用户名: 密码: 验证码:
重金属对斑马鱼的毒性效应及作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球的污染物排放增加,带来了巨大的健康和环境问题。重金属如镉(Cd)、铅(Pb)、铜(Cu)、铬(Cr),具有高毒性,是重要的环境污染物,通过工业废水、城市和矿业资源等排放到环境中,到达水生环境,在水生生物体内积累,经由食物链对人类造成危害。斑马鱼是一种对环境污染物较为敏感的模式生物,已被广泛应用于胚胎发育毒理学、环境毒理学、病理毒理学、药物毒理学等多个领域,并展现出其特有的优势。
     本研究旨在全面评价重金属(镉,铅,铜,铬)对斑马鱼的毒性效应,了解重金属毒性作用的特点、性质、程度及毒性作用机制,明确重金属(镉,铅,铜,铬)对斑马鱼抗氧化防御系统,细胞凋亡及免疫系统的毒性作用及其机制,为阐明重金属毒性作用和重金属污染的环境风险评估提供依据。主要研究内容包括:重金属(镉,铅,铜,铬)对斑马鱼抗氧化能力指数的影响、重金属镉(Cd)对斑马鱼成鱼和胚胎的毒性作用及机制研究、重金属铅(Pb)对斑马鱼成鱼和胚胎的毒性作用及机制研究、重金属铜(Cu)对斑马鱼成鱼的毒性作用研究、重金属铬(Cr)对斑马鱼成鱼的毒性作用研究。主要研究结果如下:
     1)本研究以抗氧化能力指数(Oxygen radical absorbance capacity, ORAC)检测方法为基础,建立一种机体清除自由基能力的检测方法,并应用于生物抗氧化能力的的评价。研究选用国际标准试验用鱼-斑马鱼作为试验生物,针对过氧自由基(ROO·)进行检测,以偶氮化合物AAPH作为氧自由基来源,荧光素钠(FL)为荧光指示剂,并以维生素E类似物Trolox为定量标准,观察自由基与荧光素钠作用后荧光强度的衰退过程,检测各种物质加入反应体系后延缓荧光素钠荧光强度衰退的能力,以此评价反应体系中抗氧化剂的抗氧化能力。本研究所建立的定量分析方法具有特异性强;精密度高,变异系数小于5%;准确度在97%-108%之间;重现性佳(变异系数是2.92%);定量检出限和最低检测限分别为3.03和1.00μmol Trolox/mg protein,可接受相关系数(R2)≥0.99。依据所建立的定量分析方法对斑马鱼ORAC生理正常值进行检测,正常值范围为0-50μmol Trolox/mg protein,并根据重金属对斑马鱼ORAC的影响,对重金属的污染程度和毒性效应进行了评级和分类,提高了试验数据互认程度,推动了抗氧化防御系统生物标志物在环境污染监测中的应用。
     2)重金属镉(Cd)对斑马鱼成鱼和胚胎的毒性作用及机制研究结果表明:重金属Cd对斑马鱼成鱼和胚胎的96h-LCso分别为24.341mg/L和46.67mg/L,胚胎孵化抑制作用的96h-EC50为42.499mg/L。重金属Cd引起斑马鱼成鱼SOD活性升高,MDA含量增加,ROS水平明显升高;抗氧化防御系统相关基因Mn-SOD,Cu/Zn-SOD, Nrf2,HO-1mRNA表达水平上调;细胞凋亡相关基因bc1-2mRNA表达水平下调,而p53mRNA表达水平上调;免疫系统相关基因-α,IL-1β,INF-γ和IL-8mRNA表达水平均显著性升高;MAPKs信号转导通路相关基因p38a,p38b,ERK2,ERK3和核转录因子AP-1亚家族c-jun mRNA表达水平均上升。重金属Cd引起斑马鱼胚胎心率减慢,体长减小;ROS水平显著升高;抗氧化防御系统相关基因Mn-SOD,Cu/Zn-SOD,CAT,Nrf2,HO-1mRNA表达水平上调;细胞凋亡相关基因bc1-2和p53mRNA表达水平均上调;免疫系统相关基因TNF-a,IL-1β,INF-y mRNA表达水平均显著性升高;MAPKs信号转导通路相关基因p38a,p38b,ERK2,ERK3,JNK1和核转录因子AP-1亚家族c-jun,c-fos以及NF-κB亚家族relA mRNA表达水平均升高。以上结果提示Cd对斑马鱼成鱼和胚胎均具有明显的毒性作用,能够诱导氧化应激,细胞凋亡及免疫毒性的发生,毒性作用机制与MAPKs信号转导通路相关。
