用户名: 密码: 验证码:
镁合金热室压铸机压室耐热钢研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现在世界镁合金工程构件的98%用压铸方法生产,镁合金压铸的连续性对设备的高温高压工作零部件的使用寿命和安全性提出了苛刻的要求,如压室等热作件长期工作于630-700℃的镁合金液中,并要承受高达30-50 MPa的压力冲击、磨损和镁合金熔体的浸蚀。目前,热室压铸用高品质压室完全依赖高价进口,阻碍了镁合金热室压铸成套设备国产化进程、提高镁合金压铸件生产成本。因此,开发该种材料及其铸造成型技术具有显著的工程意义。
     除更高的硬度外,体心立方的铁素体耐热钢比面心立方的奥氏体耐热钢具有更高的导热率、较低的热膨胀系数,从而具有更好的热疲劳和抗磨损性能,能够更好地满足镁合金热室压铸压室的服役环境对材料的苛刻要求。无镍高钴高钨铁素体耐热耐蚀合金钢,经淬火和高温回火后得到的马氏体具有很好的强韧性,较高的蠕变强度,良好的抗高温氧化性、耐磨性和耐镁熔体浸蚀性能;因无镍而从源头上杜绝了压室材料对镁液的污染。因此,该钢种是国内外镁合金热室压铸压室的首选材料。
     本论文研究工作,旨在以含Cr 9-12%的铁素体耐热耐蚀合金钢为基础,研究开发无镍高钴高钨铁素体耐热耐蚀铸钢,使其满足在630-700℃设计使用温度下长期使用对性能的要求,使用性能(报废时间长于2年,打料次数超过十万次)达到与进口材料相当的水平。
     为此,本文首先综述了耐热钢的研究概况,然后采用分子轨道法对铁素体耐热耐蚀合金钢的成分进行优化设计,并通过实验的方法评估最佳热处理工艺,制定了最终的热处理制度,为耐热钢的热处理工艺以及新材料的开发和市场提供指导。
     通过成分优化设计的耐热钢,采用真空冶炼技术,先在真空感应电炉中熔融,再在电渣重熔炉,有效地防止了偏析,提高了冶炼纯度,根据淬火裂纹的产生机理,有效地避免了淬火裂纹的产生,研究结果表明在1060-1120℃空冷淬火,然后在650-720℃回火的马氏体组织具有良好的综合力学性能。
Nowadays, about 98 percent engineering magnesium-alloy components demand in the world are from die casting industry, rigorous requirements for sevice life and security of the equipment components in the high temperature and high pressure environment are brought forward due to the continuity of die casting for magnesium alloys, for example, the chamber is always employed in the magnesium alloys melting at 630-700℃, which is also subject to 30-50 MPa pressure impact, high abrasion and corruption from magnesium alloys melting. So far,high quality chambers are almost dependent on importation at expensive price,which has severely restricted the progress of the domestic complete magnesium-alloy die casting set of equipment and increases the cost of the magnesium-alloy castings. Therefore, it is very significant to work out eligible material and its foundry technology in the engineering field.
     Besides higher hardness, the heat conductivity of body-centered cubic ferritic heat resisting steels is higher than that of face-centered cubic austenitic heat resisting steels, while the former thermal expansion coefficient is lower than that of the latter,so better heat fatigue and wear-resistant properties are showed in ferritic refractory steels, for which the rigorous requirements for the material of chambers are better satisfied. The high cobalt and high tungsten (9%-12%)Cr ferritic heat resisting and corrosion resisting steel without nickel introduced in this paper is such kind of novel material used as hot worked components in the die casting industry, the martensite after quench and temper at high temperature showes high obdurability and creep strength,favourable high temperature oxidation resistant property, abradability and corrosion resistance from magnesium alloys melting. The supercriterion of Fe impurity and Ni impurity dissolution in magnesium ingot are both prevented due to application of this steel without Ni,so it is the best choice for chambers of magnesium-alloy hot die-casting machines both at home and abroad.
