJ, et al. Molecular analysis of bacterial speciesassociated with childhood caries. J Clin Microbiol2002;40(3):1001-1009.
    [40]. Nyvad B, Kilian M. Microbiology of the early colonization of human enamel and rootsurfaces in vivo. Scand J Dent Res1987;95(5):369-380.
    [41]. Li J, Helmerhorst EJ, Leone CW, et al. Identification of early microbial colonizers inhuman dental biofilm. J Appl Microbiol2004;97(6):1311-1318.
    [42]. Nyvad B, Kilian M. Comparison of the initial streptococcal microflora on dentalenamel in caries-active and in caries-inactive individuals. Caries Res1990;24(4):267-272.
    [43]. Kawamura Y, Hou XG, Sultana F, et al. Determination of16S rRNA sequences ofStreptococcus mitis and Streptococcus gordonii and phylogenetic relationships amongmembers of the genus Streptococcus. Int J Syst Bacteriol1995;45(2):406-408.
    [44]. Syed SA, Loesche WJ. Bacteriology of human experimental gingivitis: effect ofplaque age. Infect Immun1978;21(3):821-829.
    [45]. Ximenez-Fyvie LA, Haffajee AD, Socransky SS. Microbial composition of supra-and subgingival plaque in subjects with adult periodontitis. J Clin Periodontol2000;27(10):722-732.
    [46]. Van Houte J, Sansone C, Joshipura K, et al. Mutans streptococci and non-mutansstreptococci acidogenic at low pH, and in vitro acidogenic potential of dental plaquein two different areas of the human dentition. J Dent Res1991;70(12):1503-1507.
    [47]. Boyar RM, Thylstrup A, Holmen L, et al. The microflora associated with thedevelopment of initial enamel decalcification below orthodontic bands in vivo inchildren living in a fluoridated-water area. J Dent Res1989;68(12):1734-1738.
    [48]. Boue D, Armau E, Tiraby G. A bacteriological study of rampant caries in children. JDent Res1987;66(1):23-28.
    [49]. Loesche WJ, Eklund S, Earnest R, et al. Longitudinal investigation of bacteriology ofhuman fissure decay: epidemiological studies in molars shortly after eruption. InfectImmun1984;46(3):765-772.
    [50]. Chhour KL, Nadkarni MA, Byun R, et al, Hunter N. Molecular analysis of microbialdiversity in advanced caries. J Clin Microbiol2005;43(2):843-849.
    [51]. van Houte J, Lopman J, Kent R. The final pH of bacteria comprising the predominantflora on sound and carious human root and enamel surfaces. J Dent Res1996;75(4):1008-1014.
    [52]. Brailsford SR, Shah B, Simons D, et al. The predominant aciduric microflora ofroot-caries lesions. J Dent Res2001;80(9):1828-1833.
    [53]. Byun R, Nadkarni MA, Chhour KL, et al. Quantitative analysis of diverseLactobacillus species present in advanced dental caries. J Clin Microbiol2004;42(7):3128-3136.
    [54]. van Houte J. Bacterial specificity in the etiology of dental caries. Int Dent J1980;30(4):305-326.
    [55]. Carlsson J, Grahnen H, Jonsson G. Lactobacilli and streptococci in the mouth ofchildren. Caries Res1975;9(5):333-339.
    [56]. Wicht MJ, Haak R, Schutt-Gerowitt H, et al. Suppression of caries-relatedmicroorganisms in dentine lesions after short-term chlorhexidine or antibiotictreatment. Caries Res2004;38(5):436-441.
    [57]. Hooper LV, Gordon JI. Commensal host-bacterial relationships in the gut. Science2001;292(5519):1115-1118.
    [58]. Petersen PE. The World Oral Health Report2003: continuous improvement of oralhealth in the21st century--the approach of the WHO Global Oral Health Programme.Community Dent Oral Epidemiol2003;31Suppl1:3-23.