     3)重金属铅(Pb)对斑马鱼成鱼和胚胎的毒性作用及机制研究结果表明:重金属Pb对斑马鱼成鱼和胚胎的96h-LC50分别为0819mg/L口22.574mg/L,胚胎孵化抑制作用的96h-ECso为19.594mg/Lo重金属Pb引起斑马鱼成鱼SOD活性升高,MDA含量增加,ROS水平明显升高;抗氧化防御系统相关基因Mn-SOD,Cu/Zn-SOD,Nrf2,HO-1mRNA表达水平上调;细胞凋亡相关基因bcl-2mRNA表达水平下调,而p53mRNA表达水平上调;免疫系统相关基因TNF-a,IL-1β, INF-γ和IL-8mRNA表达水平均显著性升高:MAPKs信号转导通路相关基因p38a,p38b, ERK2,JNK1和核转录因子AP-1亚家族c-jun, c-fos以及NF-κB亚家族nfkb2mRNA表达水平均上升。重金属Pb引起斑马鱼胚胎心率减慢,体长减小;ROS水平显著升高;抗氧化防御系统相关基因Mn-SOD,Cu/Zn-SOD,CAT,Nrf2,HO-1mRNA表达水平上调;细胞凋亡相关基因bc1-2和p53mRNA表达水平均上调;免疫系统相关基因TNF-α,IL-1βINF-γ mRNA表达水平均显著性升高;MAPKs信号转导通路相关基因p38a,p38b,ERK2,ERK3,JNK1和核转录因子AP-1亚家族c-jun,c-fos以及NF-κB相关基因relA mRNA表达水平均上升。以上结果提示Pb对斑马鱼成鱼和胚胎均具有明显的毒性作用,能够诱导氧化应激,细胞凋亡及免疫毒性的发生,毒性作用机制与MAPKs信号转导通路相关。
     4)重金属铜(Cu)对斑马鱼成鱼的毒性作用研究结果表明:重金属Cu对斑马鱼成鱼的96h-LC5o0为0.462mg/L;引起SOD活性升高,MDA含量增加,ROS水平明显升高;抗氧化防御系统相关基因Mn-SOD,Cu/Zn-SOD,Nrf2,mRNA表达水平上调;细胞凋亡相关基因p53mRNA表达水平上调;免疫系统相关基因TNF-a, IL-1β, INF-γ(?)IL-8mRNA表达水平均显著性升高。以上结果提示Cu对斑马鱼成鱼具有明显的毒性作用,能够诱导氧化应激,细胞凋亡及免疫毒性的发生。
     5)重金属铬(Cr)对斑马鱼成鱼的毒性作用研究结果表明:重金属Cr对斑马鱼成鱼的96h-LC5o为113.808mg/L;引起SOD活性升高,MDA含量增加,ROS水平明显升高;抗氧化防御系统相关基因Mn-SOD,Cu/Zn-SOD,Nrf2,mRNA表达水平上调;细胞凋亡相关基因p53mRNA表达水平上调;免疫系统相关基因TNF-a, IL-1β, INF-γ和IL-8mRNA表达水平均显著性升高。以上结果提示Cr对斑马鱼成鱼具有明显的毒性作用,能够诱导氧化应激,细胞凋亡及免疫毒性的发生。
     本研究对传统的ORAC方法进行了一定程度上的改良,并将此法应用于环境污染监测和毒理学研究,研究了重金属(镉,铅,铜,铬)对斑马鱼抗氧化防御系统的影响,并全面评价了重金属(镉,铅,铜,铬)对斑马鱼成鱼和胚胎的毒性效应及作用机制,发现氧化应激,细胞凋亡和免疫毒性之间存在着紧密的联系。
The pollutant emissions increasing worldwide and bringing huge health and environmental problems. Heavy metals, such as cadmium (Cd), lead (Pb), copper (Cu) and chromium (Cr), are highly toxic metal and important environmental contaminant, which can reach aquatic systems derived from effluents of industrial, urban and mining sources.They are discharged into the environment and become accumulated from water into aquatic organisms, or from soil to plants, causing harmful effects to humans via food chains. Zebrafish is a sensitive model organism, which highly vulnerable to toxic contaminants, has been widely used in embryonic developmental toxicology, environmental toxicology, pathology toxicology, drug toxicology and other areas of toxicology due to their advantages.