     The research in this paper is to exploit high cobalt and high tungsten (9%-12%)Cr ferritic heat resisting and corrosion resisting cast steels without nickel on the basis of (9%-12%)Cr ferritic heat resisting and corrosion resisting alloy steel. The modified 9-12%Cr cast steels in this paper is designed to apply between 630 and 700℃in a long time. The service performance arrives at equivalent level compared with the inward material. Namely, the out-of-service time is more than 2 years and the knockout times exceed100,000.
     Therefore, the general situation in the ferritic heat resisting steels is retrospected first, then the chemical component are designed according to the calculation of crystal properties based on molecule orbit using discrete Variational Xa,final heat treatment regime is established through experiments, which could be used for reference in the similar material exploitation, its heat treatment and its market.
     The vacuum melting technology is adopted for the refractory steel through component optimization,first the steel is molten in vacuum induction furnace and then remelted in the electroslag remelting furnace, by which the impurity qutient is improved and the component segregation is avoided effectively. After that the chamber is quenched between 1060 and 1120℃in the air and tempered between 650 and 720℃. The quenching cracks are prevented because of the technology according the cracks prevention mechanism. The research results show that the steel with martensite structure has excellent comprehensive mechanical properties.
引文
[1]王渠东,丁文江.镁合金研究开发现状与展望[J].有色金属. 2004.7:8-11.
    [2]陈金城,彭余恭.压铸机的发展[J].铸造,2005,54(1):6-15.
    [3]彭余恭,陈金城.压铸机的分类及其工作方式[J].铸造,2005,54(2):179-181.
    [4]黄相全,李培杰,刘树勋等.镁合金热室压铸机压射室材料摩擦磨损机制研究[J].铸造,2001,50(4):187-190.
    [5]严炎样,姚敏.用SF6混合气体保护镁合金溶液[J].特种铸造及有色合金, 1996. (04):41-43.
    [6]朱日彰,卢亚轩.耐热钢和高温合金[M].北京:化学工业出版社,1996.
    [7]王艳华.超超临界汽轮机耐热钢组织和性能研究[D].哈尔滨:哈尔滨工业大学硕士学位论文, 2006: 4-5.
    [8]阿部富士雄.超超临界压力发电用高Cr铁素体耐热钢的开发及现状[J].廖建国.译自《日本钢铁协会会报》,2006.
    [9] E.Wimmer. Computational Approaches in Materials Design[C]. International Conference on Computer assisted Materials Design and Process Simulation, Tokyo, ISSIJ, 1993:225-228.
    [10] Y S. Kim, T. Hirotsu, H. Mrofumi. Electronic Structure of Spinel Type Manganese Oxides[J]. Bulletin of the Society for Discrete Variational Xa, 1999, 12( 2) :19 -21.
    [11]李俊清,河天敬,王俭.物质结构导论[M].中国科学技术大学出版社,1990:601-604.
    [12]路琼华,朱裕贞,苏小云.工科无机化学[M].华东化工学院出版社,1998:24 -26.
    [13]唐敖庆.量子化学[M].科学出版社,1982 :327-337.
    [14] T.Kamiya, E.Sakai. Calculation of Crystal Properties Based on Ab-initio Band Calculation Using DV-Xa Bases. Bulletin of the Society for Discrete Variational Xa[J]. 1996:2 90-293.
    [15] S.H. Payne. Competition Between Atomic and Molecular Dolecular Desorption[J]. Surface Science, 1998: 369-387.
    [16]刘维鹏,李惠娥,罗连生.金属晶体设计原则之一—成键电子的自旋相适应性[C], MRS, 1996.
    [17] B.K.伐因斯坦,B.M.弗里特金,B.H.英丹博姆.现代晶体学[M].吴自勤,译.中国科学技术大学出版社,1992: 142.
    [18]赵成大.固体量子化学—材料化学的理论基础[M].高等教育出版社,1997: 83-353.
