用户名: 密码: 验证码:
胡宁病毒核蛋白结构与功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胡宁病毒被认为是致命的阿根廷出血热的病原体。该种疾病严重威胁公众健康安全,并导致超过五百万人陷于疾病威胁之中。由于其传播途径为依靠飞沫传播,故被认为是一种潜在的生化武器而更加受到各方重视。胡宁病毒是一种负义单链RNA病毒,隶属于沙粒病毒科沙粒病毒属。其基因组由两段组成,合成四种蛋白质。在这四种蛋白质中,核蛋白在病毒RNA合成以及针对宿主的免疫抑制等方面均发挥重要作用。但人们对其具体的分子作用机制知之甚少。迄今为止,已有多种负链RNA病毒的核蛋白结构得到解析,但就沙粒病毒科而言,却只有拉沙热病毒的核蛋白已经解析结构。在本论文中,我们解析了沙粒病毒科另一种重要病毒——胡宁病毒的核蛋白C端结构域的结构,其分辨率达到2.2A。这一结构与拉沙热病毒核蛋白的C端结构域有许多相似之处,却也包含不同之处。该研究拓展了我们对负义单链RNA病毒核蛋白的认识。
     2003年,严重急性呼吸系统综合征的爆发对世界各国均造成了巨大危害。其病原体被认定为是冠状病毒的一种:SARS冠状病毒。该病毒基因组可产生十六种非结构蛋白质,用于病毒的复制与转录工作。其中,非结构蛋白8被认为是该病毒的引物酶。它为该病毒的RNA依赖的RNA聚合酶(非结构蛋白12)生产并提供引物。它同时也是该病毒的第二种RNA依赖的RNA聚合酶(RdRp)。SARS冠状病毒的非结构蛋白7与非结构蛋白8可以形成一个十六聚体的超级复合物。其结构不同于普通RNA依赖的RNA聚合酶的结构,暗示其独特的工作机制。在本论文中,我们解析了非结构蛋白7与非结构蛋白8C端结构域的复合物结构,并依据体内实验证据和结构信息,提出了在非结构蛋白8C端结构域参与调节下的冠状病毒引物酶超级复合物工作机制的模型,该模型为抗冠状病毒药物的研制提供了依据,进而为控制并遏制致命的SARS冠状病毒及其类似物的传播提供帮助。
Junin virus (JUNV) has been identified as the etiological agent of Argentine hemorrhagic fever (AHF), which is a serious public health problem with approximately5million people at risk. It is treated as a potential bioterrorism agent because of its rapid transmission by aerosols. JUNV is a negative-sense single-stranded RNA (-ssRNA) virus that belongs to the genus Arenavirus within the family Arenaviridae, and its genomic RNA contains two segments encoding four proteins. Among these, the nucleoprotein (NP) has essential roles in viral RNA synthesis and immune suppression, but the molecular mechanisms of its actions are only partially understood. To date, several NP structures of-ssRNA viruses have been reported but the only structure in the family Arenaviridae is the Lassa fever virus (LASV) NP. Here, we determined a2.2A crystal structure of the C-terminal domain of JUNV NP. This structure showed high similarity to the LASV NP C-terminal domain. However, both the structure and function of JUNV NP showed differences compared with LASV NP. This study extends our structural insight into the-ssRNA virus NPs.
     SARS-coronavirus has been identified as the etiological agent of a SARS (Severe Acute Respiratory Syndrom) outbreak spreading over the world in2003. This coronavirus could generate sixteen nonstructural proteins for the replication and transcription of the virus genome. Among these proteins, nonstructural protein8(nsp8) is a second RNA-dependent RNA polymerase (RdRp) that produces primers utilized by nsp12which is considered to be the canonical RdRp for SARS coronavirus. SARS coronavirus nonstructural proteins7(nsp7) and8(nsp8) form a primase supercomplex which is a unique structure implicating a distinctive mechanism of RdRp in coronaviruses. Here, we confirmed that the proteolysis product of nsp8contains the globular domain-nsp8C, and indentified the resection site that is notably conserved in coronaviruses. We subsequently crystallized the complex of SARS-CoV nsp8C and nsp7, and the3-D structure of this domain revealed its capability to interfuse into the hexadecamer supercomplex. This specific proteolysis may indicate one possible mechanism by which coronaviruses switch from viral infection to genome replication and viral assembly stages.
