用户名: 密码: 验证码:
三峡库区马尾松、柏木林木生长及健康经营研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球气候变化是人类生存所面临的重大问题,而三峡库区因地形复杂,物种丰富、群落多样,一直是我国乃至世界研究关注的热点地区,因此三峡库区主要树种的生长与气候因子之间的关系以及其森林健康问题成为本研究的主要内容。树木年轮气候学是以植物生理学为基础,以树木年轮生长特性为依据,研究气候对树木生长影响的程度。本研究试图通过树木年轮学的方法,解释三峡库区主要树种生长与气候因子之间的关系,从森林经营的角度通过影响森林生态系统的结构、环境因子,试图改善森林健康状况,提高森林结构多样性,增强森林抵御外界干扰的能力,实现三峡库区森林的健康、持续、稳定发展。
     本研究利用库区森林资源二类清查资料和国家气象局气象网站多年历史数据,调查库区主要县市的森林虫害发生历史记录,对其森林健康状况进行了评价和分类,对虫害发生和危害等级进行了划分,并建立了地理信息系统。通过样地调查和树木年轮资料的获取,分析主要树种生长趋势,建立主要树种不同地域、不同海拔高度树木生长与气候因子之间的关系模型。通过一定的经营措施,试图通过改变林分微环境控制和改善叶蜂危害状况。分析结果表明:
     1.马尾松生长不同海拔对气候的响应不同,海拔600m时,马尾松生长主要受5,6月份的降雨和5,6月份的湿度指数影响,而海拔900m时受5,6月份温度和上年11月份降雨和湿度指数影响。
     2.库区中游云阳县分布上限的马尾松树轮宽度指数变化幅度大于下限,且上限树轮样本的信噪比、样本总体代表性要高于下限的。总体来讲,上限树木的生长对环境的敏感性高于下限的。进一步分析表明上限马尾松生长受前一年温度和降水的影响,而分布在生长下限的马尾松生长只与当年降水有关,这表明云阳分布在上限的马尾松和分布在下限的马尾松生长与气候因子之间的关系不同;气候因子对分布在上限的马尾松生长的影响存在滞后效应。
     3.运用相关函数及单年分析等树木年轮气候学方法,研究三峡库区上游马尾松径向生长与气候变化的关系,结果表明,马尾松的生长对环境变化比较敏感,不同海拔马尾松对降雨量和气温的响应不同,海拔600 m处马尾松生长与5,6月份的降雨和湿润指数显著相关,而海拔900 m处马尾松与环境的关系相对复杂,除受当年5,6月份温度影响外,还受上年11月份湿润指数的影响,说明同一地区不同海拔梯度的马尾松对气候的响应具有不同特征。最后用多元回归模型回归了马尾松径向生长与气候因子之间的关系。
     4.利用虫害发生的历史记录,按照单位时间内虫害发生的频率划分为频发区、偶发区和安全区。秭归为湖北库区病虫害发生频率最严重的县,频发区为茅坪镇;偶发区为郭家坝镇和归州镇;除此外基本属于安全区域。而夷陵县马尾松毛虫则在太平溪镇、乐天溪镇和小溪塔镇为频发区;三斗坪镇和雅雀岭镇为偶发区;其他地区均为安全区。
     5.各种气象因子综合作用于马尾松毛虫的发生,秭归县马尾松毛虫的发生主要受受温度和日照的影响比较显著,其次为风速,马尾松毛虫的发生面积主要与当年4月份的平均温度、最高温度、最低温度和日照时数相关。
     6.通过主成分分析,影响夷陵地区马尾松毛虫发生的主要是降雨、日照和温度,通过月份气象因子的分析,4月份的平均温度、4月份日照时数和5月份总降雨量与马尾松毛虫发生面积之间存在显著正相关关系。
     7.不同带宽改造后对林分径级组成的影响主要在小径级林木,即改造后无论哪种带宽,都表现出低径级林木株数增多的现象,而对高径级则影响不大。不同树种改造带柏木更新幼苗数量都比未改带有明显的增加,而不同树种在改造带内所产生的环境条件的不同,导致柏木幼苗数量的差异。
     8.带状改造后对Simpson指数的影响不同,20m带宽改造对于灌木层来讲,Simpson指数改造带平均0.4813,未改带为0.6078,未改带高出改造带20.8%,而草本却恰恰相反,改造带0.6478,未改造0.4393,改造带高出未改带32.2%。6m改造后灌木层生物多样性指数D,H与20m结果一致,S则是改造带小于柏木带,与20m处理的结果相反。20m带宽改造后Shannon-Wiener指数与Simpson指数的结果相似,改造带灌木:0.985,未改带灌木1.2609,未改带比改造带高21.8%,改造带草本1.3403,未改带0.8767,改造带比未改带高出34.6%。
     9. 6m带宽改造后9,10月份平均温度分别比20m带宽高0.85℃,0.62℃,最高温度之间分别相差0.39℃和0.77℃,6m带宽的较差要比20m的低,说明改造带窄,整个林分的郁闭度比20m的高,土壤温度由于太阳辐射影响而产生的温度差异要小。
     10.带状改造后改造带内部与边缘叶蜂幼虫的数量存在显著差异,而不同带宽之间没有产生显著差异,带宽改造带内叶蜂入土的数量显著高于林分边缘,而不同带宽之间没有显著差别。叶蜂入土主要集中在5月9-18日的10天之间。6m带宽、20m带宽及20m改造林缘在这10天内截获的幼虫数量分别占截获幼虫总数量的85%,88%和79%。即平均84%的叶蜂幼虫是在5月9-18日之间入土。
     11.不同带宽改造对土壤理化性质的影响不同,土层深度20~40cm的土壤容重降低的幅度20m带宽要高于6m带宽改造,而土层0~20cm土壤容重降低的幅度6m带宽要高于20m带宽改造;6m改造带土层0~20cm和20~40cm土壤总孔隙度分别提高4.7%、1.6%,而20m改造带土层0~20cm土壤总孔隙度提高23.4%,土层20~40cm土壤总孔隙度比对照则降低了29.4%。土壤有机质由于改造后林分环境条件的不同,使有机质积累和分解的速度不同,导致20m带宽改造后土层0~20cm和20~40cm有机质含量比对照分别提高了15.0%、28.4%。6m带宽改造土层20~40cm有效N含量增加32.779mg·kg-1,20m带宽改造后速效N、速效K、全P、全K含量有不同程度的提高。带宽改造对改良土壤结构,提高土壤理化性质都有不同程度的改善。
     通过对三峡库区主要树种林木生长与气候因子关系分析以及森林健康经营研究,可以为三峡库区生态建设规划布局、工程模式选择等提高科学依据。
In this paper, the forest health conditions were classified using the forest inventory data and historical documentation about forest insects of the main counties/cities in the Three Gorges Reservoir Area. The geographic information system of forest insect frequency was established based on the different classification and gradation of forest insect and frequency. The growth trends of main tree species were analyzed and the correlation model of main tree species in different regions and elevation gradients was simulated. Forest health management measures have been adopted to control the harm of Chinolyda flagellicorn through changing forest environment. The results are shown as follows:
     1. The relationship of Pinus massoniana radial growth with climatic factors of different elevations was assessed by dendrochronological techniques including correlation functions and single-years analysis. Finally the correlation model of tree ring width index and climatic factors in different elevations was simulated by multi-factor regression. The results showed that the character of ring width index of Pinus massoniana is different because of the altitude gradients due to complex topography. And growths in different elevations had significantly different responses to temperature and precipitation. In normal climatic conditions, the growth at the elevation of 300m was significantly affected by mean monthly precipitation and humid index of last June and October, and there is no significant correlation to climatic factors of the current year. The growth at the elevation of 600m was significantly correlated to the temperature of last June and mean monthly precipitation and humid index of current July. At 900m the growth was not only affected by the temperature of current February, but also affected by the mean precipitation and humid index of December. The relationship was verified by single year analysis.