    [19] (英〕D. G佩蒂福,A. H.柯垂尔.合金设计的电子理论[M].陈魁英,译.辽宁科学技术出版社,1997:47-48.
    [20]周公度,段连运.结构化学基础[M].北京大学出版社, 1997:63-65.
    [21]李运伦.群论及其在分子结构中的应用[M].湖南科学技术出版社,1996: 195-198.
    [22] J.G.Snijders, E.J.Baerends. A Perturbation Theory Approachto Relativistic Calculation[J]. Molecular Physics, 1979, 38(6):1909-1929.
    [23]冯武锋.Sn基钎料合金元素的合金化效果及润湿性的量子学研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2001:22-29.
    [24] Morinaga, Masahiko, et al. Process for producing ferritic iron-base alloy and ferritic heat-resistant steel[P]. JP 155019/94, 1994-06-07.
    [25]森永正彦,村田纯教,桥诘良吉.铁素体系铁基合金的制造方法及铁素体系耐热钢[P], CN 1151766A.
    [26]三宅英德,朝仓分健太郎,藤田利夫等.铁と钢[M], 1981, 67:494.
    [27]竹田赖正,高野勇作,横田宏等.铁と钢[M], 1990, 76:1100.
    [28]藤田利夫,笹仓利彦.铁と钢[M], 1960, 46:1393.
    [29]行俊照夫,吉川州彦,寺西洋志等.铁と钢[M], 1979, 65:841.
    [30]伊势田敦郎,寺西洋志,吉川州彦等.耐热金属材料第123委员会研究报告[R], 1988, 29:15.
    [31]腾原优行,内田博幸.耐热金属材料第123委员会研究报告[R], 1986, 29:203.
    [32]高桥纪雄,德田健次,藤田利夫.耐热金属材料第123委员会研究报告[R], 1969, 10:157.
    [33]细井祜三,和出升.耐热金属材料第123委员会研究报告[R], 1985, 26:33.
    [34]朝仓健郎太郎,藤田利夫.铁と钢,耐热金属材料第123委员会研究报告[R], 1985, 26:247.
    [35]伊势田敦郎,吉川州彦,寺西洋志.耐热金属材料第123委员会研究报告[R], 1986, 27:39.
    [36]早川均,吉武明英,田村学.材料とプロャス[M], 1988, 1:924.
    [37]山下幸介,藤田利夫,土山友博.铁と钢[M], 1977, 63: 843.
    [38]朝仓健太郎,藤田利夫,山下幸介.铁と钢[M], 1980, 66:1375.
    [39]朝仓健太郎,藤田利夫.耐热金属材料第123委员会研究报告[R], 1987, 28:11.
    [40]藤田利夫,竹村数男,清水贞一.铁と钢[M], 1955, 41:988.
    [41]宫原一哉,藤田利夫,荒木透.铁と钢[M], 1966, 52:1561.
    [42]高桥纪雄,藤田利夫.铁と钢[M], 1974, 52:1506.
    [43]腾田利夫,山田武海,高桥纪雄.铁と钢[M], 1975, 61:357.
    [44]朴立羽旻,藤田利夫.铁と钢[M], 1982, 68:2541.
    [45] J.Koutsky, J. Iron and Steel Inst[M], 1962, 200:938.
    [46]行俊照夫,西田和彦.耐热金属材料第123委员会研究报告[R], 1975, 16:115.
    [47]伊势田敦朗,寺西洋志,吉川州彦.耐热金属材料第123委员会研究报告[R], 1985, 26:121.
    [48]朝仓健太郎,藤田利夫.铁と钢[M], 1987, 73:1762.
    [49]朝仓健太郎,藤田利夫.铁と钢[M], 1988, 74:2001.
    [50]高桥纪雄,德田健次,藤田利夫.耐热金属材料第123委员会研究报告[R], 1970,11:225.
    [51]刘与阳,藤田利夫.铁と钢[M], 1988, 74:513.
    [52]小田克郎,藤田利夫.耐热金属材料第123委员会研究报告[M], 1985, 26:261.