引文
1. Enria, D. A., Briggiler, A. M., and Sanchez, Z. Treatment of Argentine hemorrhagic fever. Antiviral Res,2008,78(1):132-139
    2. Nakauchi, M., Fukushi, S., Saijo, M., et al. Characterization of monoclonal antibodies to Junin virus nucleocapsid protein and application to the diagnosis of hemorrhagic fever caused by South American arenaviruses. Clin Vaccine Immunol,2009,16(8):1132-1138
    3. Briese, T., Paweska, J. T., McMullan, L. K., et al. Genetic detection and characterization of Lujo virus, a new hemorrhagic fever-associated arenavirus from southern Africa. PLoS Pathog,2009,5(5):e1000455
    4. Buckley, S. M., Casals, J., and Downs, W. G. Isolation and antigenic characterization of Lassa virus. Nature,1970,227(5254):174
    5. Smadel, J. E., and Wall, M. J. Identification of the Virus of Lymphocytic Choriomeningitis. J Bacteriol,1941,41(4):421-430
    6. Emonet, S., Lemasson, J. J., Gonzalez, J. P., et al. Phylogeny and evolution of old world arenaviruses. Virology,2006,350(2):251-257
    7. Gunther, S., Hoofd, G., Charrel, R., et al. Mopeia virus-related arenavirus in natal multimammate mice, Morogoro, Tanzania. Emerg Infect Dis,2009,15(12):2008-2012
    8. Lecompte, E., ter Meulen, J., Emonet, S., et al. Genetic identification of Kodoko virus, a novel arenavirus of the African pigmy mouse (Mus Nannomys minutoides) in West Africa. Virology,2007,364(1):178-183
    9. Bowen, M. D., Peters, C. J., and Nichol, S. T. The phylogeny of New World (Tacaribe complex) arenaviruses. Virology,1996,219(1):285-290
    10. Charrel, R. N., Feldmann, H., Fulhorst, C. F., et al. Phylogeny of New World arenaviruses based on the complete coding sequences of the small genomic segment identified an evolutionary lineage produced by intrasegmental recombination. Biochem Biophys Res Commun,2002,296(5):1118-1124
    11. Delgado, S., Erickson, B. R., Agudo, R., et al. Chapare virus, a newly discovered arenavirus isolated from a fatal hemorrhagic fever case in Bolivia. PLoS Pathog,2008,4(4):e1000047
    12. Fehling, S. K., Lennartz, F., and Strecker, T. Multifunctional nature of the arenavirus RING finger protein Z. Viruses,2012,4(11):2973-3011
    13. Cogswell-Hawkinson, A., Bowen, R., James, S., et al. Tacaribe virus causes fatal infection of an ostensible reservoir host, the Jamaican fruit bat. J Virol,2012,86(10):5791-5799
    14. Downs, W. G., Anderson, C. R., Spence, L., et al. Tacaribe virus, a new agent isolated from Artibeus bats and mosquitoes in Trinidad, West Indies. Am J Trop Med Hyg,1963,12: 640-646
    15. Cao, W., Henry, M. D., Borrow, P., et al. Identification of alpha-dystroglycan as a receptor for lymphocytic choriomeningitis virus and Lassa fever virus. Science,1998,252(5396): 2079-2081
    16. Radoshitzky, S. R., Abraham, J., Spiropoulou, C. F., et al. Transferrin receptor 1 is a cellular receptor for New World haemorrhagic fever arenaviruses. Nature,2007,446(1131):92-96
    17. Shimojima, M., Stroher, U., Ebihara, H., et al. Identification of cell surface molecules involved in dystroglycan-independent Lassa virus cell entry. J Virol,2012,86(4):2067-2078
    18. Kunz, S., Borrow, P., and Oldstone, M. B. Receptor structure, binding, and cell entry of arenaviruses. Curr Top Microbiol Immunol,2002,262:111-137
    19. Kunz, S., Edelmann, K. H., de la Torre, J. C., et al. Mechanisms for lymphocytic choriomeningitis virus glycoprotein cleavage, transport, and incorporation into virions. Virology,2003,314(1):168-178
    20. Haas, W. H., Breuer, T., Pfaff, G, et al. Imported Lassa fever in Germany:surveillance and management of contact persons. Clin Infect Dis,2003,36(10):1254-1258
    21. Holmes, G. P., McCormick, J. B., Trock, S. C., et al. Lassa fever in the United States. Investigation of a case and new guidelines for management. N Engl J Med,1990,323(16): 1120-1123
    22. Mills, J. N., Ellis, B. A., Childs, J. E., et al. Prevalence of infection with Junin virus in rodent populations in the epidemic area of Argentine hemorrhagic fever. Am J Trop Med Hyg,1994, 51(5):554-562
    23. Parodi, A. S., Coto, C. E., Boxaca, M., et al. Characteristics of Junin virus. Etiological agent of Argentine hemorrhagic fever. Arch Gesamte Virusforsch,1966,19(4):393-402
    24. Grant, A., Seregin, A., Huang, C., et al. Junin virus pathogenesis and virus replication. Viruses, 2012,4(10):2317-2339