     2. Tree-ring cores were collected from the low and upper altitude limits of Pinus massoniana in Yunyang County, Chongqing City. Two tree-ring width chronologies were established using standard dendrochronological methods, respectively. The two sampling sites are located close to each other but at different elevations. Results indicated that the chronology fluctuation of the upper altitude limit is higher than that of the low limit. The statistical character of the chronology shows that signal to noise ratio (SNR.) and express population signal (EPS) of upper limit are higher than those of low limit. Therefore, the sensitivity of trees’response to the climatic changes increased with increasing altitude. In order to understand the varying response of tress at different elevations to environmental changes, the correlations between the chronology indices and precipitation and between air temperature in different seasons and different months were calculated. The results show that the growth of Pinus massoniana of upper limit was affected by temperature and precipitation of previous year, and that of low limit was only affected by precipitation of current year. It showed that there is lag-effect of the growth of upper limit in response to climate factors.
     3. The relationship of Pinus mussoniana radial growth in upper reaches of the Three Gorges Reservoir Area in China with climate change was assessed by dendrochronological techniques including correlation functions and single-years analysis. The results showed that Pinus mussoniana growths at high and low elevations had significantly different responses to temperature and precipitation. At low elevation, Pinus mussoniana growth was significantly correlated to the mean precipitation and the humid indices of May and June, but at high elevation, it had a more complicated relationship with the environment. Besides the mean temperature of May and June, the humid index of last November was significantly correlated with the Pinus mussoniana tree-ring width. Therefore, it was not the same relationship of the same tree species with different environmental gradients. Finally the correlation model at different elevations of tree ring width index and climatic factors was simulated by multi-factor regression.
     4. The frequent area, accidental area and safety area were classified in Hubei province of the Three Gorges Reservoir Area (TGRA) according to frequency of forest insects and diseases based on documented records. Zigui County is the most serious county in TGRA. In Zigui County the frequent area is Maoping Town; accidental areas include Guojiaba Town and Guizhou Town, and the other areas are safety area. In Yiling Couty, the frequent areas are Taipingxi Town, Letian Town and Xiaoxita Town; accidental areas are Sandouping Town and Yaqueling Town, while others are safety areas.
     5. Various climate factors have an integrated effect on the occurring of Dendrolimuspunctatus Walker. Air temperature and sunlight time are the premier driving factors and wind speed is secondary in Zigui county; The occurring area of Dendrolimuspunctatus Walker is significantly related to air temperature, temperature maximum and minimum and sunlight time of current April.
     6. The relationships between Dendrolimuspunctatus Walker occurring area and climate factors are same in Yiling County with Zigui County. Precipitation, sunlight time and air temperature significantly affect the insect occurring area in Yiling County. The occurring area was found to be mainly positively correlated with the average temperature and sunlight time of April, and total monthly precipitation of May.
     7. We try to control Chinolyda flagellicornis by changing forest environment with the measure of strip reform. The result showed that: the influence on forest composition structure mostly focuses on smaller diameter class. Whatever width the strip reform was taken to, the number of smaller diameter class increases significantly, and there is no great effect on larger diameter class. As the sunlight becomes stronger after strip reform, the temperatures of soil and air in forest are higher, and air humidity is lower. All these changes affect the regeneration of Cupressus funebris.
     8. Effects of strip reform to cypress plantation were analyzed in the view of biodiversity and forest stand environment including index of biodiversity of undergrowth vegetation species, air temperature in stands, and soil temperature of different strip width treats. The result showed that: there were different effects on undergrowth biodiversity by strip reform to different width. For 6 m width strip reform, only index of D, H from shrub layer has increased and there was no significant effect on S and D, H, S of herb layer. , The species composition was not significantly changed after 20 m width strip reform except different importance values. Mbawmagyabceij of Rhamnaceae replaced Rosaceae plants and became the dominant species in 6 m width strip reform in shrub layer identically, and biological diversity of shrub layer was different at different strip width. Monocotyledon was replaced by dicotyledon gradually as the dominant species as the sun plants increasing as the result of the forest stand environment change. The influences on air temperature and soil temperature of different strip reforms are different. The soil temperature variance is lower than in 20m width strip and air temperature variance of 6m width strip is higher than 20m width strip.
     9. The average air temperature of September and October in 6m strip reform was 0.85℃, 0.62℃higher than in 20m strip reform respectively. The maximum temperature difference between the two strip widths was about 0.39℃and 0.77℃respectively which means the temperature difference in 6m strip width is lower than in 20m strip reform. All these were resulted from the difference of shade density caused by the different width strip. The soil temperature difference is lower than air temperature after strip reform operation in either width.
     10. There is significant difference of the number of larva of Chinolyda flagellicorn in the strip and the edge of the strip, and no significant difference with the width of strip. The number of larva in soil inside the strip is larger than that in forest edge, and there is no significant difference with the width of strip. The time of larva going into earth is consistent with the different width strip, mainly during 9-18 of May. There are about 85% and 78% larva going into the earth respectively in 6m and 20m width strip during the ten days. 84 percent of total larva goes into earth during 9-18 of May averagely.
     11. The soil physical and chemical properties have been comparatively studied with different width strip reforms. The result showed that: decrease extent of soil capability in the depth of 20-40cm soil layer in 20m width strip reform is much higher than in 6m, but the result is converse in 0-20cm soil layer. The total soil porosity increased by 4.7%, 1.6% in 0-20cm and 20-40cm respectively in 6m width strip, and by 23.4% in 0-20cm in 20m width strip, while the total soil porosity decreased by 29.4% in 20-40cm soil layer to the contrary. The soil organic matter increased by 15.0%、28.4% in 0-20cm and 20-40cm soil layer respectively after 20m width strip reform because of the difference of decomposition speed. Available N increased 32.779mg·kg-1 in 20~40cm soil layer after 6m width strip reform. Available N Available N, available K, total P and total K increased to certain extent in 20m width strip reform. The soil structure and its physical and chemical properties have been improved after strip reform. It will provide a scientific basis for the ecological improvement planning and the choice of project model for the Three Gorges Reservoir Area through the research on growth of Pinus massoniana and Cupressus funebris plantation and health management.