    [53]石井龙一,津田阳一,山田政之.材料とプロャス[M], 1996, 9:565.
    [54]五十岚正晃,椹木羲淳.耐热金属材料第123委员会研究报告[R], 1996, 37:77.
    [55]朴立羽旻,朝仓健太郎,藤田利夫.铁と钢[M], 1980, 66:82.
    [56]高桥纪雄,德田健次,藤田利夫.耐热金属材料第123委员会研究报告[R], 1969, 10:377.
    [57]行俊照夫,吉川州彦,寺西洋志.铁と钢[M], 1980, 66:1104.
    [58]朝仓健郎,刘与阳,藤田利夫.耐热金属材料第123委员会研究报告[R], 1986, 27:1.
    [59]たとぇば,刘与阳,藤田利夫.铁と钢[M], 1988, 74:513.
    [60]阿部富士雄.耐热金属材料第123委员会研究报告[R], 1989, 30:48.
    [61]石井龙一,松尾孝.材料とプロャス[M],. 1991, 4:1851.
    [62]木村谦,石井龙一,松尾孝.耐热金属材料第123委员会研究报告[R], 1993, 34:127.
    [63]たとぇば,石井龙一,津田阳一.耐热金属材料第123委员会研究报告[R], 1994, 35:1.
    [64]小田克郎,藤田利夫.耐热金属材料第123委员会研究报告[R], 1985, 26:261.
    [65]小田克郎,岡部忠久,藤田利夫.耐热金属材料第123委员会研究报告[R], 1987, 28:27.
    [66]大神正浩,荒木敏,直井久.铁と钢[M], 1990, 76:1124.
    [67]三村裕幸,大神正浩,直井久.耐热金属材料第123委员会研究报告[R], 1994, 35:77.
    [68]大神正浩,三村裕幸,直井久.耐热金属材料第123委员会研究报告[R], 1995, 36:11.
    [69]藤田利夫.铁と钢[M], 1959, 45:1015.
    [70]高桥纪雄,德田雄次,藤田利夫.铁と钢[M], 1971, 57:166.
    [71]行俊照夫,吉川州彦,寺西洋志.耐热金属材料第123委员会研究报告[R], 1981, 22:55.
    [72]朝仓健郎.材料とプロャス[M], 1990, 3:1945.
    [73]岡本健太郎,德永良邦.铁と钢[M], 1995, 81:571.
    [74]藤田利夫,谷野满,佐野信雄.铁と钢[M], 1959, 45:1081.
    [75]宫原一哉,藤田利夫,荒木透.铁と钢[M], 1966, 52:1561.
    [76]高桥纪雄,藤田利夫.铁と钢[M], 1975, 61:2604.
    [77]内田博幸,新谷智彦.铁と钢[M], 1996, 82:249.
    [78]浕田寿郎,朝仓健太郎,藤田利夫.耐热金属材料第123委员会研究报告[R], 1979, 20:163.
    [79]朝仓健郎,藤田利夫.铁と钢[M], 1979, 65:886.
    [80]伊势田敦郎,寺西洋志.铁と钢[M], 1990, 76:1076.
    [81]宫原一哉,藤田利夫,荒木透.铁と钢[M], 1996, 52:1561.
    [82]土山友博,藤田利夫.铁と钢[M], 1979, 65:417.
    [83]五十岚正晃,椹木羲淳.材料とプロャス[M], 1996, 9:566.
    [84]高桥纪雄,德田健次,藤田利夫.耐热金属材料第123委员会研究报告[R], 1969,10:157.
    [85]行俊照夫,吉川州彦,寺西洋志.铁と钢[M], 1979,65:841.
    [86]朴立羽旻,朝仓健太郎,藤田利夫.耐热金属材料第123委员会研究报告[R], 1980, 21:239.
    [87]朴立羽旻,朝仓健太郎.铁と钢[M], 1981,67:1146.
    [88]原田保弘,清水畅夫,日高贵志夫.材料とプロャス[M], 1995,8:1469.