    [59]. Balanyk TE, Sandham HJ. Development of sustained-release antimicrobial dentalvarnishes effective against Streptococcus mutans in vitro. J Dent Res1985;64(12):1356-1360.
    [60]. Kanisavaran ZM. Chlorhexidine gluconate in endodontics: an update review. Int DentJ2008;58(5):247-257.
    [61]. Twetman S. Antimicrobials in future caries control? A review with special referenceto chlorhexidine treatment. Caries Res2004;38(3):223-229.
    [62]. Zhang Q, van Palenstein Helderman WH, van't Hof MA, et al. Chlorhexidine varnishfor preventing dental caries in children, adolescents and young adults: a systematicreview. Eur J Oral Sci2006;114(6):449-455.
    [63]. Hamilton IR. Biochemical effects of fluoride on oral bacteria. J Dent Res1990;69Spec No:660-667; discussion682-663.
    [64]. Marquis RE, Clock SA, Mota-Meira M. Fluoride and organic weak acids asmodulators of microbial physiology. FEMS Microbiol Rev2003;26(5):493-510.
    [65]. Treasure P. Effects of fluoride, lithium and strontium on extracellular polysaccharideproduction by Streptococcus mutans and Actinomyces viscosus. J Dent Res1981;60Spec No C:1601-1610.
    [66]. Fabricius L, Dahlen G, Ohman AE, et al. Predominant indigenous oral bacteriaisolated from infected root canals after varied times of closure. Scand J Dent Res1982;90(2):134-144.
    [67]. Molander A, Reit C, Dahlen G, et al. Microbiological status of root-filled teeth withapical periodontitis. Int Endod J1998;31(1):1-7.
    [68]. Marsh PD. Are dental diseases examples of ecological catastrophes? Microbiology2003;149(Pt2):279-294.
    [69]. Siqueira JF, Jr., Rocas IN, Oliveira JC, et al. Molecular detection of black-pigmentedbacteria in infections of endodontic origin. J Endod2001;27(9):563-566.
    [70]. Baumgartner JC, Bae KS, Xia T, et al. Sodium dodecyl sulfate-polyacrylamide gelelectrophoresis and polymerase chain reaction for differentiation of Prevotellaintermedia and Prevotella nigrescens. J Endod1999;25(5):324-328.
    [71]. Wasfy MO, McMahon KT, Minah GE, et al. Microbiological evaluation of periapicalinfections in Egypt. Oral Microbiol Immunol1992;7(2):100-105.
    [72]. Sundqvist G. Associations between microbial species in dental root canal infections.Oral Microbiol Immunol1992;7(5):257-262.
    [73]. Siren EK, Haapasalo MP, Ranta K, et al. Microbiological findings and clinicaltreatment procedures in endodontic cases selected for microbiological investigation.Int Endod J1997;30(2):91-95.
    [74]. Siqueira JF, Jr., Rocas IN. Polymerase chain reaction-based analysis ofmicroorganisms associated with failed endodontic treatment. Oral Surg Oral MedOral Pathol Oral Radiol Endod2004;97(1):85-94.
    [75]. Peciuliene V, Balciuniene I, Eriksen HM, et al. Isolation of Enterococcus faecalis inpreviously root-filled canals in a Lithuanian population. J Endod2000;26(10):593-595.
    [76]. Pinheiro ET, Gomes BP, Ferraz CC, et al. Microorganisms from canals of root-filledteeth with periapical lesions. Int Endod J2003;36(1):1-11.
    [77]. Hubble TS, Hatton JF, Nallapareddy SR, et al. Influence of Enterococcus faecalisproteases and the collagen-binding protein, Ace, on adhesion to dentin. OralMicrobiol Immunol2003;18(2):121-126.
    [78]. Evans M, Davies JK, Sundqvist G, et al. Mechanisms involved in the resistance ofEnterococcus faecalis to calcium hydroxide. Int Endod J2002;35(3):221-228.