     The purpose of this study was to comprehensive evaluate heavy metals (Cd, Pb, Cu, Cr) toxicities on zebrafish, understanding toxicity characteristics, nature, extend and mechanism, elucidating the effect and mechanism of heavy metal on antioxidant system, apoptosis and immune system of zebrafish. The information presented in this study will help with elucidating the action mechanisms and environmental risk of heavy metal-induced toxicity in aquatic organisms. The main contents include:the effect of heavy metal (Cd, Pb, Cu, Cr) on Oxygen Radical Absorbance Capacity (ORAC) of zebrafish; the toxicity and its mechanism of heavy metal cadmium (Cd) on adult zebrafish and embryos; the toxicity and its mechanism of heavy metal lead (Pb) on adult zebrafish and embryos; the toxicity of heavy metal copper (Cu) on adult zebrafish; the toxicity of heavy metal chromium (Cr) on adult zebrafish. The results are listed as follows:
     1) This study develop a detecting method of the free radical scavenging capacity for biological sample, based on the Oxygen Radical Absorbance Capacity (ORAC) methods. We chose international standard test fish-zebrafish as the experimental animals, and mainly tested the hydroperoxyl free radical (ROO·). The azo compound AAPH was chosen as the oxygen free radical source, Fluorescein (FL) as the fluorescence indicator, Trolox as the quantitative standard. Then we observed the fluorescence intensity decay process after free radicals acted with FL, and detected the ability of antioxidant delay the fluorescence intensity recession, to evaluate the effect of chemicals on ORAC. The established method has high specificity and good accuracy (between97%and108%) and precision (%CV less than5%); this method also has a good reproducibility (%CV is2.92%). The limit of quantitation (LOQ) and the limit of detection (LOD) are3.03and 1.00μmol Trolox/mg protein, respectively, the correlation coefficient (R2) is≥0.99. According to the new established quantitative analysis methods, we have determined the physiological normal range (0-50μmol Trolox/mg protein) and classified the heavy metal contamination degree and toxic effects based on the effect of metals on ORAC of zebrafish. Therefore, the study is effective to enhance the inter-accreditation of laboratory results and promoted the application of biomarkers for antioxidant defense in environmental pollution monitor.
     2)The results showed that the estimated96h-LCso value of heavy metal Cd for adult zebrafish and embryos were24.341mg/L and46.67mg/L, respectively,50%inhibitory concentration of Cd on the hatching rate of embryos was42.499mg/L. Adult zebrafish exposed to Cd increased SOD activity and MDA level, elevated ROS level, up-regulated antioxidant system related gene Mn-SOD, Cu/Zn-SOD, Nrf2, HO-1mRNA expression levels, down-regulated apoptosis related gene bcl-2mRNA expression level, but increased p53mRNA expression level, up-regulated immune system related gene TNF-a, IL-1β, INF-y and IL-8mRNA expression level, increased MAPKs signal pathway related gene p38a, p38b, ERK2, ERK3mRNA expression level, also up-regulated nuclear transcription factor AP-1subfamily c-jun gene mRNA expression level. Zebrafish embryos exposed to Cd slowed embryos heart rate, decreased embryos body length, elevated ROS level, up-regulated antioxidant system related gene Mn-SOD, Cu/Zn-SOD, CAT, Nrf2, HO-1mRNA expression levels, up-regulated apoptosis related gene bcl-2and p53mRNA expression level, up-regulated immune system related gene TNF-a, IL-1β mRNA expression level, increased MAPKs signal pathway related gene p38a, p38b, ERK2, ERK3, JNK1mRNA expression level, also up-regulated nuclear transcription factor AP-1subfamily c-jun, c-fos and NF-κB subfamily relA mRNA expression level. These results indicated that Cd has obviously toxicity on adult zebrafish and embryos, it could induced oxidative stress, apoptosis and immunotoxicity, and MAPKs signal pathway may involve in the toxicity mechanism of Cd.