引文
Abrams, M. C., C. M. Ruffner &T. A. Morgan. Tree ring responses to drought across species and contrasting sites in the ridge and valley of central Pennsylvania. Forest Science, 1998,4550-558
    Abrams, M. C., D. A. Orwig&M. J. Dockry. Dendrocology and successional status of two contrasting old_growth oak forests in the Blue Ridge Mountains, USA. Canadian Journal of Forest Research, 1997, 27: 994-1002
    Akkem k, . Dendroclimatology of umbrella pine (PinuspL.) in Istanbul, Turkey. Tree_Ring Bulletin, 2000,56: 17-20
    Alexander K. The importance of early summer temperature and date of snow melt for tree growth in the Siberian Subarctic[J]. Trees, 2003,17:61-69
    Archambault, S. & Y. Bergeron. An 802_year tree-ring chronology from Quebec boreal forest. Canadian Journal of Forest Research, 1992, 22: 674-682
    Becker, M. 1989. The role of climate on present and past vitality of silver fir forests in the Vosges Mountains of northeastern France. Canadian Journal of Forest Research,19: 1110-1117
    Bhattarcharyya, A., V. C. LaMarche &F. W. Telewski. Dendrochronological reconnaissance of the conifers of northwest Indian. Tree_Ring Bulletin, 1988,48: 21-30
    Bonan GB, Sirois L. Air temperature, tree growth, and the northern and southern range limits to Picea mariana. Journal of Vegetation Science, 1992,3:495-506
    Borgaonkar, H. P., G. B. Pant & K. R. Kumar. Tree-ring chronologies from western Himalya and their dendroclimatic potential. International Association of Wood Anatomists, 1999,20: 295-309
    Botkin D B,Janak J F,Wallis J R. Some consequences of a computer model of forest growth [J].J Ecol,1972, 60:849-873
    Bouriaud O, Breda N, Le Moguedec G, et al. Modeling variability of wood density in beech as affected by ring age, radial growth and climate. Trees, 2004,18:264-276
    Brauning, A. Dendroclimatological potential of drought_sensitive tree stands in southern Tibet for the reconstruction of morrsoonal activity. International Association of Wood Anatomists. 1999, 20: 325-338
    Briffa K R.Annual climate variability in the Holocene: Interpreting the message of ancient trees.Quaternary Science Review, 2000,(5): 87-105
    Briffa, K. R., T. S. Bartholin, D. Eckstein, P. D. Jones, W. Karlén, F. H. Schweingruber&P. Zetterberg. A 1400 year tree_ring record of summer temperatures in Fennoscandia. Nature, 1990,346: 434-439
    Brooks JR,Flanagan LB, Ehleringer JR. Responses of boreal conifers to climate fluctuations:Indications from tree-ring widths and carbon isotope analyses. Canadian Journal of Forestry Research, 1998,28:524-533
    Byram, G. M. &W. T. Doolittle. A year of growth for a shortleaf pine. Ecology, 1950,31: 27-35
    Caritat, A., E. Gutierrez & M. Molinas. Influence of weather on cork_ring width. Tree Physiology, 2000, 20: 893-900
    Ceulemans, R. &M. Mousseau. Effects of elevated atmospheric CO2on wood plants. New phytologist, 1994,127: 425-446
    Cherubini, P., F. H. Schweingruber&T. Forester. Morphology and ecological significance of intra_annual radial cracks in living conifers. Trees, 1997, 11: 216-222
    Christine Stone, Ken Old, Glen K,et al. Forest health monitoring in Australia: national and regional commitments and operational realities[J].Ecosystem Health,2001,7(1):48-58
    Cook, E. R. Atime series approachtotree_ring standardization. Ph.D.dissertation of University of Arizona, Tucson, AZ,USA. 1985
    Cook, E., T. Bird, M. Peterson, M. Barbetti, B. Buckley, R.D′Arrigo, R. Francey&P. Tans. Climate change inTasmania inferred from a 1089_year tree_ring chronology of Huonpine. Science, 1991, 253: 1266-1268
    Cook, E.R. and Kairiukstis, L.A., Methods of Dendrochronology. Applications in the environmental sciences. Dordrecht,Kluwer Academic Publishers.1992
    D Arrigo, R. D. &G. C. Jacoby. Northern North American tree_ring evidence for regional temperature changes after major volcanic events. Climatic Change, 1999, 41: 1-15
    D Arrigo, R. D., E. R. Cook&G. C. Jacoby. Annual to decadal_scale variations in northwest Atlantic sector temperatures inferred from Labrador tree rings. Canadian Journal of Forest Research, 1996, 26:143-148
    D Arrigo, R. D.,G. C. Jacoby&R. M. Free. Tree_ring width and maximum latewood density at the North American tree line: parameters of climatic change. Canadian Journal of Forest Research,1992, 22: 1290-1296
    D’Arrigo RD, Jacoby GC. Secular trends in high northern latitude temperature reconstructions based on tree rings. Climate Change, 1993, 25:163-177
    Dahlgren RA, Driscoll CT. The effects of whole-tree clear-cutting on soil processes at the Hubbard Brook Experimental Forest. Plant Soil, 1994,158:239-262
    Dang QL and Lieffers VJ. Climate and annual ring growth of black spruces in some Alberta peatlands. Canadian Journal of Botany, 1989, 67:1885-1889
    Davis M R, Condron L M. Impact of grassland afforestation on soil carbon in New Zeanland: a review of paired-site studies[J]. Aust J Soil Res,2002, 40:675-690
    Douglass, A. E. A method for estimating rainfall by the growth of trees. In: Huntington, E. ed. The climatic factors as illustrated in arid America. Lancaster, Pennsylvania: Carnegie Institute of Washington Publication. 1914, 192:101-121
    Douglass, A. E. Evidence of climatic effects in the annual rings of trees. Ecology, 1920, 1:24-32 Edwards, N. T.&P. J. Hanson. Stem respiration in closedcanopy upland oak_forest. Tree Physiology, 1996, 16: 433-439
    Emanuel, W. R., H. H. Shugart & M. L. Stevenson. Climatic change and the broad_scale distribution of terrestrial ecosystem complexes. Climatic Change1985, 7: 29-43
    Eric Allen. Forest health assessment in Canada[J].Ecosystem Health,2001,7(1) :35-47
    F Stuart ChapinⅢ,Odbslfo E Sala, Elisabeth Huber-Sannwald. Global biodiveristy in a changingenvironment-scenarios for the 21st Century [M].New York: Springer-Verlag Inc,2001
    Farmer J G. Problems in interpreting tree-ringδ13C records. Nature, 1979, 279: 229-231
    Galina Churkina, Steven Running. Investigating the balance between timber harvest and productivity of global coniferous forests under global change[J].Climatic Change,2000,47:167-191
    Gilliam F S. The ecological significance of the herbaceous layer in temperate forest ecosystems [J]. Bioscience, 2007,57(10):845-858
    Gindl, W., M. Grabner & R. Wimmer. The influence of temperature on latewood lignin content in treeline Norway spruce compared with maximum density and ring width. Trees, 2000, 14: 409
    Graumlich, L. J. Subalpine tree growth, climate, and in creasing CO2: an assessment of recent growth trends. Ecology, 1991, 72: 1-11
    Graumlich, L. J. A 1000_year record of temperature and precipitation in Sierra Nevada. Quaternary Research, 1993,39: 249-255
    Graybill, D. A. & S. G. Shiyatov. A 1009 year tree_ring reconstruction of mean June_July temperature deviations in the Polar Urals. In: Tree_Ring Bulletin, 1997, special issue (Reprinted from Nobel, R.D., J. L. Martin & K.F. Jensen eds. 1989. Symposium on air pollution effects of vegetation. USDA forest service, northwestern forest experiment station. 1989,37-42
    Green, K. &R. Wright. Field response of photosynthesis to CO2enhancement in ponderosa pine. Ecology, 1977, 58: 687-692
    Groisman, P. Y., T. R. Karl&R. W. Knight. Observed impact of snow cover on the heat balance and the rise of continental spring temperatures. Science, 1994, 263: 198-200
    Gutiérrez, E. Climate tree_growth relationships for Pinus uncinataRam. in the Spanish pre_Pyrenees. Acta Oecoligia, 1991, 12:213-225
    Hans WL, Mats N, Tina M. Summer moisture variability in east central sweden since the mid-eighteenth century recorded in tree rings. Geografisk Annaler, 2004, 86A: 277-287
    Holmes R L. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin, 1983, 43:69-75