    [79]. Hancock HH,3rd, Sigurdsson A, Trope M, et al. Bacteria isolated after unsuccessfulendodontic treatment in a North American population. Oral Surg Oral Med OralPathol Oral Radiol Endod2001;91(5):579-586.
    [80]. Figdor D, Davies JK, Sundqvist G. Starvation survival, growth and recovery ofEnterococcus faecalis in human serum. Oral Microbiol Immunol2003;18(4):234-239.
    [81]. Peciuliene V, Reynaud AH, Balciuniene I, et al. Isolation of yeasts and entericbacteria in root-filled teeth with chronic apical periodontitis. Int Endod J2001;34(6):429-434.
    [82]. Waltimo TM, Sen BH, Meurman JH, et al. Yeasts in apical periodontitis. Crit RevOral Biol Med2003;14(2):128-137.
    [83]. Rocas IN, Siqueira JF, Jr., Santos KR. Association of Enterococcus faecalis withdifferent forms of periradicular diseases. J Endod2004;30(5):315-320.
    [84]. Siqueira JF, Jr., Machado AG, Silveira RM, et al. Evaluation of the effectiveness ofsodium hypochlorite used with three irrigation methods in the elimination ofEnterococcus faecalis from the root canal, in vitro. Int Endod J1997;30(4):279-282.
    [85]. Abdullah M, Ng YL, Gulabivala K, et al. Susceptibilties of two Enterococcus faecalisphenotypes to root canal medications. J Endod2005;31(1):30-36.
    [86]. Bystrom A, Sundqvist G. The antibacterial action of sodium hypochlorite and EDTAin60cases of endodontic therapy. Int Endod J1985;18(1):35-40.
    [87]. Barroso Ldos S, Habitante SM, Jorge AO, et al. Microorganisms growth inendodontic citric-acid solutions with and without microbiological stabilizer. J Endod2004;30(1):42-44.
    [88]. Torabinejad M, Shabahang S, Aprecio RM, et al. The antimicrobial effect of MTAD:an in vitro investigation. J Endod2003;29(6):400-403.
    [89]. Shabahang S, Torabinejad M. Effect of MTAD on Enterococcusfaecalis-contaminated root canals of extracted human teeth. J Endod2003;29(9):576-579.
    [90]. Torabinejad M, Cho Y, Khademi AA, et al. The effect of various concentrations ofsodium hypochlorite on the ability of MTAD to remove the smear layer. J Endod2003;29(4):233-239.
    [91]. Safavi KE, Spangberg LS, Langeland K. Root canal dentinal tubule disinfection. JEndod1990;16(5):207-210.
    [92]. Gomes BP, Souza SF, Ferraz CC, et al. Effectiveness of2%chlorhexidine gel andcalcium hydroxide against Enterococcus faecalis in bovine root dentine in vitro. IntEndod J2003;36(4):267-275.
    [93]. Basrani B, Santos JM, Tjaderhane L, et al. Substantive antimicrobial activity inchlorhexidine-treated human root dentin. Oral Surg Oral Med Oral Pathol OralRadiol Endod2002;94(2):240-245.
    [94]. Vahdaty A, Pitt Ford TR, Wilson RF. Efficacy of chlorhexidine in disinfectingdentinal tubules in vitro. Endod Dent Traumatol1993;9(6):243-248.
    [95]. Evanov C, Liewehr F, Buxton TB, et al. Antibacterial efficacy of calcium hydroxideand chlorhexidine gluconate irrigants at37degrees C and46degrees C. J Endod2004;30(9):653-657.
    [96]. Nagayoshi M, Kitamura C, Fukuizumi T, et al. Antimicrobial effect of ozonated wateron bacteria invading dentinal tubules. J Endod2004;30(11):778-781.