    25. Meyer, B. J., and Southern, P. J. Sequence heterogeneity in the termini of lymphocytic choriomeningitis virus genomic and antigenomic RNAs. J Virol,1994,68(11):7659-7664
    26. Tortorici, M. A., Albarino, C. G., Posik, D. M., et al. Arenavirus nucleocapsid protein displays a transcriptional antitermination activity in vivo. Virus Res,2001,73(1):41-55
    27. Beyer, W. R., Popplau, D., Garten, W., et al. Endoproteolytic processing of the lymphocytic choriomeningitis virus glycoprotein by the subtilase SKI-1/SlP. J Virol,2003,77(5): 2866-2872
    28. Lenz, O., ter Meulen, J., Klenk, H. D., et al. The Lassa virus glycoprotein precursor GP-C is proteolytically processed by subtilase SKI-1/S1P. Proc Natl Acad Sci U S A,2001,98(22): 12701-12705
    29. Pinschewer, D. D., Perez, M., Sanchez, A. B., et al. Recombinant lymphocytic choriomeningitis virus expressing vesicular stomatitis virus glycoprotein. Proc Natl Acad Sci USA,2003,100(13):7895-7900
    30. Poch,0., Sauvaget, I., Delarue, M., et al. Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO J,1989,8(12):3867-3874
    31. Perez, M., Craven, R. C., and de la Torre, J. C. The small RING finger protein Z drives arenavirus budding:implications for antiviral strategies. Proc Natl Acad Sci U S A,2003, 100(22):12978-12983
    32. Strecker, T., Eichler, R., Meulen, J., et al. Lassa virus Z protein is a matrix protein and sufficient for the release of virus-like particles [corrected]. J Virol,2003,77(19):10700-10705
    33. Urata, S., Noda, T., Kawaoka, Y., et al. Cellular factors required for Lassa virus budding. J Virol,2006,80(8):4191-4195
    34. Kranzusch, P. J., and Whelan, S. P. Architecture and regulation of negative-strand viral enzymatic machinery. RNA Biol,2012,9(7):941-948
    35. Ruigrok, R. W., Crepin, T., and Kolakofsky, D. Nucleoproteins and nucleocapsids of negative-strand RNA viruses. Curr Opin Microbiol,2011,14(4):504-510
    36. Sun, Y., Guo, Y., and Lou, Z. A versatile building block:the structures and functions of negative-sense single-stranded RNA virus nucleocapsid proteins. Protein Cell,2012,3(12): 893-902
    37. Qi, X., Lan, S., Wang, W., et al. Cap binding and immune evasion revealed by Lassa nucleoprotein structure. Nature,2010,468(7325):779-783
    38. Hass, M., Golnitz, U., Muller, S., et al. Replicon system for Lassa virus. J Virol,2004,78(24): 13793-13803
    39. Pinschewer, D. D., Perez, M., and de la Torre, J. C. Role of the virus nucleoprotein in the regulation of lymphocytic choriomeningitis virus transcription and RNA replication.J Virol, 2003,77(6):3882-3887
    40. Lopez, N., Jacamo, R., and Franze-Fernandez, M. T. Transcription and RNA replication of tacaribe virus genome and antigenome analogs require N and L proteins:Z protein is an inhibitor of these processes. J Virol,2001,75(24):12241-12251
    41. Hastie, K. M., Kimberlin, C. R., Zandonatti, M. A., et al. Structure of the Lassa virus nucleoprotein reveals a dsRNA-specific 3'to 5'exonuclease activity essential for immune suppression. Proc Natl Acad Sci U S A,2011,108(6):2396-2401
    42. Levingston Macleod, J. M., D'Antuono, A., Loureiro, M. E., et al. Identification of two functional domains within the arenavirus nucleoprotein. J Virol,2011,85(5):2012-2023
    43. Brunotte, L., Kerber, R., Shang, W., et al. Structure of the Lassa virus nucleoprotein revealed by X-ray crystallography, small-angle X-ray scattering, and electron microscopy. J Biol Chem, 2011,286(44):38748-38756
    44. Hastie, K. M., Liu, T., Li, S., et al. Crystal structure of the Lassa virus nucleoprotein-RNA complex reveals a gating mechanism for RNA binding. Proc Natl Acad Sci U S A,2011, 108(48):19365-19370
    45. Rudolph, M. G., Kraus, I., Dickmanns, A., et al. Crystal structure of the borna disease virus nucleoprotein. Structure,2003,11(10):1219-1226
    46. Albertini, A. A., Wernimont, A. K., Muziol, T., et al. Crystal structure of the rabies virus nucleoprotein-RNA complex. Science,2006,313(5785):360-363
    47. Green, T. J., Zhang, X., Wertz, G. W., et al. Structure of the vesicular stomatitis virus nucleoprotein-RNA complex. Science,2006,313(5785):357-360