    Holmes, R. L., C .W. Stockton&V. C. LaMaarche Jr. Extension of river flow records in Argentina from living tree_ring chronologies. Water Resources Bulletin, 1979, 15:1081-1085
    Hughes MK, Brown PM. Drought frequency in central California since 101 B.C.recorded in Giant Sequoia tree rings.ClimateDynamics, 1991, 6:161-167
    Hughes MK, Wu X, Shao X,et al. A preliminary reconstruction of rainfall in North-Central China since A.D. 1600 from tree-ring density and width Quaternary Research, 1994, 42: 88-99
    Hughes, M. K., F. H. Schweingruber, D. Cartwright & P. M. Kelly. July_August temperature at Edinburgh between 1721 and 1975 from tree_ring density and width data. Nature, 1984, 308:341-344
    Hughes, M. K., P. M. Kelly, J. R. Pilcher&V. C. LaMarcher Jr. Climate from tree rings. Cambridge: Cambridge University Press.1982
    Hughes, M. K., X. D. Wu, X. M. Shao & G. M. Garfin. A preliminary reconstruction of rainfall in North_central China since A. D. 1600 from tree_ring density and width. Quaternary Research, 1994, 42: 88-99
    Jacoby, G. C. & R. D. D Arrigo. Tree rings, carbon dioxide, and climate change. Proceedings of the National Academy of Sciences, USA.1997, 94: 8350-8353
    Jacoby, G. C.,R. D. D Arrigo&T. Davaajamts. Mongolian tree rings and 20th_century warming. Science, 1997, 273: 771-773
    Jenkins, M. A. &S. G. Pallardy. The influence of drought on red oak group species growth and mortality in the Missiuri Ozarks. Canadian Journal of Forest Research, 1995, 25: 1119-1127
    Johnson, E. A. & G. I. Fryer. Population dynamics in lodgepole pine_Engelmann spruce forests. Ecology, 1989, 70: 1335-1345
    Jones, P. D., K. R. Briffa & J. R. Pilcher. River_flow reconstruction from tree rings in Southern Britain. Journal of Climatology, 1984, 4: 461-472
    K rner, C.&M. Diemer. In situphotosynthetic response tolight, temperature and carbon dioxide in herbaceous plants from low and high latitude. Functional Ecology, 1987, 1: 179-194
    Kienast, F. & R. J. Luxmoore. Tree_ring analysis and conifer growth responses to increased atmospheric CO2levels. Oecologia, 1988, 76: 487-495
    Kienast, F., F. H. Schweingruber, O. U. Braker & E. Schar. Tree_ring studies on conifers along gradients and the potential of single_year analyses. Canadian Journal of Forest Research, 1987, 17: 687-696
    Kimmins J P.The health and integrity of forested ecosystems: are they threatened by forestry?[J].Ecosystem Health,1996,2(1):29-40
    Kohler M A. On the use of double-mass analysis for testing the consistency fo meteorological records and for making required adjustments. Bull.Amer.Meteorol. Soc., 1949,30:188-189
    LaDeau, S. L. & J. S. Clark. Rising CO2levels and the fecundity of forest trees. Science, 2001, 292: 95-98
    LaMarche, V. C. Jr. &K. K. Hirschboeck. Frost rings in trees as records of major volcanic eruptions. Nature, 1984,307: 121-126
    LaMarche, V. C. Jr. Paleoclimatic inferences from long tree_ring records. Science (Washington), 1974a, 183: 1043-1048
    LaMarche, V. C. Jr. Frequency-dependent relationships between tree_ring series along an ecological gradient and some dendroclimatic implications. Tree_Ring Bulletin. 1974b, 34:1-20
    Larsen, C. P. S. &G. M. MacDonald. Relations between tree_ring widths, climate, and annual area burned in the boreal forest of Alberta. Canadian Journal of Forest Research, 1995, 25: 1746-1755
    Lemon, E. R. CO2and plants: the response of plants to rising levels of atmospheric carbon dioxide. Boulder, Colorado: Westview Press. 1983
    Liang EY et al. Dendroclimatic evaluation of climate-growth relationships of Meyer spruce (Picea meyeri) on a sandy substrate in semi-arid grassland, north China. Trees-Structure and Function, 2001, 15 (4): 230-235
    Liang EY,et al. Topography- and species-dependent growth response to climate of Sabina przewalskii and Picea crassifolia on the northeast Tibetan Plateau. Forest Ecology and Management, 2006, 236: 268-267
    Liang, E. Y., X. M. Shao, Y. X. Hu & J. X. Lin. Dendroclimatic evaluation of climate_growth relationships of Meyer spruce (Picea meyeri) on a sandy substrate in semi_arid grassland, north China. Trees,2001,15: 230-235
    Lipp, J., P. Trimborn, T. W. D. Edwards, W. Graf & B.Becker. Climate signals in2H and13C chronology (1882_1989) from tree rings of spruce (Picea abiesL.), schussbachforest, Germany. In: Dean, J. S., M. Meko &T. W. Swetnam eds. Tree rings, environment and humanity. Tucson: University of Arizona Press. 1996, 603-610
    Liu LS, et al.. Climate signals from tree ring chronologies of the upper and lower treelines in Dulan region of the northeastern Qinghai-Tibetan plateau. Journal of Integrative Plant Biology, 2006, 48 (3): 278.285
    Makinen H, Nojd P, Kahle HP, et al. Large-scale climatic variability and radial increment variation of Picea abies (L.) Karst. in central and northernEurope. Trees, 2003, 17: 173-184
    Makinen, H., P. N jd&K. Mielikainen..Climatic signal in annual growth variation in damaged and healthy stands of Norway spruce (Picea abies(L) Karst.) in south Finland. Trees.2001, 15:177-185
    Mann H B. Non-parametric test against trend. Economitrika, 1945,13:245-259
    McClenahen, J. R. Potential dendroecological approaches to understanding forest decline. In : Lewis, T. E. ed. Tree rings as indicators of ecosystem health. Florida: CRC Press, 1995, 59-79
    Meko, D.M. Applications of Box_Jenkins Methods of time series analysis to the reconstruction of drought from tree rings. Ph.D. dissertation of University of Arizona, Tucson, AZ, USA. 1981
    
    Mooney, H. A., R. D. Wright & B. R. Strain. The gas exchange capacity of plants in relation to vegetation zonation in the White Mountains of California. American Midland Naturalist, 1964, 72: 281-297
    Nicolussi, K., S. Bortenschlager&C. Korner. Increase in tree_ring width in subalpinePinus cembrafrom the central Alps that may be CO2_related. Trees, 1995, 9: 181-189
    Nowack, G. J. &M. D. Abrams. Radial_growth averaging criteria for reconstructing disturbance histories from presettlementorigin oaks. Ecological Monographs, 1997, 67: 225-249
    O’Laughlin J,Livingston R L,Their R,et al.Defining and measuring forest health[G]//Sampson(ed).Assessing Forest Ecosystem Health in the Inland West. New York: Food Products Press,1993, 65-86
    Ohsawa M, Species richness of Cerambycidae in larch plantations and natural broad-leaved forests of the central mountainous region of Japan. Forest Ecology and Management., 2004, 189:375-385
    Oliver C D,Ferguson D E,Harvey A E. Management ecosystems for forest health: an approach and the effects on uses and values[J].Journal of Sustainable Forestry,1994,2(1):113-131
    Overpeck, J., K. Hughen, D. Hardy, R. Bradley, R. Case, M.Douglas, B. Finney, K. Gajewski, G. Jacoby, A. Jennings, S. Lamoureux, A. Lasca, G. MacDonald, J. Moore, M.Retelle, S. Smith, A. Wolfe&G. Zielinski. Arctic environmental change of the last four centuries. Science, 1997, 278: 1251-1256
    Palmer J G, Xiong L M. New Zealand climate over the last 500 years reconstructed from Liboce drusbidwilliiHook. f. tree-ring chronologies. THolocene, 2004, 14: 282-289
    Parker,M. L. &W. E. S. Henoch. The use of Engelman spruce latewood density for endrochronological purposes. Canadian Journal of Forest Research, 1971, 1: 90-98
    Paul AK, Peter TS, Grissino-MayerHD. Occurrence of sustained droughts in the interior Pacific Northwest (A.D.1733—1980) inferred fromtree-ring data. Journal of Climate, 2004, 17: 140-150
    Pearman G I, Francey R J, Fraser P J B. Climatic implications of stable carbon isotopes in tree rings. Nature, 1976, 260, 771-773
    Peterson, D. W. &D. L. Peterson. Effects of climates on radial growth of subalpine conifers in the North Cascade Mountains. Canadian Journal of Forest Research, 1994, 24: 1921-1932