     3) The results showed that the estimated96h-LC50value of heavy metal Pb for adult zebrafish and embryos were0.819mg/L and22.574mg/L, respectively,50%inhibitory concentration of Pb on the hatching rate of embryos was19.594mg/L. Adult zebrafish exposed to Pb increased SOD activity and MDA level, elevated ROS level, up-regulated antioxidant system related gene Mn-SOD, Cu/Zn-SOD, Nrf2, HO-1mRNA expression levels, down-regulated apoptosis related gene bcl-2mRNA expression level, but increased p53mRNA expression level, up-regulated immune system related gene TNF-a, IL-1β, INF-y and IL-8mRNA expression level, increased MAPKs signal pathway related gene p38a, p38b, ERK2, JNK1mRNA expression level, also up-regulated nuclear transcription factor AP-1subfamily c-jun, c-fos and NF-κB subfamily nfkb2gene mRNA expression level. Zebrafish embryos exposed to Pb slowed embryos heart rate, decreased embryos body length, elevated ROS level, up-regulated antioxidant system related gene Mn-SOD, Cu/Zn-SOD, CAT, Nrf2, HO-1mRNA expression levels, up-regulated apoptosis related gene bcl-2and p53mRNA expression level, up-regulated immune system related gene TNF-a, IL-1β, INF-y mRNA expression level, increased MAPKs signal pathway related gene p38a, p38b, ERK2, ERK3, JNK1mRNA expression level, also up-regulated nuclear transcription factor AP-1subfamily c-jun, c-fos and NF-κB subfamily relA mRNA expression level. These results indicated that Pb has obviously toxicity on adult zebrafish and embryos, it could induced oxidative stress, apoptosis and immunotoxicity, and MAPKs signal pathway may involve in the toxicity mechanism of Pb.
     4) The results showed that the estimated96h-LCso value of heavy metal Cu for adult zebrafish was0.462mg/L. Adult zebrafish exposed to Cu increased SOD activity and MDA level, elevated ROS level, up-regulated antioxidant system related gene Mn-SOD, Cu/Zn-SOD, Nrf2mRNA expression levels, up-regulated apoptosis related gene p53mRNA expression level, up-regulated immune system related gene TNF-a, IL-1β, INF-y and IL-8mRNA expression level. These results indicated that Cu has obviously toxicity on adult zebrafish, it could induced oxidative stress, apoptosis and immunotoxicity.
     5) The results showed that the estimated96h-LC50value of heavy metal Cr for adult zebrafish was113.808mg/L. Adult zebrafish exposed to Cr increased SOD activity and MDA level, elevated ROS level, up-regulated antioxidant system related gene Mn-SOD, Cu/Zn-SOD, Nrf2mRNA expression levels, up-regulated apoptosis related gene p53mRNA expression level, up-regulated immune system related gene TNF-a, IL-1β, INF-y and IL-8mRNA expression level. These results indicated that Cr has obviously toxicity on adult zebrafish, it could induced oxidative stress, apoptosis and immunotoxicity.
     In this study, we improved the traditional ORAC method, and applied it in environmental pollution monitoring and toxicology studies. Furthermore, we use this method to study the effects of heavy metals (cadmium, lead, copper and chromium) on antioxidant system of zebrafish. And we comprehensively evaluated the toxic effects and its mechanism of heavy metals (cadmium, lead, copper and chromium) on adult zebrafish and embryos, suggesting that a close relationship between oxidant stress, apoptosis and immunotoxicity.
引文
[1]Romeo M, Bennani N, Gnassia-Barelli M, et al. Cadmium and copper display different responses towards oxidative stress in the kidney of the sea bass Dicentrarchus labrax [J]. Aquatic toxicology (Amsterdam, Netherlands),2000, 48:185.
    [2]Berntsmen MH, Aatland A, Handy RD. Chronic dietary mercury exposure causes oxidative stress, brain lesions, and altered behaviour in Atlantic salmon (Salmo salar) parr [J]. Aquatic toxicology (Amsterdam, Netherlands),2003,65:55.
    [3]Banerjee B, Seth V, Ahmed R. Pesticide-induced oxidative stress:perspectives and trends [J]. Reviews on environmental health,2001,16:1.