    [89]肖纪美.高速钢的金属学问题[M].冶金工业出版社,1978.
    [90]徐坚等编著.腐蚀金属学及耐腐蚀金属材料[M].浙江科技出版社,1981.
    [91]王从曾,材料性能学[M].北京:北京工业大学出版社,2001.
    [92]冯端,金属物理学(III)一金属力学性质[M].科学出版社,1999.
    [93]邓增杰,周敬恩,工程材料的断裂与疲劳[M].北京:机械工业出版社,1998.
    [94] Viswanathan. Damage Mechanisms and Life assessment of high temperature components[C] ASM International, 1995
    [95] E.MOLINIE, R.PIQUES, A.PINEAU. BEHAVIOUR OF lCr-1Mo-0.25V STEEL AFTER LONG-TERM EXPOSURE-I.CHARPY IMPACT TOUGHNESS AND CREEP[J] Fatigue Fract. Engng Mater. Struct, 1991, 14(4):531-545.
    [96] G. Eggeler, N. Nilsvang and B. Ilschner. Steel Res 58[R], 1987:97–103.
    [97] W. Blum and S. Straub, Steel Res 62[R], 1991:72–74.
    [98] S.Straub, M.Meier, J.Ostermann and W. Blum, VGB Kraftwerkstechnik 73[R], 1993:646–653
    [99] D. Henes, H. M?hlig, S. Straub, J. Granacher. Microstructure and mechanical properties of metallic high-temperature materials[J]. Wiley–VCH, Weinheim, 1999: 179–191.
    [100] Weinert P. PhD thesis, Technische Universit?t Graz[D]. Graz, Austria, 2001.
    [101] Hald J. In: Werkstoffe und Qualit?tssicherung 2004[C], Dortmund, March 2004.
    [102] Agamennone R,Blum W ,Gupta C.Evolution of microstructure and deforrnation resistance in creep of tempered martensitic 9-l2 Cr2W5Co steels[J].Acta Mater,2006, 54(11):3003.
    [103]阿部富士雄.ふぇらむ,超超临界压力发电用高Cr铁素体耐热钢的开发及现状[J].廖建国,译,2006.
    [104]王荣滨,海燕.钢淬火十种裂纹分析及对策[J].轻型汽车技术,2001, 5:24-27.
    [105]赵健康.铸造合金及熔炼[J].机械工业出版社,1986.
    [106]土山友博,藤田利夫.铁と钢[M], 1977,63:253.
    [107]三浦正淑,松本重喜.神户制钢技术报[G], 1971,21(3):10.
    [108]崔忠圻.金属学与热处理[M].机械工业出版社,2000:296-298.
    [109]王海凤,陈佰军,王有名. 12%Cr钢晶粒度对疲劳抗力的影响[J].黑龙江科技信息,2004,6:253.
    [110] K.Sawada, K.Kimura, F.Abe.Mechanical response of 9%Cr heat-resistant martensitic steels to abrupt stress loading at temperature[J]. Material science and engineering, 2003A(358): 52-58.
    [111]李荣夫.超临界汽轮机汽缸等铸钢件材料的选用[J].电站系统工程,2003, 19 (2) :59-61.
    [112] ANGEUUTM. Aging embitterment of Fe-12Cr steels[R]. GE Research & Development Center, 1998.
    [113]刘瑞堂,刘文博,刘锦云.工程材料力学性能[M],哈尔滨:哈尔滨工业大学出版社,2001:1-7,60-64.
    [114]余德刚.钢的强韧化理论与设计[M].上海交通大学出版社,1990 : 244-245
    [115]刘显惠译自:Yoichi Tsuda,Masayuki Yamada,Ryuichi Ishii et al. [DEVELOPMENT OF HIGH STRENGTH 12%Cr FERRITIC STEEL FOR TORBING ROTOR OPERATION ABOVE 600℃].超临界蒸汽参数用高级的12%Cr钢的研制与制造[[J].东方汽轮机,2002,1:43-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700