    Pierce J l., Meyer G A, Jull A J T. Fire-induced erosion and millennial scale climate change in northern ponderosa pine forests. Nature, 2004, 432:87-90
    Polge, H. The use of X_ray densitometric methods in dendrochronology. Tree_Ring Bulletin, 1970, 30: 1-10
    Raffalli-Delerce G, Masson-Delmotte V, Dupouey JL,et al. Reconstruction of summer droughts using tree-ring cellulose isotopes: a calibration study with living oaks from Brittany (western France). Tellus, 2004, 56B: 160-174
    Roberts M R. Response of the herbaceous layer to disturbance in North American forests[J]. Canadian Journal of Botany,2004,82:1273-1283
    Rogers, H. H., J. F. Thomas & G. E. Bingham. Response of agronomic and forest species to elevated atmosphericcarbon dioxide. Science, 1983, 220: 428-429
    Rojas NS, Perry D A, Li CY, Ganio L M. Interactions among soil biology, nutrition, and performance of actinorhizal plant species in the H.J. Andrews experimental forest of Oregon[J]. Applied Soil Ecology, 2002,19(1):13-26
    Rolland, C. Tree_ring and climate relationships forAbies albain the internal Alps. Tree_Ring Bulletin, 1993, 53: 1-11
    Savva,Y., F. Schweingruber, L. Milyyutin&E. Vaganov. Genetic and environmental signals in tree rings from different provenances ofPinus sylvestrisL. planted in the southern taiga, central Siberia. Trees, 2002, 16:313-324
    Schweigruber F H. Tree rings and environment dendroecology. Berne: Paul Haupt Publishers, 1996, 26-33 Schweingruber, F. H. Tree rings: basics and applications of dendrochronology. Dordrecht, Netherlands: Kluwer Academic Publisher. 1988
    Schweingruber, F. H. Tree rings and environment: dendroecology. Berne: Paul Haupt Publishers. 1996, 21-39
    Sheppard, P. R., L. J. Graumlich&L. E. Conkey. Reflected_light image analysis of conifer tree rings for reconstructingclimate. Holocene, 1996, 6: 62-68
    Solomon, A. M. Transient response of forests to CO2_induced climate change: simulationmodeling experiments in eastern North America. Oecologia (Berlin), 1986, 68: 567-579
    Stahle, D. W., M. K. Cleaveland, D. B. Blanton, M. D. Therrell & D. A. Gay. The lost colony and Jamestown droughts. Science, 1998, 280: 564-567
    Stahle, D.W., M. K. Cleaveland & J. G. Hehr. A 450 year drought reconstruction for Arkansas, United States. Nature, 1985, 316: 530-532
    Steele, B. & C. Fiedler. Kalman filter analysis of growth climate relations in old_growth Pondersa pine/Douglas_fir stands. In: Dean, J. S., D. M. Meko &T. W. Swetnam eds. Tree-rings, environment and humanity. Tucson: Department of Geoscience, the University of Arizona. 1996, 303-314
    Steven WL. South American tree rings show decliningδ13C trend. Tellus, 1994, 46B: 152-157
    Swetnam, T. W., Fire history and climate change in giant Sequoia Groves. Science, 1993, 262: 885-889
    Sykes M T,Prentice I C.Carbon storage and climate change in Swedish forests: a comparison of static and dynamic modelling approaches[M]//Apps M J,Price D T(eds.).Forest Ecosystems, Forest Management and the Global Carbon Cycle.Berlin:Springer-Verlag,1996:69-78
    Szeicz, J. M. & G. M. MacDonald. Aged_dependent growth responses of subartic white spruce to climate. Canadian Journal of Forest Research, 1994, 24:120-132
    Szeicz, J. M. &G. M. MacDonald. A930_year ring_width chronology from moisture_sensitive white spruce (Picea glauca Moench) in the northwestern Canada. The Holocene, 1996, 6: 345-351
    Tardif, J. &Y. Bergeron. Comparative dendroclimatological analysis of two blank ash and two white cedar population from contrasting sites in the lake Duparquet region, northwestern Quebec. Canadian Journal of Forest Research, 1997, 27: 108-116
    Tessier L. Spatio_temporal analysis of climate_tree ring relationships. New Phytologist., 1989, 11:517-529 Thetford, R. D., D. D Arrigo&G. C. Jacoby. An image analysis for determining dendsitomotric and ring_width time series. Canadian Journal of Forest Research, 1991, 21: 544-549
    Tilman D, Downing J A. Biodiversity and stability in grasslands[J]. Nature, 1994, 367: 363-365
    Tilman D.Causes, Consequences and ethics of biodiversity[J], Nature,2000,405:208-211
    Ting G, Novak J M, Amarasiriwardena D, et al. Soil organic matter characteristic as affected by tillage management. Soil Science Society of America Journal, 2002,66:421-429
    Tonu Oja,Paul Aarp. Nutrient cycline and biomass growth at a north American hardwood site in relation to climate change: FORSVA assessments [J].Climatic Change,1996, 34:239-251
    Vaganov, E. A. &A. Kachaev. Construction and usage of a complex model to illustrate the relationship between tree increment and wheat crop yield. Lundqua Report, 1992, 34:327-330
    Vaganov, E. A. Method for forecasting grain yield with the aid of dendrochronological data. Soviet Journal of Ecology, 1990, 20:139-146
    Vaganov, E. A., M. K. Hughes, A. V. Kirdyanov, F. H. Schweingruber&P. P. Silkin. Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature, 1999, 400:149-151
    Van Deusen, P. C. &G. A. Reams. Bayesian Procedures for reconstructing past climate. In: Dean, J. S., D. M. Meko & T. W. Swetnam eds. Tree rings, environment and humanity. Tucson: Department of Geoscience, the University of Arizona. 1996, 335-339
    Veblen, T. T., K. S. Handley &M. S. Reid.. Disturbance and stand development of a Colorado subalpine forest. Journal of Biogeography, 1991a, 18:707-716
    Veblen, T. T., K. S. Handley, M. S. Reid &A.J. Rebertus. Methods of detecting past spruce beetle outbreaks in Rocky Mountain subalpine forests. Canadian Journal of Forest Research, 1991b, 21:242-254
    Walker J,Reuter D I. Indicators of catchments healths[J].CSIRO,1996, 15:25-37
    Whigham D F. Ecology of woodland herbs in temperate decidous forests[J]. Annual Review of Ecology and Systematics,2004, 35:583-621
    Wiles, G. C., R. D. D Arrigo&G. C. Jacoby. Temperature changes along the Gulf of Alaska and the Pacific northwest coast modeled from coastal tree rings. Canadian Journal of Forest Research, 1996, 26:474-481
    Wilson R, Elling W. Temporal instability in tree-growth/climate response in the Lower Bavarian Forest region: implications for dendroclimatic reconstruction. Trees, 2004,18: 19-28
    Wimmer, R. &M. Grabner. Effects of climate on vertical resin duct density and radial growth of Norway spruce (Picea a bies(L.) Karst.). Trees, 1997, 11: 271-276
    Wimmer, R. &M. Grabner. A comparison of tree_ring features inPicea abiesas correlated with climate. International Association of Wood Anatomists, 2000, 21: 403-416
    Woodwell, G. M., J. E Hobbie., R. A. Houghton, J. M. Melillo, B. Moore, B. J. Peterson & G. R. Shaver. Global deforestation: contribution to atmospheric carbon dioxide. Science, 1983, 222: 1081-1086
    Xiong, L. N. Okada&T. Fujiwara. The dendrochrnological potential of the species in the Three Gorges Reservoir region of China. International Association of Wood Anatomists, 2000, 21: 181-196
    Yamaguchi, D. K., B. F. Atwater, D. E. Buunker, B. E. Benson&M. S. Reid. Tree_ring dating the 1700 Cascadia earthquake. Nature, 1997, 389: 822-823
    Zhang QB, Cheng GD, Yao TD, et al. A 2326-year tree-ring record of climate variability on the northeastern Qinghai-Tibetan Plateau. Geophysical Research Letters, 2003, 30(14): 1739-1742
    白尚斌,张彦东,王政权.落叶松根际ph值与供磷水平及土壤磷有效性的关系.林业科学,2001,37(4):129-133
    蔡锡安,彭少麟赵平,等.三种乡土树种在二中林分改造模式下生理生态比较[J].生态学杂志,2005,24(3):243—250
    蔡学林,简根源.阔叶次生林抚育改造探讨[J] .江西农业大学学报,1992,14(2):165-170
    曹国江,关于森林健康问题的探讨,世界林业研究,2008,21(2)76-80
    陈拓,陈发虎,安黎哲,等.不同海拔祁连圆柏树轮和叶片&13C值的变化.冰川冻土,2004, 26(6):767-771
    陈宝君,钱君龙.树轮α-纤维素δ13C角分布及其气候含义[J].南京林业大学学报(自然科学版), 2002, 26(1):14-18
    陈高,代力民,范竹华,等.森林生态系统健康及其评估监测[J].应用生态学报,2002,13(5):605-610.