    48. Tawar, R. G., Duquerroy, S., Vonrhein, C., et al. Crystal structure of a nucleocapsid-like nucleoprotein-RNA complex of respiratory syncytial virus. Science,2009,326(5957): 1279-1283
    49. Ng, A. K., Zhang, H., Tan, K., et al. Structure of the influenza virus A H5N1 nucleoprotein: implications for RNA binding, oligomerization, and vaccine design. FASEB J,2008,22(10): 3638-3647
    50. Ye, Q., Krug, R. M., and Tao, Y. J. The mechanism by which influenza A virus nucleoprotein forms oligomers and binds RNA. Nature,2006,444(7122):1078-1082
    51. Ng, A. K., Lam, M. K., Zhang, H., et al. Structural basis for RNA binding and homo-oligomer formation by influenza B virus nucleoprotein. J Virol,2012,86(12):6758-6767
    52. Chenavas, S., Estrozi, L. F., Slama-Schwok, A., et al. Monomeric nucleoprotein of influenza A virus. PLoS Pathog,2013,9(3):e1003275
    53. Moeller, A., Kirchdoerfer, R. N., Potter, C. S., et al. Organization of the influenza virus replication machinery. Science,2012,338(6114):1631-1634
    54. Arranz, R., Coloma, R., Chichon, F. J., et al. The structure of native influenza virion ribonucleoproteins. Science,2012,338(6114):1634-1637
    55. Raymond, D. D., Piper, M. E., Gerrard, S. R., et al. Structure of the Rift Valley fever virus nucleocapsid protein reveals another architecture for RNA encapsidation. Proc Natl Acad Sci USA,2010,107(26):11769-11774
    56. Ferron, F., Li, Z., Danek, E. I., et al. The hexamer structure of Rift Valley fever virus nucleoprotein suggests a mechanism for its assembly into ribonucleoprotein complexes. PLoS Pathog,2011,7(5):e1002030
    57. Raymond, D. D., Piper, M. E., Gerrard, S. R., et al. Phleboviruses encapsidate their genomes by sequestering RNA bases. Proc Natl Acad Sci USA,2012,109(41):19208-19213
    58. Guo, Y., Wang, W., Ji, W., et al. Crimean-Congo hemorrhagic fever virus nucleoprotein reveals endonuclease activity in bunyaviruses. Proc Natl Acad Sci U S A,2012,109(13): 5046-5051
    59. Carter, S. D., Surtees, R., Walter, C. T, et al. Structure, function, and evolution of the Crimean-Congo hemorrhagic fever virus nucleocapsid protein. J Virol,2012,86(20): 10914-10923
    60. Wang, Y., Dutta, S., Karlberg, H., et al. Structure of Crimean-Congo hemorrhagic fever virus nucleoprotein:superhelical homo-oligomers and the role of caspase-3 cleavage. J Virol,2012, 86(22):12294-12303
    61. Rota, P. A., Oberste, M. S., Monroe, S. S., et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science,2003,300(5624):1394-1399
    62. Snijder, E. J., and Horzinek, M. C. Toroviruses:replication, evolution and comparison with other members of the coronavirus-like superfamily. J Gen Virol,1993,74 (Pt11):2305-2316
    63. Hirai, K., and Shimakura, S. Isolation and characteristics of avian nephrosis-inducing infectious bronchitis virus (coronavirus). Nihon Juigaku Zasshi,1971,33(5):209-216
    64. Horzinek, M. C., and Osterhaus, A. D. Feline infectious peritonitis:a coronavirus disease of cats. J Small Anim Pract,1978,19(11):623-630
    65. Hayashi, T., Goto, N., Takahashi, R., et al. Detection of coronavirus-like particles in a spontaneous case of feline infectious peritonitis. Nihon Juigaku Zasshi,1978,40(2):207-212
    66. Chappuis, G., and Duret, C. Feline infectious peritonitis:present knowledge. Comp Immunol Microbiol Infect Dis,1978,1(1-2):115-120
    67. Hofmann, M., and Wyler, R. Propagation of the virus of porcine epidemic diarrhea in cell culture. J Clin Microbiol,1988,26(11):2235-2239
    68. Zhou, Y. L., Ederveen, J., Egberink, H., et al. Porcine epidemic diarrhea virus (CV 777) and feline infectious peritonitis virus (FIPV) are antigenically related. Arch Virol,1988,102(1-2): 63-71
    69. McClurkin, A. W. Studies on Transmissible Gastroenteritis of Swine. I. The Isolation and Identification of a Cytopathogenic Virus of Transmissible Gastroenteritis in Primary Swine Kidney Cell Cultures. Can J Comp Med Vet Sci,1965,29:46-53
    70. Macnaughton, M. R., and Madge, M. H. The genome of human coronavirus strain 229E. J Gen Virol,1978,39(3):497-504
    71. Kennedy, D. A., and Johnson-Lussenburg, C. M. Isolation and morphology of the internal component of human coronavirus, strain 229E. Intervirology,1975,6(4-5):197-206
    72. Pyrc, K., Jebbink, M. F., Berkhout, B., et al. Genome structure and transcriptional regulation of human coronavirus NL63. Virol J,2004,1:7
