用户名: 密码: 验证码:
山西省禹门口工业供水工程停泵水锤的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长距离输水工程的水力过渡过程的计算,已经成为工程安全运行重要课题之一。禹门口供水工程就是一项长距离的压力管路输水系统,由于其管线长,管线敷设地形较复杂,输水管路的安全防护问题成为供水调度的关键问题之一,管路系统事故停泵水锤压力是影响工程长期安全可靠运行的重要因素,本论文主要针对其输水系统的事故停泵水锤问题进行计算分析。
     水锤计算方法很多,有分析法、图解法、特征线数值解法;图解法易于掌握,并能反映水锤现象的全过程,但由于其工作量大,且有很多因素如管路摩阻忽略不计。这对短管路来说影响不大,但对长管路摩阻是不能忽略的,有时在图解时把摩阻集中于起始端,这和实际情况也出入较大,加之在作水锤线时可能出现累积误差,对某些复杂管道的计算很麻烦。特征线解法可避免上述缺点,该法不仅物理概念明确,而且求解精度高,对复杂的非稳定问题用计算机求解,结果迅速、准确。
     论文分析研究了一、二两级泵站在各种组合工况稳态运行情况下水泵的工作点以及泵站系统的运行状况,并对水泵变速调节进行了水力模拟计算,为确定水泵运行时最优工况提供了理论依据。根据供水工程长距离压力管路输水系统和多点布置进排气阀的特点,通过对水锤计算方法的比较,采用有压管道非恒定流数值模拟计算的特征线法,对利用二阶段缓闭蝶阀作为压力管路的主要安全防护手段时,若干种不同工况组合的供水系统的事故停泵水锤问题进行了模拟计算,起始管路最大压力超过规范要求,严重威胁压力管路的运行安全。因此,必须采用蝶阀与进排气阀共同作用联动防护。文中结合当量管道法和调整波速法确定了水锤计算中的相关参数,建立了山西省禹门口工业供水泵站工程进排气阀计算模型,并对各种工况进行了模拟计算,结果满足规范要求,同时为工程的优化设计及安全运行提供了一定的理论依据和技术支持。
Hydraulic transient calculation of long-distance water supplying project has become one of the most important subject in the project safe operation. Yumenkou water supply project is a long-distance water supply project. Because its long-distance pipes and complex laying topography, the protecting question of the pipeline has become a key question for the water supply attemperment. The pressure of pipeline system in the state of pump ceases abruptly and abnormally, which is an important factor that affects the safety and credibility of pipeline. This paper mostly calculated and analysed water hammer problem when the pump abnormally ceases abruptly.
     There are many methods to calculate water hammer such as analytic method、graphic method and the mathematics method of diagnostic line. The analytic method is easy to use and it can reflect the entire process of water hammer, but it has too much workload. Besides it neglects too many factors such as resistance coefficient of pipeline, which do not harm big effect on short pipelines. However it can not be neglected for long pipelines. Sometimes resistance coefficient is centralized at the begining of pipeline when using graphic method, which have big differences in actual situations. Besides it may have cumulative error when using graphic method, and it is difficult to calculate some complex pipeline. The mathematics method of diagnostic line could avoid those shortcomings. It do not only have definite physical conception, but also have great solutional precision. It is quite prompt and precise using computer to solve complicated unsteady problems.
     Through the pump working point and the operation status of pumping station system of first and second stage pump stations on various conditions of stable operation were analysed and studied, and the pump gearshift adjustment was calculated by hydraulic simulation, we gave the theory basis to make sure the best operation mode when the pump was operating. On the basis of the characteristics of the filling and emptying system of long-distance water supplying project and intake-exhaust valve with multiple point measurement, by comparing the water hammer calculating methods, we adopted the eigenfunction method of numerical simulation calculations of the transient flow in conduit under pressure, made simulated calculations of water hammer caused by power failure on various conditions of water supply system, when taking two-moment delay-shut butterfly valve as the safe measure of pressure pipeline. We got the most pressure of the beginning pipeline exceeded the criterion and threatened operation safety of the pressure pipeline seriously. Therefore, we must take butterfly valve and intake-exhaust valve as joint defense. Combining the method of equal-mete pipeline and adjusting wave-velocity method, automatic subsection method in water hammer calculation is established and has applied in water hammer calculation of intake-exhaust valve in this paper. Not only establishing the calculation-methodological rationality and easy-using, but also putting forward the practical application-conclusion of intake-exhaust valve in water supply project, through the application and calculation-analysis in Yumenkou water supply project establishment of the calculation model of enter-exhaust valve.