    [97]. Mickel AK, Sharma P, Chogle S. Effectiveness of stannous fluoride and calciumhydroxide against Enterococcus faecalis. J Endod2003;29(4):259-260.
    [98]. Sukawat C, Srisuwan T. A comparison of the antimicrobial efficacy of three calciumhydroxide formulations on human dentin infected with Enterococcus faecalis. JEndod2002;28(2):102-104.
    [99]. Cwikla SJ, Belanger M, Giguere S, et al. Dentinal tubule disinfection using threecalcium hydroxide formulations. J Endod2005;31(1):50-52.
    [100].Shabahang S, Pouresmail M, Torabinejad M. In vitro antimicrobial efficacy of MTADand sodium hypochlorite. J Endod2003;29(7):450-452.
    [101].Zhang W, Torabinejad M, Li Y. Evaluation of cytotoxicity of MTAD using theMTT-tetrazolium method. J Endod2003;29(10):654-657.
    [102].Portenier I, Waltimo T, Orstavik D, et al. Killing of Enterococcus faecalis by MTADand chlorhexidine digluconate with or without cetrimide in the presence or absence ofdentine powder or BSA. J Endod2006;32(2):138-141.
    [103].Newberry BM, Shabahang S, Johnson N, et al. The antimicrobial effect of biopureMTAD on eight strains of Enterococcus faecalis: an in vitro investigation. J Endod2007;33(11):1352-1354.
    [104].Kho P, Baumgartner JC. A comparison of the antimicrobial efficacy ofNaOCl/Biopure MTAD versus NaOCl/EDTA against Enterococcus faecalis. J Endod2006;32(7):652-655.
    [105].Dunavant TR, Regan JD, Glickman GN, et al. Comparative evaluation of endodonticirrigants against Enterococcus faecalis biofilms. J Endod2006;32(6):527-531.
    [106].Johal S, Baumgartner JC, Marshall JG. Comparison of the antimicrobial efficacy of1.3%NaOCl/BioPure MTAD to5.25%NaOCl/15%EDTA for root canal irrigation. JEndod2007;33(1):48-51.
    [107].Ruff ML, McClanahan SB, Babel BS. In vitro antifungal efficacy of four irrigants as afinal rinse. J Endod2006;32(4):331-333.
    [108].McComb D, Smith DC. A preliminary scanning electron microscopic study of rootcanals after endodontic procedures. J Endod1975;1(7):238-242.
    [109].Torabinejad M, Handysides R, Khademi AA, et al. Clinical implications of the smearlayer in endodontics: a review. Oral Surg Oral Med Oral Pathol Oral Radiol Endod2002;94(6):658-666.
    [110].Torabinejad M, Khademi AA, Babagoli J, et al. A new solution for the removal of thesmear layer. J Endod2003;29(3):170-175.
    [111].Mancini M, Armellin E, Casaglia A, et al. A comparative study of smear layerremoval and erosion in apical intraradicular dentine with three irrigating solutions: ascanning electron microscopy evaluation. J Endod2009;35(6):900-903.
    [112].Park DS, Torabinejad M, Shabahang S. The effect of MTAD on the coronal leakage ofobturated root canals. J Endod2004;30(12):890-892.
    [113].De-Deus G, Reis C, Fidel S, et al. Dentin demineralization when subjected to BioPureMTAD: a longitudinal and quantitative assessment. J Endod2007;33(11):1364-1368.
    [114].Beltz RE, Torabinejad M, Pouresmail M. Quantitative analysis of the solubilizingaction of MTAD, sodium hypochlorite, and EDTA on bovine pulp and dentin. JEndod2003;29(5):334-337.
    [115].Yurdaguven H, Tanalp J, Toydemir B, et al. The effect of endodontic irrigants on themicrotensile bond strength of dentin adhesives. J Endod2009;35(9):1259-1263.
    [116].Tay FR, Pashley DH, Loushine RJ, et al. Ultrastructure of smear layer-coveredintraradicular dentin after irrigation with BioPure MTAD. J Endod2006;32(3):218-221.