    73. Arden, K. E., Nissen, M. D., Sloots, T. P., et al. New human coronavirus, HCoV-NL63, associated with severe lower respiratory tract disease in Australia. J Med Virol,2005,75(3): 455-462
    74. Bruckova, M., McIntosh, K., Kapikian, A. Z., et al. The adaptation of two human coronavirus strains (OC38 and OC43) to growth in cell monolayers. Proc Soc Exp Biol Med,1970,135(2): 431-435
    75. Vogel, G. SARS outbreak. Flood of sequence data yields clues but few answers. Science,2003, 300(5622):1062-1063
    76. Yang, A. C., Goldberger, A. L., and Peng, C. K. Genomic classification using an information-based similarity index:application to the SARS coronavirus. J Comput Biol, 2005,12(8):1103-1116
    77. Woo, P. C., Lau, S. K., Huang, Y, et al. Coronavirus diversity, phylogeny and interspecies jumping. Exp Biol Med (Maywood),2009,234(10):1117-1127
    78. Snijder, E. J., Bredenbeek, P. J., Dobbe, J. C., et al. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol,2003,331(5):991-1004
    79. Li, W., Moore, M. J., Vasilieva, N., et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature,2003,426(6965):450-454
    80. Tusell, S. M., Schittone, S. A., and Holmes, K. V. Mutational analysis of aminopeptidase N, a receptor for several group 1 coronaviruses, identifies key determinants of viral host range. J Virol,2007,81(3):1261-1273
    81. Sabesin, S. M. Isolation of a latent murine hepatitis virus from cultured mouse liver cells. Am J Gastroenterol,1972,58(3):259-274
    82. Nakamura, Y. [Research on the Virus of Murine Hepatitis:Isolation of a Neurotropic Strain]. Atti Accad Med Lomb,1964,19:483-485
    83. Dveksler, G. S., Pensiero, M. N., Cardellichio, C. B., et al. Cloning of the mouse hepatitis virus (MHV) receptor:expression in human and hamster cell lines confers susceptibility to MHV. J Virol,1991,65(12):6881-6891
    84. Chang, K. W., Sheng, Y., and Gombold, J. L. Coronavirus-induced membrane fusion requires the cysteine-rich domain in the spike protein. Virology,2000,269(1):212-224
    85. Prentice, E., McAuliffe, J., Lu, X., et al. Identification and characterization of severe acute respiratory syndrome coronavirus replicase proteins. J Virol,2004,78(18):9977-9986
    86. Schelle, B., Karl, N., Ludewig, B., et al. Nucleocapsid protein expression facilitates coronavirus replication. Adv Exp Med Biol,2006,581:43-48
    87. Shi, S. Q., Peng, J. P., Li, Y. C., et al. The expression of membrane protein augments the specific responses induced by SARS-CoV nucleocapsid DNA immunization. Mol Immunol, 2006,43(11):1791-1798
    88. McIntosh, K. A new virulent human coronavirus:How much does tissue culture tropism tell us?J Infect Dis,2013
    89. Update:severe respiratory illness associated with a novel coronavirus-worldwide, 2012-2013. MMWR Morb Mortal Wkly Rep,2013,62:194
    90. A multicentre collaboration to investigate the cause of severe acute respiratory syndrome. Lancet,2003,361(9370):1730-1733
    91. Drosten, C., Gunther, S., Preiser, W., et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med,2003,348(20):1967-1976
    92. Ksiazek, T. G., Erdman, D., Goldsmith, C. S., et al. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med,2003,348(20):1953-1966
    93. Peiris, J. S., Lai, S. T., Poon, L. L., et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet,2003,361(9366):1319-1325
    94. Gonzalez, J. M., Gomez-Puertas, P., Cavanagh, D., et al. A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae. Arch Virol,2003,148(11): 2207-2235
    95. Marra, M. A., Jones, S. J., Astell, C. R., et al. The Genome sequence of the SARS-associated coronavirus. Science,2003,300(5624):1399-1404
    96. Thiel, V., Ivanov, K. A., Putics, A., et al. Mechanisms and enzymes involved in SARS coronavirus genome expression. J Gen Virol,2003,84(Pt 9):2305-2315
    97. Brierley, I., Digard, P., and Inglis, S. C. Characterization of an efficient coronavirus ribosomal frameshifting signal:requirement for an RNA pseudoknot. Cell,1989,57(4):537-547
    98. Dos Ramos, F., Carrasco, M., Doyle, T., et al. Programmed-1 ribosomal frameshifting in the SARS coronavirus. Biochem Soc Trans,2004,32(Pt 6):1081-1083