    陈高,代力民,周莉.受干扰长白山阔叶红松林分组成及冠层结构特征[J] .生态学杂志,2004,23(5):116-120
    陈光水,何宗明,谢锦升,等.福建柏和杉木人工林细根生产力、分布及周转的比较[J].林业科学,2004,40(4):15-21
    陈绘画,崔相富,郑永祥.鞭角华扁叶蜂滞育幼虫空间数量分布的研究.林业科学研究.2001,14(5):503-508
    陈绘画,项云飞.鞭角华扁叶蜂滞育幼虫空间密度估计的研究.林业科学研究,2005,24(6):21-23
    陈绘画,张建薇,杨胜利.鞭角华扁叶蜂滞育空间格局的生物地理统计学分析及抽样技术的研究.林业科学研究,2002,15(5):593-598
    陈绘画,郑永祥,杨胜利.鞭角华扁叶蜂发生量的预测.浙江林业科技,2001,21(2):32-35
    陈亮中,谢宝元,肖文发,等.三峡库区主要森林植被类型土壤有机碳储量研究,长江流域资源与环境,2007,16(5):640-643.
    陈拓,秦大河,李江风,等.新疆昭苏云杉树木纤维素δ13 C的气候意义,冰川冻土, 2000, 22: 347-352
    程瑞梅,肖文发,李新新,等.三峡库区柏木林研究.林业科学研究,2004,17(3):382-386
    崔相富.三唑磷防治马尾松毛虫及鞭角华扁叶蜂研究.林业科学研究,1983.6(专刊)
    崔相富,王子荣,郑永祥.鞭角华扁叶蜂生物学特性及防治方法的研究.林业科学研究,1992, 5(3):321-327
    邓红兵,周永斌,王庆礼,等.三峡库区次生柏木林中物种分布格局的分形特征.应用生态学报,1999,10(5)518-520
    方精云等编.全球生态学-气候变化与生态响应[M].北京:高等教育出版社,2000:43-65
    甘敬,马履一,蔡宝军,等.北京市生态公益林赋予工程的探索与实践[J].林业经济,2006(2):41-44
    甘敬,朱建刚,张国祯,等.基于BP神经网络确立森林健康快速评价指标.林业科学,2007,43(12)1-7
    高俊,郑曼,孟平,等.黄土丘陵沟壑区杏树-黄芪复合系统对土壤理化性质的影响.林业科学研究,2008,21(5):719-723
    高立鹏,高均凯.我国政府关注森林健康[J].中国花卉园艺,2004(7):17.
    高兆蔚,俞美星,陈哲明,等.柏木人工林立地指数表编制研究.林业勘查设计,2004,1-3
    勾晓华,陈发虎,杨梅学,等.祁连山中部地区树轮宽度年表特征随海拔高度的变化.生态学报, 2004, 24(1):172-176
    勾晓华,杨梅学.祁连山东部地区高分辨率气候记录研究.兰州大学学报(自然科学版),2002,38(1):105-110
    郭佩芸,潘进军,邓晓东,等.树木年轮指数序列年表的研制技术和原理研究.内蒙古气象,2001,(1):18-20
    何汉杏,何春秀.湖南舜皇山常绿阔叶林种类组成树轮综合特征[J] .中南林学院学报,2003,23(2):16-21
    侯爱敏,彭少麟.树木年轮对气候变化的响应研究及其应用[J].生态科学,1999.18(3):16-23
    侯爱敏,彭少麟.通过树木年轮δ13C重建大气CO碳同位素比δa的可靠性探讨[J] .生态学杂志, 2001.20(1):13-17
    侯爱敏,彭少麟,周国逸,等. 2000.通过树木年轮δ13C重建大气CO2浓度的可靠性探讨.科学通报, 45(13): 1451-1456
    黄刚,赵学勇,张铜会,等.科尔沁沙地3种灌木根际土壤pH值及其养分状况.林业科学,2007,43(8):138-142
    黄清麟,李元红.福建中亚热带天然阔叶林与人工林对比评价[J].山地学报,2000,18(3):244-247
    黄英姿,古德祥,张文庆,等.影响马尾松毛虫虫灾发生类型因素的重要性分析.应用与环境生物学报,2001,7(1):56-60
    
    蒋高明,韩兴国,林光辉.大气CO2升高对植物的直接影响.植物生态学报), 1997, 21:489-502
    蒋高明,黄银晓,万国江,等.树木年轮δ13C值及其对我国北方大气CO2浓度变化的指示意义.植物生态学报, 1997, 21(2): 155-160
    康玲玲,王云漳,刘雪,等.水土保持措施对土壤化学特性的影响.水土保持通报2003,23(1):46-48
    康兴成, L. J. Graumlich&P. Scheppard.青海都兰地区1835年来的气候变化-来自树轮资料.第四纪研究), 1997, 1: 70-75
    兰涛,夏冰,贺善安.马尾松的生长与气候关系的年轮分析.应用生态学报,1994.5(4):422-424
    李翠环,余树全,周国模.亚热带常绿阔叶林植被恢复研究进展[J].浙江林学院学报,2002, 19(3):325—329
    李慧蓉.生物多样性和生态系统功能研究综述[J] .生态学杂志,2004,23(3):109-114
    李江风,由希尧.乌鲁木齐河山区流域360径流量的重建,第四纪研究, 1997, 2:131-146
    李江风,袁玉江,由希尧.树木年轮水文学研究与应用.北京:科学出版社.2000
    李景文.森林生态学.北京:中国林业出版社.1997
    李正华,刘荣谟,安芷生,等.工业革命以来大气CO2浓度不断增加的树轮稳定碳同位素证据.科学通报, 1994, 39(23): 2172-2174
    梁尔源.博士论文.白扦的年轮树木生态学研究,中国科学院.2001
    梁军,张星耀.森林有害生物生态控制.林业科学,2005,41(4):168-176
    林德喜樊后保.马尾松林下补植阔叶树后森林凋落物量、养分含量及周转时间的变化.林业科学,2005,41(6):7-15
    林德喜.樊后保,苏兵强,等.马尾松林下套种阔叶树土壤理化性质的研究[J].土壤学报.2004,41(4):655—659
    林植芳,梁春.鼎湖山地区人类活动对马尾松年轮13C/12C的影响[J].生态学报, 1997, 17(2):124-132
    刘鹏.酸雨及大气污染对马尾松木材材性影响的研究-Ⅱ木材构造[J] .林业科学, 1996, 32(1):69-77
    刘洪滨,张雪梅.利用树轮重建秦岭地区历史时期初春温度变化,地理学报,2003,58(6):879-884
    刘禹,Park WK,蔡秋芳,等.公元1840年以来东亚夏季风降水变化—以中国和韩国的树轮记录为例.中国科学: 2003a,D辑, 33(6): 543-549
    刘禹,蔡秋芳,Park WK,等.内蒙古锡林浩特白音敖包1838年以来树轮降水记录.科学通报, 2003b,48(9): 952-957