    [117].Ring KC, Murray PE, Namerow KN, et al. The comparison of the effect ofendodontic irrigation on cell adherence to root canal dentin. J Endod2008;34(12):1474-1479.
    [118].Torabinejad M, Shabahang S, Bahjri K. Effect of MTAD on postoperative discomfort:a randomized clinical trial. J Endod2005;31(3):171-176.
    [119].He X, Lux R, Kuramitsu HK, et al. Achieving probiotic effects via modulating oralmicrobial ecology. Adv Dent Res2009;21(1):53-56.
    [120].Meurman JH, Stamatova I. Probiotics: contributions to oral health. Oral Dis2007;13(5):443-451.
    [121].Caglar E, Cildir SK, Ergeneli S, et al. Salivary mutans streptococci and lactobacillilevels after ingestion of the probiotic bacterium Lactobacillus reuteri ATCC55730bystraws or tablets. Acta Odontol Scand2006;64(5):314-318.
    [122].Caglar E, Sandalli N, Twetman S, et al. Effect of yogurt with BifidobacteriumDN-173010on salivary mutans streptococci and lactobacilli in young adults. ActaOdontol Scand2005;63(6):317-320.
    [123].Haukioja A. Probiotics and oral health. Eur J Dent2010;4(3):348-355.
    [124].Kim JY, Choi YO, Ji GE. Effect of oral probiotics (Bifidobacterium lactis AD011andLactobacillus acidophilus AD031) administration on ovalbumin-induced food allergymouse model. J Microbiol Biotechnol2008;18(8):1393-1400.
    [125].Stamatova I, Meurman JH. Probiotics: health benefits in the mouth. Am J Dent2009;22(6):329-338.
    [126].Kimoto-Nira H, Mizumachi K, Okamoto T, et al. Influence of long-term consumptionof a Lactococcus lactis strain on the intestinal immunity and intestinal flora of thesenescence-accelerated mouse. Br J Nutr2009;102(2):181-185.
    [127].Van Huynegem K, Loos M, Steidler L. Immunomodulation by genetically engineeredlactic acid bacteria. Front Biosci2009;14:4825-4835.
    [128].De Keersmaecker SC, Sonck K, Vanderleyden J. Let LuxS speak up in AI-2signaling.Trends Microbiol2006;14(3):114-119.
    [129].Joelsson A, Kan B, Zhu J. Quorum sensing enhances the stress response in Vibriocholerae. Appl Environ Microbiol2007;73(11):3742-3746.
    [130].Vendeville A, Winzer K, Heurlier K, et al. Making 'sense' of metabolism:autoinducer-2, LuxS and pathogenic bacteria. Nat Rev Microbiol2005;3(5):383-396.
    [131].McNab R, Lamont RJ. Microbial dinner-party conversations: the role of LuxS ininterspecies communication. J Med Microbiol2003;52(Pt7):541-545.
    [132].Jack RW, Tagg JR, Ray B. Bacteriocins of gram-positive bacteria. Microbiol Rev1995;59(2):171-200.
    [133].Vining LC. Functions of secondary metabolites. Annu Rev Microbiol1990;44:395-427.
    [134].Cheigh CI, Pyun YR. Nisin biosynthesis and its properties. Biotechnol Lett2005;27(21):1641-1648.
    [135].Mierau I, Kleerebezem M.10years of the nisin-controlled gene expression system(NICE) in Lactococcus lactis. Appl Microbiol Biotechnol2005;68(6):705-717.
    [136].Kuipers OP, de Ruyter PG, Kleerebezem M, et al. Quorum sensing-controlled geneexpression in lactic acid bacteria. Journal of Biotechnology1998;64:15-21.
