用户名: 密码: 验证码:
输水水锤防护措施的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着各国经济的发展,居民的用水量不断增加,并且由于水体的污染,越来越多的城市为了解决日趋尖锐的水资源供需矛盾,不得不兴建长距离的大型输水工程。为了防止供水系统因多种原因发生瞬变流现象而导致水锤事故,在设计时,要事先作水锤分析、预测和模拟事故工况下水锤的发生和传播规律。除了考虑常规正压水锤以外,还必须考虑在管道的某些部位可能发生气体释放、产生空穴流和液柱分离等气液两相瞬变流情况。对有压输水管道系统气液两相瞬变流进行预测与控制研究,是优化工程设计、降低工程造价、确保工程安全运行的关键,具有重要的理论意义和实用价值。
     本文的主要内容如下:
     第一章阐述选题的目的和意义,综述两相瞬变流研究的历史和现状,阐述研究的主要内容。
     第二章阐述水锤的概念、水锤的基本微分方程、水锤的数值解原理。
     第三章阐述事故停泵时泵边界条件和辅助边界条件及系统元件的电算原理。
     第四章建立两相瞬变流计算的数学模型及复合式排气阀水锤防护的边界条件,以广州市东乡水厂引水工程为例,通过对安装复合式排气阀前后泵系统的水锤特性进行数值模拟分析,并计算复合式排气阀设置的数目、安装位置等因素对水力过渡过程的影响,对长距离供水系统中复合式排气阀的水锤防护作用进行详尽的研究,得出了对工程设计与运行有价值的结论与建议。
     第五章在上述研究的基础上,对全文进行总结,提出今后进一步研究的思路与设想。
With the development of the economy of different countries, the continual increasing water consumption of resident, and water body contaminated, more and more cities are in order to solve the sharp contradiction between supply and demand of water resources, long distance and large-scale water delivery cascade pumping stations must be built. In order to prevent the water-supply systems from causing water hammer accidents because many kinds of reasons when transient phenomenon taken place in pipe, when we design, it is necessary to make water hammer analysis, predict and simulate the occurrence of water hammer accidents and diffuse law at power failure to the pumps. Besides considering the routine pressing water hammer, it must be considered that some position in pipeline may take place the circumstances of gas-liquid two-phase hydraulic transient such as gas release, producing hole in flow and liquid column separation. It is of the key that predicting and control studying of gas-liquid two-phase hydraulic transient in pipeline systems for optimizing engineering design, reducing the fabrication cost of the projects, guaranteeing the project safe operation, they have important theory meaning and practical value.
     The dissertation consists of the following five chapters:
     Chapter one presents the purpose and significance of the dissertation, and summarizes the historical and current situation、the development trend of water hammer,presents the main research context.
     Chapter two describes the conception of water hammer、the basic differential equation of water hammer、the theory of water hammer numerical explain.
     Chapter three expounds the computational principle of pump boundary condition、assistant boundary condition and the element of systems, when accidental pump-stopping happened.
     Chapter four sets up the mathematics models calculated in two-phase hydraulic transient and the boundary condition of combined air vent valve protection, by taking Guangdong Dongxiang Water Supply Project as an example, according to the numerical simulation and analyses in water hammer characteristic of pump system on not adding the combined air vent valve and operating mode with combined air vent valve, and calculates the influence on hydraulic transient process of the change in numbers. Setting positions and release of combined air vent valve, research detailedly on function of water hammer protection with combined air vent valve in water-supply system of long distances, it has elicited valuable conclusions and suggestions on engineering design and movement.
     Chapter five summaries the whole research works on the basis of above research, and puts forward the thinking and imagination that will be studied further in the future.
引文
[1]王学芳、叶宏开、汤荣铭、何枫.工业管道中的水锤[M].北京:科学出版社,1995.2~3.
    [2]Alexander A.Menabreas Note on Water hammer[J]. Journal of the Hydraulics Division Proc.ASCE, 1976, Vol.102.
    [3]Joukovsky, N.E. Water Hammer[M]. Imperial Academy Sc. of St. Petersburg, 1898 and 1900, vol.9 (Translated by Miss O.Simin), Proc.Am.Water-Works Assoc,1904,341-424.
    [4]Allievi, L, Theory of Water Hammer[M],(translated by E. E. Halmos), RiccardoGaroni, Rome,1925.
    [5]Gibson, N. R., Pressures in Penstocks Caused by Gradual Closing of Turbine Gates[J], Trans. ASCE, Vol.83, 1919-1920, 707-775.
    [6]Gibson, N. R, The Gibson Method and Apparatus for Measuring the Flow of Water in Closed Conduits[J], Trans. ASME, Vol45, 1923, 343-392.
    [7]Strowger, E.B, Derr, S.L, Speed Changes of Hydraulic Turbines for Sudden Changes of Load[J], Trans. ASME, Vol.48, 1926, 209-262.
    [8]Wood,F.M, Discussion of Speed Changes of Hydraulic Turbines for Sudden Changes of Load[J], Trans. ASME, Vol48, 1926.
    [9]Jaeger, C, Water Hammer Effects in Power Conduits, Civil Engineering, London[J], Vol.23, 1948, 500-503.
    [10]Parmakian, G, Water Hammer Analysis[M], New York, Prentice Hall and Dover Publications, 1955.
    [11]Richard,R.T, Water Column Separation in Pump Discharge Lines[J], Trans. ASME, 1956.
    [12]Duc, F, Water Column Separation[J], Sulzer Tech. Review, Vol.41, 1959.
    [13]David C. Wiggert, Transient Flow in Free-Surface[J], Pressurized Systems, Journal of the Hydraulics Division, Vol. 98, No. 1, January 1972, 11-27.