    [4]Suke S, Kumar A, Ahmed R, et al. Protective effect of melatonin against propoxur-induced oxidative stress and suppression of humoral immune response in rats [J]. Indian journal of experimental biology,2006,44:312.
    [5]Srivastava A, Shivanandappa T. Hexachlorocyclohexane differentially alters the antioxidant status of the brain regions in rat [J]. Toxicology,2005,214:123.
    [6]Nasuti C, Gabbianelli R, Falcioni M, et al. Dopaminergic system modulation, behavioral changes, and oxidative stress after neonatal administration of pyrethroids [J]. Toxicology,2007,229:194.
    [7]Gultekin F, Ozturk M, Akdogan M. The effect of organophosphate insecticide chlorpyrifos-ethyl on lipid peroxidation and antioxidant enzymes (in vitro) [J]. Archives of toxicology,2000,74:533.
    [8]Livingstone D. Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms [J]. Marine Pollution Bulletin,2001, 42:656-666.
    [9]Livingstone D, O'Hara S, Frettsome F, et al. Contaminant-mediated pro-/anti-oxidant processes and oxidative damage in early life-stages of fish [J]. Environment and animal development Genes,2001, life histories and plasticity Oxford BIOS Scientific Publishers:173-C201.
    [10]Depledge M H, Aagaard A, Gyorkos P. Assessment of trace metal toxicity using molecular, physiological and behavioural biomarkers [J]. Marine Pollution Bulletin, 1995,31(1-3):19-27.
    [11]Fossi M C, Marsili L, Leonzio C, et al. The use of non-destructive biomarker in Mediterranean cetaceans:Preliminary data on MFO activity in skin biopsy [J]. Marine Pollution Bulletin,1992,24(9):459-461.
    [12]Hill A, Teraoka H, Heideman W, et al. Zebrafish as a model vertebrate for investigating chemical toxicity [J]. Toxicological sciences,2005,86(1):6-19.
    [13]Tkatcheva V, Hyv a rinen H, Kukkonen J, et al. Toxic effects of mining effluents on fish gills in a subarctic lake system in NW Russia [J]. Ecotoxicol Environ Saf,2004, 57(3):278-89.
    [14]Livingstone DR. Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms [J]. Mar Pollut Bull.2001 Aug;42(8):656-66.
    [15]van der Oost R, Beyer J, Vermeulen NP.Fishbioaccumulation and biomarkers in environmentalrisk assessment:a review [J]. Environ Toxicol Pharmacol.2003 Feb;13(2):57-149.
    [16]Zhang J, Shen H, Wang X, Wu J, Xue Y.Effects of chronicexposure of 2,4-dichlorophenol on the antioxidant system in liver of freshwater fish Carassius auratus [J]. Chemosphere.2004 Apr;55(2):167-74.
    [17]Sun Y, Yin Y, Zhang J, Yu H, Wang X.Bioaccumulation and ROS generation in liver of freshwater fish, goldfish Carassius auratus under HC Orange No 1 exposure [J]. Environ Toxicol.2007 Jun;22(3):256-63.
    [18]Barclay LR, Vinqvist MR, Mukai K, Goto H, Hashimoto Y, Tokunaga A, Uno H.On the antioxidantmechanism of curcumin:classical methods are needed to determine antioxidantmechanism and activity [J]. Org Lett.2000 Sep 7;2(18):2841-3.
    [19]Hess D1, Keller HE, Oberlin B, Bonfanti R, Schuep W. Simultaneous determination of retinol, tocopherols, carotenes and lycopene in plasma by means of high-performance liquid chromatography on reversed phase [J].Int J Vitam Nutr Res.1991;61(3):232-8.
    [20]Cao G, Alessio HM, Cutler RG. Oxygen-radical absorbance capacity assay for antioxidants [J]. Free Radic Biol Med,1993,14 (3):303-311.
    [21]Naguib YM. A fluorometric method for measurement of oxygen radical-scavenging activity of water-soluble antioxidants [J]. Anal Biochem,2000,284:93-8.
    [22]Naguib Y M. Antioxidant activities of astaxanthin and related carotenoids [J]. J Agric Food Chem,2000,48,1150-4.
    [23]Niki E. Assessment of antioxidant capacity in vitro and in vivo [J]. Free Radic Biol Med,2010,49:503-515.
    [1]Jarup L. Hazards of heavy metal contamination [J]. Br Med Bull,2003,68:167-82.