    [137].Kuipers OP, Beerthuyzen MM, de Ruyter PG, et al. Autoregulation of nisinbiosynthesis in Lactococcus lactis by signal transduction. J Biol Chem1995;270(45):27299-27304.
    [138].Koo H, Xiao J, Klein MI, et al. Exopolysaccharides produced by Streptococcusmutans glucosyltransferases modulate the establishment of microcolonies withinmultispecies biofilms. J Bacteriol2010;192(12):3024-3032.
    [139].Monchois V, Willemot RM, Monsan P. Glucansucrases: mechanism of action andstructure-function relationships. FEMS Microbiol Rev1999;23(2):131-151.
    [140].Marquis RE. Oxygen metabolism, oxidative stress and acid-base physiology of dentalplaque biofilms. J Ind Microbiol1995;15(3):198-207.
    [141].Severina E, Severin A, Tomasz A. Antibacterial efficacy of nisin againstmultidrug-resistant Gram-positive pathogens. J Antimicrob Chemother1998;41(3):341-347.
    [142].Scheie AA. Mechanisms of dental plaque formation. Adv Dent Res1994;8(2):246-253.
    [143].Selwitz RH, Ismail AI, Pitts NB. Dental caries. Lancet2007;369(9555):51-59.
    [144].de Soet JJ, van Loveren C, Lammens AJ, et al. Differences in cariogenicity betweenfresh isolates of Streptococcus sobrinus and Streptococcus mutans. Caries Res1991;25(2):116-122.
    [145].Klinke T, Kneist S, de Soet JJ, et al. Acid production by oral strains of Candidaalbicans and lactobacilli. Caries Res2009;43(2):83-91.
    [146].Benkerroum N, Sandine WE. Inhibitory action of nisin against Listeriamonocytogenes. J Dairy Sci1988;71(12):3237-3245.
    [147].Parente E, Giglio MA, Ricciardi A, et al. The combined effect of nisin, leucocin F10,pH, NaCl and EDTA on the survival of Listeria monocytogenes in broth. Int J FoodMicrobiol1998;40(1-2):65-75.
    [148].Rollema HS, Kuipers OP, Both P, et al. Improvement of solubility and stability of theantimicrobial peptide nisin by protein engineering. Appl Environ Microbiol1995;61(8):2873-2878.
    [149].Ennahar S, Sashihara T, Sonomoto K, et al. Class IIa bacteriocins: biosynthesis,structure and activity. FEMS Microbiol Rev2000;24(1):85-106.
    [150].de Vos WM, Kuipers OP, van der Meer JR, et al. Maturation pathway of nisin andother lantibiotics: post-translationally modified antimicrobial peptides exported bygram-positive bacteria. Mol Microbiol1995;17(3):427-437.
    [151].Breukink E, van Heusden HE, Vollmerhaus PJ, et al. Lipid II is an intrinsiccomponent of the pore induced by nisin in bacterial membranes. J Biol Chem2003;278(22):19898-19903.
    [152].Bierbaum G, Sahl HG. Lantibiotics: mode of action, biosynthesis and bioengineering.Curr Pharm Biotechnol2009;10(1):2-18.
    [153].van Heusden HE, de Kruijff B, Breukink E. Lipid II induces a transmembraneorientation of the pore-forming peptide lantibiotic nisin. Biochemistry2002;41(40):12171-12178.
    [154].Wiedemann I, Benz R, Sahl HG. Lipid II-mediated pore formation by the peptideantibiotic nisin: a black lipid membrane study. J Bacteriol2004;186(10):3259-3261.
    [155].Lenander-Lumikari M, Loimaranta V. Saliva and dental caries. Adv Dent Res2000;14:40-47.
    [156].Jarvis B, Mahoney RR. Inactivation of nisin by alpha-chymotrypsin. J Dairy Sci1969;52(9):1448-1449.
    [157].Takahashi N, Nyvad B. The role of bacteria in the caries process: ecologicalperspectives. J Dent Res2011;90(3):294-303.