    [14]Victor L. Streeter, Transient Cavitating Pipe Flow[J], Journal of Hydraulic Engineering, Vol. 109, No. 11, November 1983, 1407-1423.
    [15]F.J. Moody, Y.W. Shin, Two-phase flow and waterhammer loads in vessels, piping, and tructural systems[J], presented at the 1984 Pressure Vessel and Piping Conference and Exhibition, San Antonio, Texas, June 17-21, 1984, the Pressure Vessels and Piping Division, ASME, New York, N.Y. American Society of Mechanical Engineers, 1984.
    [16]Bryan W. Karney, Energy Relations in Transient Closed-Conduit Flow[J], Journal of Hydraulic Engineering, Vol. 116, No. 10, October 1990, 1180-1196.
    [17]A.lai, K.F.Hau, R.Noghrehkar, Investigation of waterhammer in piping networks with voids containing non-condensable gas[J], Nuclear Engineering and Design 2000. Vol197, 61-74.
    [18]Angus, R.W, Simple Graphical Solutions for Pressure Rise in Pipe and Pump Discharge Lines[J], Jour. Engineering Institute of Canada, Feb.1935, 72-81.
    [19]Angus,R.W., Waterhammer Pressure in Compound and Branched Pipes[J], Proc. ASME, 1956.
    [20]Rich,G, Waterhamer Analysis by the Laplace-mellin Transformations [J], Trans.ASME, 1945.
    [21]Rich, G.A, Hydraulic transients[M], New York, N.Y, 1951.
    [22]Gray C.A.M, Analysis of Water-hammer by Characteristics[J], Trans. ASCE, 1954.
    [23]E. Benjamin Wylie and Victor L. Streeter., Fluid transients[M], New York McGraw-Hill International Book Co, 1978.
    [24]E.B. 怀利 V.L. 斯特里特著,瞬变流[M],清华大学流体传动与控制教研组译,北京:水利电力出版社. 1987.1.(文献[23]中译本)
    [25]C. Taylor and K. Morgan, Computational techniques in transient and turbulentflow v.2 Recent advances in numerical methods in fluids[M], Swansea: Pineridge Press, 1981.
    [26]Ted Belytschko, Thomas J.R. Hughes, Computational methods for transientanalysis, Amsterdam, New York: North-Holland, New York[J], N.Y. U.S.A. Soledistributors in the USA and Canada, Elsevier Science Pub. Co. 1983.
    [27]Victor L. Streeter, E.Benjamin Wylie. Fluid mechanics[M],New York: McGraw-Hill,1985.
    [28]P.W.France, Finite element solution for mass oscillations in a surge tank on sudden valve opening[J], Advances in Engineering Software 1996(26), 185-187.
    [29]Taylor, S.E.M; Johnston, D.N; Longmore, D.K,Modeling of transient flow in hydraulic pipelines[J],Proceedings of the Institution of Mechanical Engineers. Part I,Journal of Systems & Control Engineering.1997, 211(6), 447-456.
    [30]Jorge L.Balino, Axel E.Larreteguy, The differential perturbative method appliedto the sensitivity analysis for waterhammer problems in hydraulic networks[J], Applied Mathematical Modeling 2001(5), 1117-1138.
    [31]Gray, C.A.M, The Analysis of the Dissipation of Energy in Waterhammer[J], Proc. ASCE, Vol119,1953, 1176-1194.
    [32]Cabelka,J, Franc,I, Closure Characteristics of a Valve with Respect to Waterhammer[J], Proc. 8th Congress, International Assoc. for Hydraulic Research, Montreal, Canada, Aug.1959.
    [33]Streeter,V.L, Valve Stroking to Control Waterhammer[J], Jour. Hyd. Div., ASCE, Vol89, March 1963, 39-66.
    [34]Ruus,E, Optimum Rate of Closure of Hydraulic Turbine Gates[J], Presented atASME, Denver Colorado, April 1966.
    [35]刘光临、匡许衡.考虑管道中水流气体释放的事故停泵水锤计算分析[J].武汉水利电力大学学报,1998,31(6):1~6.
    [36]刘光临、刘梅清、匡许衡.长管道系统中的水锤及其防护研究[J].武汉水利电力大学学报,1996 ,29(5):36~40.
    [37]蒋劲、梁柱、刘光临、程良骏.管路系统气液两相瞬变流的矢通量分裂法[J].华中理工大学学报,1997 ,25(3):79~81.
    [38]Wylie E B, Streeter V L, Suo Lisheng. Fluid transients in system[M]. Engle Wood Cliffs. Prentice Hall Inc, 1993. 287~305.
    [39]Stephenson D.Effects of air valves and pipework on water hammer pressure[J].Journal of Transportation Engineering ,ASCE ,1997(3) : 101~106.
    [40]Lee T S. Air influence on hydraulic transients on fluid system with air valves[J]. Fluids Eng ,ASME ,1999(9) :646~650.
    [41]刘竹溪,刘光临. 泵站水锤及其防护[M]. 北京:水力电力出版社,1988. 201~240.
    [42]刘光临,蒋劲. 大型轴流泵站停泵水锤的调压塔防护研究[J]. 水利水电技术,1995(2) :42~46.
    [43]刘光临,刘梅清,匡许衡. 长管道系统中的水锤及其防护研究[J]. 武汉水利电力大学学报,1996(5) :111~113.
    [44]金锥,姜乃昌,汪兴华. 停泵水锺及其防护[M]. 北京:中国建筑工业出版社,1993. 483~517.
    [45]刘华,鞠小明,陈家远. 供水管道系统中的水力过渡过程研究[J]. 四川大学学报,1999(1) :56~59.
    [46]刘梅清,冯卫民. 单向调压塔防水锤特性的数值模拟与研究[J]. 水利学报,1995(10):44~48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700