    [2]Basha PS, Rani AU. Cadmium-induced antioxidant defense mechanism in freshwater teleost Oreochromis mossambicus (Tilapia) [J]. Ecotoxicol Environ Saf,2003,56, 218-221.
    [3]Deng X, Xia Y, Hu W, Zhang H, Shen Z. Cadmium-induced oxidative damage and protective effects of N-acetyl-L-cysteine against cadmium toxicity in Solanum nigrum L[J]. J Hazard Mater,2010,180,722-729.
    [4]Shaikh ZA, Vu TT, Zaman K. Oxidative stress as a mechanism of chronic cadmium-induced hepatotoxicity and renal toxicity and protection by antioxidants [J]. Toxicol Appl Pharmacol,1999,154,256-263.
    [5]Giaginis C, Gatzidou E, Theocharis S. DNA repair systems as targets of cadmium toxicity [J]. Toxicol Appl Pharmacol,2006,213,282-290.
    [6]Doi T, Puri P, Bannigan J, Thompson J. Disruption of calreticulin-mediated cellular adhesion signaling in the cadmium-induced omphalocele in the chick model [J]. Pediatr Surg Int,2010,26,91-95.
    [7]Thevenod F. Cadmium and cellular signaling cascades:to be or not to be [J]? Toxicol Appl Pharmacol,2009,238,221-239.
    [8]Templeton DM, Liu Y. Multiple roles of cadmium in cell death and survival [J]. Chem Biol Interact,2010,188,267-275.
    [9]Chow ES, Hui MN, Lin CC, Cheng SH. Cadmium inhibits neurogenesis in zebrafish embryonic brain development [J]. Aquat Toxicol,2008,87,157-169.
    [10]Denier X, Hill EM, Rotchell J, Minier C. Estrogenic activity of cadmium, copper and zinc in the yeast estrogen screen [J]. Toxicol In Vitro,2009,23,569-573.
    [11]Henson MC, Chedrese PJ. Endocrine disruption by cadmium, a common environmental toxicant with paradoxical effects on reproduction [J]. Exp Biol Med (Maywood),2004,229,383-392.
    [12]Lacroix A, Hontela A. A comparative assessment of the adrenotoxic effects of cadmium in two teleost species, rainbow trout, Oncorhynchus mykiss, and yellow perch, Perca flavescens [J]. Aquat Toxicol,2004,67,13-21.
    [13]Yoo BS, Jung KH, Hana SB, Kim HM. Apoptosis-mediated immunotoxicity of polychlorinated biphenyls (PCBs) in murine splenocytes [J]. Toxicol Lett,1997,91: 83-9.
    [14]Gao S, Wang Y, Zhang P, Dong Y, Li B. Subacute oral exposure to dibromoacetic acid induced immunotoxicity and apoptosis in the spleen and thymus of the mice [J]. Toxicol Sci,2008,105:331-41.
    [15]Fukuyama T, Tajima Y, Ueda H, Hayashi K, Shutoh Y, Harada T, Kosaka T. Apoptosis in immunocytes induced by several types of pesticides [J]. J Immunotoxicol,2010,7:39-56.
    [16]Chang KC, Hsu CC, Liu SH, Su CC, Yen CC, Lee MJ, Chen KL, et al. Cadmium Induces Apoptosis in Pancreatic P-Cells through a Mitochondria-Dependent Pathway:The Role of Oxidative Stress-Mediated c-Jun N-Terminal Kinase Activation [J]. PLoS One,2013,8(2):e54374.
    [17]Wang L, Xu T, Lei WW, Liu DM, Li YJ, Xuan RJ, Ma JJ. Cadmium-Induced Oxidative Stress and Apoptotic Changes in the Testis of Freshwater Crab, Sinopotamon henanense [J]. PLoS One,2011,6(11):e27853.
    [18]Roh YS, Cho A, Islam MR, Cho SD, Kim J, Kim JH, et al.3,3'-Diindolylmethane induces immunotoxicity via splenocyte apoptosis in neonatal mice [J]. Toxicol Lett, 2006,206(2):218-28.
    [19]Battaglia CL, Gogal Jr RM, Zimmerman K, Misra HP. Malathion, lindane, and piperonyl butoxide, individually or in combined mixtures, induce immunotoxicity via apoptosis in murine splenocytes in vitro [J]. Int J Toxicol,2010,29:209-20.