    [158].Jia J, Zhu F, Ma X, et al. Mechanisms of drug combinations: interaction and networkperspectives. Nat Rev Drug Discov2009;8(2):111-128.
    [159].Chait R, Craney A, Kishony R. Antibiotic interactions that select against resistance.Nature2007;446(7136):668-671.
    [160].Zimmermann GR, Lehar J, Keith CT. Multi-target therapeutics: when the whole isgreater than the sum of the parts. Drug Discov Today2007;12(1-2):34-42.
    [161].Breukink E, Wiedemann I, van Kraaij C, et al. Use of the cell wall precursor lipid IIby a pore-forming peptide antibiotic. Science1999;286(5448):2361-2364.
    [162].Martin NI, Breukink E. Expanding role of lipid II as a target for lantibiotics. FutureMicrobiol2007;2(5):513-525.
    [163].Mohammadi Z, Abbott PV. The properties and applications of chlorhexidine inendodontics. Int Endod J2009;42(4):288-302.
    [164].Bunick FJ, Kashket S. Enolases from fluoride-sensitive and fluoride-resistantstreptococci. Infect Immun1981;34(3):856-863.
    [165].Sutton SV, Bender GR, Marquis RE. Fluoride inhibition of proton-translocatingATPases of oral bacteria. Infect Immun1987;55(11):2597-2603.
    [166].Cottagnoud P, Cottagnoud M, Tauber MG. Vancomycin acts synergistically withgentamicin against penicillin-resistant pneumococci by increasing the intracellularpenetration of gentamicin. Antimicrob Agents Chemother2003;47(1):144-147.
    [167].Petersen FC, Assev S, Scheie AA. Combined effects of NaF and SLS on acid-andpolysaccharide-formation of biofilm and planktonic cells. Arch Oral Biol2006;51(8):665-671.
    [168].Tong Z, Zhou L, Li J, et al. In Vitro Evaluation of the Antibacterial Activities ofMTAD in Combination with Nisin against Enterococcus faecalis. J Endod2011;37(8):1116-1120.
    [169].Smith AW. Biofilms and antibiotic therapy: is there a role for combating bacterialresistance by the use of novel drug delivery systems? Adv Drug Deliv Rev2005;57(10):1539-1550.
    [170].El Karim I, Kennedy J, Hussey D. The antimicrobial effects of root canal irrigationand medication. Oral Surg Oral Med Oral Pathol Oral Radiol Endod2007;103(4):560-569.
    [171].Bystrom A, Sundqvist G. Bacteriologic evaluation of the efficacy of mechanical rootcanal instrumentation in endodontic therapy. Scand J Dent Res1981;89(4):321-328.
    [172].Stuart CH, Schwartz SA, Beeson TJ, et al. Enterococcus faecalis: its role in root canaltreatment failure and current concepts in retreatment. J Endod2006;32(2):93-98.
    [173].Borssen E, Sundqvist G. Actinomyces of infected dental root canals. Oral Surg OralMed Oral Pathol1981;51(6):643-648.
    [174].Happonen RP, Soderling E, Viander M, et al. Immunocytochemical demonstration ofActinomyces species and Arachnia propionica in periapical infections. J Oral Pathol1985;14(5):405-413.
    [175].Tang G, Samaranayake LP, Yip HK, et al. Direct detection of Actinomyces spp. frominfected root canals in a Chinese population: a study using PCR-based,oligonucleotide-DNA hybridization technique. J Dent2003;31(8):559-568.
    [176].Chavez de Paz LE, Molander A, Dahlen G. Gram-positive rods prevailing in teethwith apical periodontitis undergoing root canal treatment. Int Endod J2004;37(9):579-587.
    [177].Clegg MS, Vertucci FJ, Walker C, et al. The effect of exposure to irrigant solutions onapical dentin biofilms in vitro. J Endod2006;32(5):434-437.