    99. Kamitani, W., Narayanan, K., Huang, C., et al. Severe acute respiratory syndrome coronavirus nspl protein suppresses host gene expression by promoting host mRNA degradation. Proc Natl Acad Sci U S A,2006,103(34):12885-12890
    100. Almeida, M. S., Johnson, M. A., Herrmann, T., et al. Novel beta-barrel fold in the nuclear magnetic resonance structure of the replicase nonstructural protein 1 from the severe acute respiratory syndrome coronavirus. J Virol,2007,81(7):3151-3161
    101. Graham, R. L., Sims, A. C., Brockway, S. M., et al. The nsp2 replicase proteins of murine hepatitis virus and severe acute respiratory syndrome coronavirus are dispensable for viral replication. J Virol,2005,79(21):13399-13411
    102. Yu, K., Ming, Z., Li, Y., et al. Purification, crystallization and preliminary X-ray analysis of nonstructural protein 2 (nsp2) from avian infectious bronchitis virus. Acta Crystallogr Sect F Struct Biol Cryst Commun,2012,68(Pt 6):716-719
    103. Li, Y., Ren, Z., Bao, Z., et al. Expression, crystallization and preliminary crystallographic study of the C-terminal half of nsp2 from S ARS coronavirus. Acta Crystallogr Sect F Struct Biol Cryst Commun,2011,67(Pt 7):790-793
    104. Harcourt, B. H., Jukneliene, D., Kanjanahaluethai, A., et al. Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity. J Virol,2004,78(24):13600-13612
    105. Johnson, M. A., Chatterjee, A., Neuman, B. W., et al. SARS coronavirus unique domain: three-domain molecular architecture in solution and RNA binding. J Mol Biol,2010,400(4): 724-742
    106. Serrano, P., Johnson, M. A., Almeida, M. S., et al. Nuclear magnetic resonance structure of the N-terminal domain of nonstructural protein 3 from the severe acute respiratory syndrome coronavirus. J Virol,2007,81(21):12049-12060
    107. Chatterjee, A., Johnson, M. A., Serrano, P., et al. Nuclear magnetic resonance structure shows that the severe acute respiratory syndrome coronavirus-unique domain contains a macrodomain fold. J Virol,2009,83(4):1823-1836
    108. Ratia, K., Saikatendu, K. S., Santarsiero, B. D., et al. Severe acute respiratory syndrome coronavirus papain-like protease:structure of a viral deubiquitinating enzyme. Proc Natl Acad Sci USA,2006,103(15):5717-5722
    109. Egloff, M. P., Malet, H., Putics, A., et al. Structural and functional basis for ADP-ribose and poly(ADP-ribose) binding by viral macro domains. J Virol,2006,80(17):8493-8502
    110. Baliji, S., Cammer, S. A., Sobral, B., et al. Detection of nonstructural protein 6 in murine coronavirus-infected cells and analysis of the transmembrane topology by using bioinformatics and molecular approaches. J Virol,2009,83(13):6957-6962
    111. Hagemeijer, M. C., Ulasli, M., Vonk, A. M., et al. Mobility and interactions of coronavirus nonstructural protein 4. J Virol,2011,85(9):4572-4577
    112. Manolaridis, I., Wojdyla, J. A., Panjikar, S., et al. Structure of the C-terminal domain of nsp4 from feline coronavirus. Acta Crystallogr D Biol Crystallogr,2009,65(Pt 8):839-846
    113. Xu, X., Lou, Z., Ma, Y., et al. Crystal structure of the C-terminal cytoplasmic domain of non-structural protein 4 from mouse hepatitis virus A59. PLoS One,2009,4(1):e6217
    114. Yang, H., Yang, M., Ding, Y, et al. The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proc Natl Acad Sci U S A, 2003,100(23):13190-13195
    115. Yang, H., Xie, W., Xue, X., et al. Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLoS Biol,2005,3(10):e324
    116. Zhai, Y., Sun, F., Li, X., et al. Insights into SARS-CoV transcription and replication from the structure of the nsp7-nsp8 hexadecamer. Nat Struct Mol Biol,2005,12(11):980-986
    117. Imbert, I., Guillemot, J. C., Bourhis, J. M., et al. A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus. EMBO J,2006,25(20):4933-4942
    118. Deming, D. J., Graham, R. L., Denison, M. R., et al. Processing of open reading frame la replicase proteins nsp7 to nsp10 in murine hepatitis virus strain A59 replication. J Virol,2007, 81(19):10280-10291
    119. Pan, J., Peng, X., Gao, Y., et al. Genome-wide analysis of protein-protein interactions and involvement of viral proteins in SARS-CoV replication. PLoS One,2008,3(10):e3299
    120. von Brunn, A., Teepe, C., Simpson, J. C., et al. Analysis of intraviral protein-protein interactions of the SARS coronavirus ORFeome. PLoS One,2007,2(5):e459