    刘爱琴,刘春华.香叶树和杉木人工林生态功能的比较[J] .中南林学院学报,2005,25(6):47-51
    刘朝奎,王桂珍,唐治诚.云阳县鞭角华扁叶蜂的发生于危害.四川农业大学学报,1999,17(1):117-118
    刘晓宏,任贾文,等.树轮纤维素氢同位素气候环境意义[J].气象2002, 28(5):3-7
    陆元昌.森林健康状态监测技术体系综述[J].世界林业研究,2003,16(1):20-25
    吕军,屠其璞.树木年轮碳稳定同位素在气象中的应用[J].气象1998, 27(1):9-13
    吕军,屠其璞.利用树木年轮碳同位素重建天目山相对湿润系列[J] .气象科学, 2001, 22(1):47-51
    马克平.生物多样性的测度方法[J] .生物多样性,1994,2(4):231-239
    马利民,刘禹,赵建夫.贺兰山油松年轮中稳定碳同位素含量和环境的关系.环境科学, 2003, 24(5): 49-53
    马利民,刘禹,安芷生.秦岭树轮记录中的事件.海洋地质与第四纪地质,2001,21(8):93-98
    牟文彬,唐志强,何清华,等.鞭角华扁叶蜂蛹、卵、幼虫有效积温研究.森林病虫通讯,1998, (2):14-15
    牟文彬,唐志强,何清华,等.鞭角华扁叶蜂自然种群生命表.昆虫知识,1998, 35(4):231-232
    牟文彬,唐志强,李祥军.鞭角华扁叶蜂生物学即防治研究.重庆林业科技,1997,64(3):27-28
    牟文彬,唐志强.鞭角华扁叶蜂发生期测报技术研究.四川林业科技,1997,18(2):43-45
    彭剑峰,勾晓华,陈发虎,等.天山东部西伯利亚落叶松树轮生长对气候要素的响应分析.生态学报, 2006.,26(8):2723-2731
    齐联.我国期待森林健康[J].中国林业,2004,(7A):26-27
    钱君龙,邓自旺,屠其璞.天目山柳杉80年序列及其气候意义.中国科学(D辑),2001,31(5):372-376
    钱君龙,吕军.用树轮阿a-纤维素重建天目山地区近160年气候[J].中国科学D辑, 2001, 31(4):333-341
    秦武明,何斌,余浩光,等.马占相思人工林不同年龄阶段的生物生产力[J].东北林业大学学报,2007,35(1):22-24
    邱杨,傅伯杰,王军,等.黄土小流域土壤物理性质的空间变异.地理学报,2002,57(2):587-594
    荣婧,冯仲科.基于GIS的森林健康风险源识别和管理技术研究[J] .北京林业大学学报,2005,27(增2) :208-212
    申卫军,彭少麟,周国逸,等.马占相思与湿地松人工林枯落物层的水文生态功能.生态学报,2001, 2l(5):846—850
    沈长泗,陈志华.采用树木年轮资料重建山东沂山地区200多年俩的湿润指数[J] .地理研究,1998,17(2):150-156
    盛炜彤,范少辉.杉木人工林的育林干扰对长期立地生产力的影响[J] .林业科学,2003, 39(5):37-43
    石胜璋,刘玉成,朱韦.云阳人工柏木林的物种多样性及其森林管护对策研究.西南大学学报(自然科学版),2007,29(4)54-58
    史作民,刘世荣.宝天曼地区栓皮栎林恢复过程中高等植物物种多样性变化[J] .植物生态学报,1998,22(5):415-421
    邵雪梅,方修琦,刘洪滨等.柴达木东缘山地千年祁连圆柏年轮定年分析.地理学报,2003,58:90-100
    邵雪梅,王树芝,徐岩等.柴达木盆地东北部3500年树轮定年年表的初步建立.第四纪研究,2007,27(4):477-485
    邵雪梅,吴祥定.华山树木年表的机理研究,地理学报1997,49(2):174-181
    苏永中,赵哈林,张铜会.几种灌木、半灌木对沙地土壤肥力影响机制的研究.应用生态学报,2002,13(7):802-806
    孙凡,钟章成.缙云山四川大头茶树木年轮生长动态与气候因子关系的研究.应用生态学报, 1999, 10(2):151-154
    孙凡,钟章成.缙云山四川大头茶年轮生长的功率谱分析.四川农业大学学报,1997,19(1):25-28
    孙谷畴,林植芳,林桂珠.亚热带人工松林13C/12C比率和水分利用效率.应用生态学报, 1993, 4: 325-327
    孙谷畴,林植芳.1992.亚热带季风常绿阔叶林树木13C/12C和空气CO2浓度变化[J].应用生态学报,3(4):291-295
    孙洪志,孙海燕,于成龙,等.次生林带状改造更新效果的研究[J].森林工程,2004,20(3):3-5
    孙艳荣,穆治国,崔海亭.广东现代樟树树轮纤维素的碳同位素与厄尔尼诺事件的关系.地球学报,2003,24(6):505-510
    唐劲松,钱君龙.柳杉树轮13C与气候要素的分析与应用[J] .南京林业大学学报, 2001,25(2):29-33
    唐志强,牟文彬,吴俊,等.鞭角华扁叶蜂在土壤中的分布格局等.四川林业科技,1998.19(2):53-56
    唐志强,牟文彬.柏木林内突然内鞭角华扁叶蜂数量与树冠相关性分析.四川林业科技,1999,20(3):46-49
    田茂洁.川中人工纯柏木林凋落物分解动态研究等.生态学杂志,2005,24(10)1147-1150
    涂育合等.杉木不同经营密度的林下植被变化[J].西北林学院,2005,20(4):52-55
    王淼,白淑菊等.大气增温对长白山林木直径生长的影响.应用生态学报, 1995,6(2):128-132
    王伯荪等.植物群落学[M].北京:高等教育出版社,1987:50-76
    王国兵,阮宏华,唐燕飞,等.亚热带次生栎林与火炬松人工林土壤微生物生物量碳的季节动态[J].应用生态学报,2008,19(1):37-42
    王鸿哲,李宽胜.松黄叶蜂对油松生长发育的影响.西北农业学报,2001,10(3):41-44
    王豁然,江泽平.格局在变化-树木引种与植物地理[M].北京:中国林业出版社2005:1-4
    王金叶,田大伦,王彦辉.祁连山林草复合流域土壤水文效应.水土保持学报,2005,19(3):144-147
    王鹏程,肖文发,张守攻,等.三峡库区主要森林指标类型土壤渗透性能研究.水土保持学报,2007,21(6):51-55
    王青春,邓红兵,王庆礼,等.三峡库区柏木林降雨的在分配及养分循环研究.长江流域资源与环境,2000,9(4)451-457
    王婷,于丹.树木年轮宽度与气候不安和关系研究进展,植物生态学报,2003,27(1):23-33
    王亚军,杜淑英.2001.祁连山中部树木年轮宽度与气候因子的响应关系及气候重建.中国沙漠,21(2):135-140