    [178].Malkhassian G, Manzur AJ, Legner M, et al. Antibacterial efficacy of MTAD finalrinse and two percent chlorhexidine gel medication in teeth with apical periodontitis:a randomized double-blinded clinical trial. J Endod2009;35(11):1483-1490.
    [179].van Asselt GJ, Mouton RP, van Boven CP. A proposed standard for MIC-MBClaboratory techniques to detect penicillin tolerance in group A streptococci. Eur J ClinMicrobiol Infect Dis1996;15(2):182-183.
    [180].Arias-Moliz MT, Ferrer-Luque CM, Espigares-Rodriguez E, et al. Bactericidalactivity of phosphoric acid, citric acid, and EDTA solutions against Enterococcusfaecalis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod2008;106(2):e84-89.
    [181].Igarashi K, Kaji A. Relationship between sites1,2and acceptor, donor sites for thebinding of aminoacyl tRNA to ribosomes. Eur J Biochem1970;14(1):41-46.
    [182].Clark JM, Jr., Chang AY. Inhibitors of the transfer of amino acids from aminoacylsoluble ribonucleic acid to proteins. J Biol Chem1965;240(12):4734-4739.
    [183].Berg JD, Matin A, Roberts PV. Effect of antecedent growth conditions on sensitivityof Escherichia coli to chlorine dioxide. Appl Environ Microbiol1982;44(4):814-819.
    [184].Harakeh MS, Berg JD, Hoff JC, et al. Susceptibility of chemostat-grown Yersiniaenterocolitica and Klebsiella pneumoniae to chlorine dioxide. Appl Environ Microbiol1985;49(1):69-72.
    [185].Portenier I, Waltimo T, Orstavik D, et al. The susceptibility of starved, stationaryphase, and growing cells of Enterococcus faecalis to endodontic medicaments. JEndod2005;31(5):380-386.
    [186].Hartke A, Giard JC, Laplace JM, et al. Survival of Enterococcus faecalis in anoligotrophic microcosm: changes in morphology, development of general stressresistance, and analysis of protein synthesis. Appl Environ Microbiol1998;64(11):4238-4245.
    [187].Giard JC, Hartke A, Flahaut S, et al, Auffray Y. Starvation-induced multiresistance inEnterococcus faecalis JH2-2. Curr Microbiol1996;32(5):264-271.
    [188].Nakajo K, Komori R, Ishikawa S, et al. Resistance to acidic and alkalineenvironments in the endodontic pathogen Enterococcus faecalis. Oral MicrobiolImmunol2006;21(5):283-288.
    [189].Stevens KA, Sheldon BW, Klapes NA, et al. Nisin treatment for inactivation ofSalmonella species and other gram-negative bacteria. Appl Environ Microbiol1991;57(12):3613-3615.
    [190].Gao FH, Abee T, Konings WN. Mechanism of action of the peptide antibiotic nisin inliposomes and cytochrome c oxidase-containing proteoliposomes. Appl EnvironMicrobiol1991;57(8):2164-2170.
    [191].Tay FR, Hiraishi N, Schuster GS, et al. Reduction in antimicrobial substantivity ofMTAD after initial sodium hypochlorite irrigation. J Endod2006;32(10):970-975.
    [192].Rasimick BJ, Wan J, Musikant BL, Deutsch AS. Stability of doxycycline andchlorhexidine absorbed on root canal dentin. J Endod2010;36(3):489-492.
    [193].Hequet A, Humblot V, Berjeaud JM, et al. Optimized grafting of antimicrobialpeptides on stainless steel surface and biofilm resistance tests. Colloids Surf BBiointerfaces2011;84(2):301-309.
    [194].Qi X, Poernomo G, Wang K, et al. Covalent immobilization of nisin on multi-walledcarbon nanotubes: superior antimicrobial and anti-biofilm properties. Nanoscale2011;3(4):1874-1880.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700