    121. Beerens, N., Selisko, B., Ricagno, S., et al. De novo initiation of RNA synthesis by the arterivirus RNA-dependent RNA polymerase. J Virol,2007,81(16):8384-8395
    122. Butcher, S. J., Grimes, J. M., Makeyev, E. V, et al. A mechanism for initiating RNA-dependent RNA polymerization. Nature,2001,410(6825):235-240
    123. Choi, K. H., and Rossmann, M. G. RNA-dependent RNA polymerases from Flaviviridae. Curr Opin Struct Biol,2009,19(6):746-751
    124. Gong, P., and Peersen, O. B. Structural basis for active site closure by the poliovirus RNA-dependent RNA polymerase. Proc Natl Acad Sci U S A,2010,107(52):22505-22510
    125. Ng, K. K., Arnold, J. J., and Cameron, C. E. Structure-function relationships among RNA-dependent RNA polymerases. Curr Top Microbiol Immunol,2008,320:137-156
    126. van Dijk, A. A., Makeyev, E. V., and Bamford, D. H. Initiation of viral RNA-dependent RNA polymerization.J Gen Virol,2004,85(Pt 5):1077-1093
    127. te Velthuis, A. J., van den Worm, S. H., and Snijder, E. J. The SARS-coronavirus nsp7+nsp8 complex is a unique multimeric RNA polymerase capable of both de novo initiation and primer extension. Nucleic Acids Res,2012,40(4):1737-1747
    128. Xiao, Y., Ma, Q., Restle, T., et al. Nonstructural proteins 7 and 8 of feline coronavirus form a 2:1 heterotrimer that exhibits primer-independent RNA polymerase activity. J Virol,2012, 86(8):4444-4454
    129. Egloff, M. P., Ferron, F., Campanacci, V., et al. The severe acute respiratory syndrome-coronavirus replicative protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world. Proc Natl Acad Sci USA,2004,101(11):3792-3796
    130. Su, D., Lou, Z., Sun, F., et al. Dodecamer structure of severe acute respiratory syndrome coronavirus nonstructural protein nsp10.J Virol,2006,80(16):7902-7908
    131. Joseph, J. S., Saikatendu, K. S., Subramanian, V, et al. Crystal structure of nonstructural protein 10 from the severe acute respiratory syndrome coronavirus reveals a novel fold with two zinc-binding motifs. J Virol,2006,80(16):7894-7901
    132. Chen, Y., Su, C., Ke, M., et al. Biochemical and structural insights into the mechanisms of SARS coronavirus RNA ribose 2'-O-methylation by nsp16/nsp10 protein complex. PLoS Pathog,2011,7(10):e1002294
    133. Debarnot, C., Imbert, I., Ferron, F., et al. Crystallization and diffraction analysis of the SARS coronavirus nsp10-nsp16 complex. Acta Crystallogr Sect F Struct Biol Cryst Commun,2011, 67(Pt 3):404-408
    134. te Velthuis, A. J., Arnold, J. J., Cameron, C. E., et al. The RNA polymerase activity of SARS-coronavirus nsp12 is primer dependent. Nucleic Acids Res,2010,38(1):203-214
    135. Xu, X., Liu, Y., Weiss, S., et al. Molecular model of SARS coronavirus polymerase: implications for biochemical functions and drug design. Nucleic Acids Res,2003,31(24): 7117-7130
    136. Ivanov, K. A., and Ziebuhr, J. Human coronavirus 229E nonstructural protein 13: characterization of duplex-unwinding, nucleoside triphosphatase, and RNA 5'-triphosphatase activities. J Virol,2004,78(14):7833-7838
    137. Lee, N. R., Kwon, H. M., Park, K., et al. Cooperative translocation enhances the unwinding of duplex DNA by SARS coronavirus helicase nsP13. Nucleic Acids Res,2010,38(21): 7626-7636
    138. Bouvet, M., Debarnot, C., Imbert, I., et al. In vitro reconstitution of SARS-coronavirus mRNA cap methylation. PLoS Pathog,2010,6(4):e1000863
    139. Chen, P., Jiang, M., Hu, T., et al. Biochemical characterization of exoribonuclease encoded by SARS coronavirus. JBiochem Mol Biol,2007,40(5):649-655
    140. Bouvet, M., Imbert, I., Subissi, L., et al. RNA 3'-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex. Proc Natl Acad Sci U S A,2012
    141. Bhardwaj, K., Guarino, L., and Kao, C. C. The severe acute respiratory syndrome coronavirus Nsp15 protein is an endoribonuclease that prefers manganese as a cofactor. J Virol,2004, 78(22):12218-12224
    142. Ricagno, S., Egloff, M. P., Ulferts, R., et al. Crystal structure and mechanistic determinants of SARS coronavirus nonstructural protein 15 define an endoribonuclease family. Proc Natl Acad Sci USA,2006,103(32):11892-11897
    143. Joseph, J. S., Saikatendu, K. S., Subramanian, V., et al. Crystal structure of a monomeric form of severe acute respiratory syndrome coronavirus endonuclease nsp15 suggests a role for hexamerization as an allosteric switch. J Virol,2007,81(12):6700-6708