引文
[1] 邱小来等.止回阀结构设计进展[A].第三届全国阀门及管道讨论会论文[J].合肥:1990.
    [2] 孙尚勇等.泵站瞬变过程电液蝶阀控制系统的研究[A].煤炭高校流力流机学术会论文[J].北京:煤炭工业出版社,1987.
    [3] 刘竹溪,刘光临.泵站水锤及其防护[M].北京:水利电力出版社,1988.
    [4] 栾鸿儒, 水泵和水泵站[M].北京:中国水利水电出版社,1993.
    [5] J. L. Lyons,Lyons’ Valve Designer’s Handbook[M]. New York: Van Nostrand Reinhold Company ,1982.
    [6] 冯尚友.水资源系统工程[M].武汉:湖北科学技术出版社,1991.
    [7] 田峰巍,解建仓,颜竹丘著.梯级水电站群的规划与调度[M].北京:科学技术文献出版社,1992.
    [8] 梅珠娥等.面向对象技术在专家系统中的应用研究[J].系统工程学报,1996,11(1):91~97.
    [9] 金锥,姜乃昌,汪兴华.停泵水锤及其防护[M].北京:中国建筑工业出版社,1993.
    [10] 谢水波.珠海广昌取水泵站停泵水锤技术研究报告[R]. 1998.
    [11] 王学芳,叶宏开,汤荣铭,何枫蓉著.工业管道中的水锤[M].北京:科学出版社,1995(2).
    [12] 中华人民共和国水利部.GB/T50265-97,泵站设计规范,北京:中国计划出版社,1997.
    [13] (日)农林水产省构造改善局.泵站设计规范[S],黄林尔等译,北京:水利电力出版社,1990.
    [14] 怀利EB,斯特里特VL.瞬变流[M].清华大学流体传动与控制教研组译.北京:水利电力出版社,1983(2).
    [15] 谢水波,张浩江,汪兴华等.停泵水锤电算中的几个问题[J].给水排水,2000,26(2):64~66.
    [16] 谢水波,邱长军,张浩江等.取水泵站停泵水锤电算技术研究[J]].给水排水,2000,26(6):69~72.
    [17] 王学芳等.工业管道中的水锤分析[M].北京:科学出版社,1995.
    [18] WYLIEEB,STREETERVL. Fluid Transient[M],New York:McGraw-Hill Book Co,1983
    [19] VLSTREETER,Water Hammer Analysis of Pipelines[J].Hydraulic Division,ASME,1964,90(4):151~172.
    [20] 王学芳,工业管道中的水锤[M],北京:科学出版社,1995.
    [21] 蒋劲,梁柱,刘光临等.管路系统气液两相流瞬变流的矢通量分裂法[J].华中理工大学学报,1997,25(3):79~81.
    [22] 黄靖.多功能水泵控制阀[J].中国给水排水,1999,15(2):59~60.
    [23] 谢水波,邱长军,张浩江等.停泵水锤计算中的直接迭代格式与电算方法[J].水利学报,2001(6):80~85.
    [24] 中华人民共和国水利电力部.SD204-86,泵站技术规范(设计分册),北京:水利电力出版社,1986.
    [25] 刘光临,刘梅清.多泵并串联复杂泵系统水锤分析及其控制[J],农业机械学报,1998,29(3):59~63.