    王彦辉,肖文发,张星耀.森林健康监测与评价的国内外现状和发展趋势,林业科学,2007,43(7)78-85
    王义平,吴鸿,徐华潮.以昆虫作为指示生物评估森林健康的生物学与生态学基础,应用生态学报,2008,19(7)1625-1630
    吴猛耐,苟阳. 1994.应用灭幼脲Ⅲ号等三种药剂防治鞭角华扁叶蜂简报.林业病虫害防治,总第18期,41-42
    吴泽民,黄成林,马青山. 1999.黄山松年轮生长和气候的关系,应用生态学报), 10(2):147-150
    吴仲伦等编.国外树种引种概论[M].北京:科学出版社,1983:50-60
    
    夏冰,兰涛.马尾松直径生长与气候的非线性响应函数.植物生态学报,199620(1):51-56
    夏冰,邓飞,周康,等.通过树木年轮分析树木密度分布的研究等.植物资源与环境学报, 2001, 10: 1-6
    夏冰,贺善安.溧阳马尾松年轮与当地作物产量之间关系的初步研究,植物资源与环境, 1994,3:27-32
    项文化,田大伦.不同密度中幼龄湿地松人工林生长过程的经济效益分析[J]等.中南林学院学报,1998,18(3):71-74
    萧刚柔,王贵成,伍敦祥.内蒙古云杉扁叶蜂生物学及其防治的初步研究.森林昆虫学文集,北京:科学出版社.1959,224-251
    萧刚柔.中国叶蜂四新种(膜翅目、广腰亚目:扁叶蜂科、叶蜂科).林业科学研究,1990.3(6):548-552
    肖文发,韩景军,马娟.美国国家森林健康监测与评价计划及对我国的启示[J].世界林业研究,2001,14(3):67-74
    谢国文,谭策铭.九岭幕阜山植物特有属的生物多样性研究[J] .江西农业大学学报,1996,18(1):54-60
    谢昆青,李志尧.树木年轮研究的扫描土壤分析方法及其在环境演变中的应用,第四纪研究), 2000,20: 259-269
    刑秋茹,刘洪雁,孙艳荣,等.广东阳春现代樟树树轮宽度变化及其对气候因子的响应.生态学报,2004, Vol24,N0.9:2077-2080
    徐海,洪业汤,朱咏煊,等.安图红松树轮稳定δ13C、δ18O序列记录的气候变化信息.地质地球化学, 2002, 30(2): 59-66
    徐秋芳,钱新标,桂祖英.不同林木凋落物分解对土壤性质的影响EJ].浙江林学院学报,1998,15(1):27—31
    杨大胜.鞭角华扁叶蜂初步研究.森林病虫防治,1987,总第11期,22-24
    杨德敏.马尾松腮扁叶蜂生物学研究.-走向21世纪的中国昆虫学.北京:中国科学技术出版社,2000,892-893
    杨洪国.长江上游柏木人工林分生物量研究,四川林勘设计,2007,1,17-19
    杨金艳,万传宽.东北东部森林生态系统土壤碳储量和碳通量,生态学报,2005,25(11):2875-2881
    杨汝荣.南岭山区的生物多样性和生态系统保护与区域环境安全[J] .江西农业大学学报,2000,22(2):199-203
    杨玉盛,陈光水,林鹏,等.何宗明.格氏栲天然林与人工林细根生物量、季节动态及净生产力[J].生态学报,2003,23(9):1719-1730
    叶玮,袁玉江.新疆伊犁地区现代气候特征与300a来的干湿变化规律.中国沙漠, 1999.19(2): 97-103
    尹华军,刘庆.森林生态系统健康诊断研究进展及亚高山针叶林健康诊断的思考[J].世界科技研究与发展,2003,25(5):58-61
    于大炮,王顺忠,唐立娜,等. 2005.长白山北坡落叶松年轮年表及其与气候变化的关系.应用生态学报,16(1):14-20
    于晓东,罗天宏,周红章.林业活动和森林片断化对甲虫多样性的影响及保护对策.昆虫学报,2006,49(1):126-136
    喻树龙,袁玉江,金海龙,等.用树木年轮重建天山北坡中西部7~8月379a的降水量,冰川冻土,2005,27(3)404-410
    袁玉江,李江风.天山乌鲁木齐河源450年冬季温度序列的重建与分析.冰川冻土,1999,21(1):64-70
    袁玉江.利用树木年轮预测阿勒泰气候变化.新疆气象, 1987,10:16-19
    曾永年,冯兆东,曹广超,等.黄河源区高寒草地土壤有机碳储量及分布特征[J].地理学报,2004,59(4):497-503
    翟明普,沈国舫.杨树刺槐混交林及树种问作用机制的研究[A].混交林研究[c].中国林业出版社,1997:3-40
    张宏,苟阳,张志雄.鞭角华扁叶蜂幼虫分布规律初步研究.林业病虫害防治,1990.总第14期,38-43
    张兰生,方修琦.全球变化[M].北京:高等教育出版社.2000
    张万儒.森林土壤定位研究方法.北京:中国林业出版社.1978,17-117
    张正雄.山地人工林集材作业技术[J].山地学报,2002,20(6):761-764
    张志华,李骥.用树轮密度及宽度资料重建新疆吉木萨尔县的季节降水和最高温度[J].气象学报, 1998,56(1):77-86
    赵良平,叶建仁,曹国江,等.森林健康理论与病虫害可持续控制-对美国林业考察的思考.南京林业大学学报:自然科学版,2002,26(1):5-9
    赵志模.群落生态学原理与方法[M] .重庆:科学技术文献出版社重庆分社,1989,81-153
    郑丽凤,周新年,巫志龙,等.天然林不同强度采伐后10a后林地土壤理化性质分析.林业科学研究,2008,21(1):106-109
    郑世锴,卢永农.山东临沂地区杨树人工林密度及经济效益的研究[J] .林业科学研究,1990,3(2):166-171
    郑淑霞,上官周平. 2005a.近70年来黄土高原典型植物δ13C值变化研究.植物生态学报, 29(2): 289-295
    郑淑霞,上官周平. 2005b.辽东栎叶片气孔密度及δ13C值的时空变异.林业科学, 41(2): 30-36
    郑永宏.不同生境祁连圆柏的径向生长对气候变化的响应.林业大学学报, 2008. 30 (3):7-12
    郑永祥,陈绘画,崔相富,等.鞭角华扁叶蜂防治指标研究.2002,21(4):3-4
    郑永祥.鞭角华扁叶蜂滞育空间分布型及抽样技术研究.林业科学研究,1996,9(5):552-556中国县(市)社会经济统计年鉴
    周莉,代力民,谷会岩,等.长白山阔叶红松林采伐基地土壤养分含量动态研究.应用生态学报,2004,15(10):1771-1775
    庄雪影,Richard TC.香港乡土树种幼苗在次生林下生长的研究.热带亚热带植物学报,2000,8(4):291-300

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700