    144. Huang, Q., Yu, L., Petros, A. M., et al. Structure of the N-terminal RNA-binding domain of the SARS CoV nucleocapsid protein. Biochemistry,2004,43(20):6059-6063
    145. Yu, I. M., Oldham, M. L., Zhang, J., et al. Crystal structure of the severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein dimerization domain reveals evolutionary linkage between corona-and arteriviridae. J Biol Chem,2006,281(25): 17134-17139
    146. Xu, Y., Lou, Z., Liu, Y., et al. Crystal structure of severe acute respiratory syndrome coronavirus spike protein fusion core. JBiol Chem,2004,279(47):49414-49419
    147. Supekar, V. M., Bruckmann, C., Ingallinella, P., et al. Structure of a proteolytically resistant core from the severe acute respiratory syndrome coronavirus S2 fusion protein. Proc Natl Acad Sci USA,2004,101(52):17958-17963
    148. Li, F., Li, W., Farzan, M., et al. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science,2005,309(5742):1864-1868
    149. Nelson, C. A., Pekosz, A., Lee, C. A., et al. Structure and intracellular targeting of the SARS-coronavirus Orf7a accessory protein. Structure,2005,13(1):75-85
    150. Meier, C., Aricescu, A. R., Assenberg, R., et al. The crystal structure of ORF-9b, a lipid binding protein from the SARS coronavirus. Structure,2006,14(7):1157-1165
    151. Fishleigh, R. V., Robson, B., Gamier, J., et al. Studies on rationales for an expert system approach to the interpretation of protein sequence data. Preliminary analysis of the human epidermal growth factor receptor. FEBS Lett,1987,214(2):219-225
    152. Petersen, T. N., Brunak, S., von Heijne, G, et al. SignalP 4.0:discriminating signal peptides from transmembrane regions. Nat Methods,2011,8(10):785-786
    153. Chen, Y, Yu, P., Luo, J., et al. Secreted protein prediction system combining CJ-SPHMM, TMHMM, and PSORT. Mamm Genome,2003,14(12):859-865
    154. Otwinowski Z, M. W., (Ed.) (1997) Processing of X-ray diffraction data collected in oscillation mode., Academic Press.
    155. Terwilliger, T. C. Maximum-likelihood density modification. Acta Crystallogr D Biol Crystallogr,2000,56(Pt 8):965-972
    156. Terwilliger, T. C., and Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr D Biol Crystallogr,1999,55(Pt 4):849-861
    157. Adams, P. D., Grosse-Kunstleve, R. W., Hung, L. W., et al. PHENIX:building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr, 2002,58(Pt 11):1948-1954
    158. Emsley, P., and Cowtan, K. Coot:model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr,2004,60(Pt 12 Pt 1):2126-2132
    159. Laskowski R, M. M., Moss D, Thornton J PROCHECK:A program to check the stereochemical quality of protein structures. JAppl Cryst,1993(26):283-291
    160. Pettersen, E. F., Goddard, T. D., Huang, C. C., et al. UCSF Chimera--a visualization system for exploratory research and analysis.J Comput Chem,2004,25(13):1605-1612
    161. WL, D., (Ed.) (2002) The PyMOL Molecular Graphics System, DeLano Scientific, San Carlos, CA.
    162. Unni, S., Huang, Y, Hanson, R. M., et al. Web servers and services for electrostatics calculations with APBS and PDB2PQR. J Comput Chem,2011,32(1):1488-1491
    163. Zhang, Y, Li, L., Liu, X., et al. Crystal structure of Junin virus nucleoprotein. J Gen Virol, 2013,94(Pt 10):2175-2183
    164. Huang, C., Kolokoltsova, O. A., Yun, N. E., et al. Junin virus infection activates the type I interferon pathway in a RIG-I-dependent manner. PLoS Negl Trop Dis,2012,6(5):e1659
    165. Eckerle, L. D., Becker, M. M., Halpin, R. A., et al. Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing. PLoSPathog,2010,6(5):e1000896
    166. Minskaia, E., Hertzig, T., Gorbalenya, A. E., et al. Discovery of an RNA virus 3'->5' exoribonuclease that is critically involved in coronavirus RNA synthesis. Proc Natl Acad Sci USA,2006,103(13):5108-5113
    167. Yan, N., Regalado-Magdos, A. D., Stiggelbout, B., et al. The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. Nat Immunol, 2010,11(11):1005-1013
    168. Steitz, T. A., and Steitz, J. A. A general two-metal-ion mechanism for catalytic RNA. Proc Natl Acad Sci U S A,1993,90(14):6498-6502

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700