    [26] 杨远东,邓志光.停泵水锤计算及其防护[J].中国给水排水,2000,16(5):29~32.
    [27] 清华大学.水力学(上、下册).北京:人民教育出版社,1980.
    [28] 清华大学.流体力学基础(上、下册).北京:机械工业出版社,1982.
    [29] 吴望一.流体力学[M].北京:北京大学出版社,1983.
    [30] 王树人.水击理论与水击计算[M].北京:清华大学出版社,1981.
    [31] 冯康.数值计算方法[M].北京:科学出版社,1978.
    [32] 南京大学数学系.偏微分方程数值解法[M].北京:科学出版社,1979.
    [33] 汪德罐.计算水力学理论与应用[M].南京:河海大学出版社,1989.
    [34] E.B. Wylie and V.L. Streeter.Fluid Transients[M]. New York :Mcgraw-Hill Book Company,1978.
    [35] 徐士良.FORTRAN 常用算法程序集[M].北京:清华大学出版社,1995.
    [36] 陈俊源.Visual Basic 6.x 程序设计(SQL Server 应用集成篇)[M].北京:中国铁道出版社,2001.
    [37] 曾伟民.Visual Basic 6.0 高级实用教程[M].北京:电子工业出版社,1999.
    [38] Roger Jennings.Visual Basic 6.0 数据库开发人员指南[M].北京:机械工业出版社,1999. [39] [39] 陈之航,曹柏林,赵在三.气液双向流动和传热[M].北京:机械工业出版社,1983.
    [40] 耶格尔.水力不稳定流[M].北京:清华大学印刷厂,1985.
    [41] 常近时.水利机械过渡过程[M].北京:机械工业出版社,1991.
    [42] 崔宗培.中国水利百科全书(第四卷)[M].北京:水利电力出版社,1991.
    [43] 杨开林,董兴林.抽水泵站水力瞬变数学模型的研究[J].水利学报,1996.(1).
    [44] 杨开林.管网恒定流和瞬变流动数值模型的研究[A].水利水电工程青年学术论文集[C].北京:中国科学技术出版社,1992.
    [45] 万五一.阀门系统的过流特性及其对瞬变过程的影响[J].清华大学学报(自然科学版),2005,45(9)1198~1201.
    [46] 叶跃平,吴荣樵.水锤计算中水泵水轮机的全特性[J].武汉水利电力学院学报,1987(2).
    [47] 徐明阳.液控缓闭蝶阀流阻特性试验研究[J].甘肃科学学报,1997(4).
    [48] 刘华,鞠小明,陈家远.供水管道系统中的水力过渡过程研究[J].四川大学学报,1999(1):56~59.
    [49] 刘光临,刘梅清,匡许衡.长管道系统中的水锤及其防护研究[J].武汉水利电力大学学报,1996,29(5):34~38.
    [50] Chaudhry M H.Applied Hydraulic Transients,Van Nostrand Reinhold Comp.,Canada,1979.
    [51] [苏]克里夫琴科.水力机械[M].北京:电力工业出版社,1982.
    [52] (日)山口幸男,田中水浦.水轮机和水泵的过渡过程计算[J].国外大电机,1983(2).
    [53] Chaudhry M H. Governing Stability of a Hydroelectric Power Plant[J].Water Powet,April,1970,131~136.
    [54] Kranenburg C.Gas Release during Transient Cavitation in Pipes[J].J. Hyd. Div.,ASCE. 1974:100(10), 1383~1398.
    [55] Streeter V L,Lai C.Water Hammer analysis including fluid friction [J].J.of the Hydraulic Devision,ASCE,1962,VOL.88:79~112.
    [56] Marchal M,Flesh G and Suter P..The Calculation of Water Hammer Problems by Means of the Digital Computer. Proceedings,International Symposium on Water hammer in Pumped Storage Projects[M].ASCE,1965.168~180.
    [57] Brown R J. Water Column Separation at Two Pumping Plants[J]. Basic Energ Trans, ASME,1968,90(10):521~531.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700