    [20]Zhao M, Zhang Y, Wang C, Fu Z, Liu W, Gan J. Induction of macrophage apoptosis by an organochlorine insecticide acetofenate [J]. Chem Res Toxicol,2009, 22:504-10.
    [21]Chen T, Wong YS. Selenocystine induces caspase-independent apoptosis in MCF-7 human breast carcinoma cells with involvement of p53 phosphorylation and reactive oxygen species generation [J]. Int J Biochem Cell Biol,2009,41,666-676.
    [22]Nguyen T, Nioi P, Pickett CB. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress [J]. J Biol Chem,2009,284, 13291-13295.
    [23]Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science,2002,298(5600):1911-2.
    [24]Fujii R, Yamashita S, Hibi M, Hirano T. Asymmetric p38 activation in zebrafish:its possible role in symmetric and synchronous cleavage. J Cell Biol,2000, 150(6):1335-48.
    [25]Evans DH, Piermarini PM, Choe KP. The multifunctional fish gill:dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste [J]. Physiological Reviews,2005,85,97-177.
    [26]Athikesavan S, Vincent S, Ambrose T, Velmurugan B. Nickel induced histopathological changes in the different tissues of freshwater fish, Hypophthalmichthys molitrix (Valenciennes) [J]. Journal of Environmental Biology, 2006,27,391-395.
    [27]Fernandes C, Fontainhas-Fernandes A, Monteiro SM, Salgado MA. Histopathological gill changes in wild leaping grey mullet (Liza saliens) from the EsmorizParamos coastal lagoon, Portugal [J]. Environmental Toxicology,2007,22, 443-448.
    [28]Abrahamson A, Andersson C, Jonsson ME, Fogelberg O, Orberg J, Brunstrom B, Brandt I. Gill EROD in monitoring of CYP1A inducers in fish:a study in rainbow trout (Oncorhynchus mykiss) caged in Stockholm and Uppsala waters [J]. Aquatic Toxicology,2007,85,1-8.
    [29]Jonsson ME, Brunstrom B, Brandt 1. The zebrafish gill model:Induction of CYP1A, EROD and PAH adduct formation [J]. Aquatic Toxicology,2009,91,62-70.
    [30]Atli G, Alptekin O, Tukel S, Canli M.2006. Response of catalase activity to Ag+ Cd2+, Cr6+, Cu2+and Zn2+in five tissues of freshwater fish Oreochromis niloticus [J]. Comp Biochem Physiol C Toxicol Pharmacol,2006,143,218-224.
    [31]Liu J, Qu W, Kadiiska MB. Role of oxidative stress in cadmium toxicity and carcinogenesis [J]. Toxicol Appl Pharmacol,2009,238,209-214.
    [32]Pretto A, Loro VL, Baldisserotto B, Pavanato MA, Moraes BS, Menezes C, Cattaneo R, Clasen B, Finamor IA, Dressler V. Effects of water cadmium concentrations on bioaccumulation and various oxidative stress parameters in Rhamdia quelen [J]. Environ Contam Toxicol,2011,60,309-318.
    [33]Salovsky P, Shopova V, Dancheva V, Marev R. Changes in antioxidant lung protection after single intra-tracheal cadmium acetate instillation in rats [J], Hum Exp Toxicol,1992,11,217-222.
    [34]Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmental stresses via the Keapl-Nrf2-ARE pathway [J]. Annu Rev Pharmacol Toxicol,2007, 47,89-116.
    [35]Niture SK, Kaspar JW, Shen J, Jaiswal AK. Nrf2 signaling and cell survival [J].Toxicol Appl Pharmacol,2009,244,37-42.
    [36]Hsieh CH, Rau CS, Hsieh MW, Chen YC, Jeng SF, Lu TH, Chen SS. Simvastatin-induced heme oxygenase-1 increases apoptosis of Neuro 2A cells in response to glucose deprivation [J]. Toxicol Sci,2008,101(1):112-21.
    [37]Alam J, Cook JL. Transcriptional regulation of the heme oxygenase-1 gene via the stress response element pathway [J].Curr Pharm Des,2003,9,2499-2511.
    [38]Yoder JA, Nielsen ME, Amemiya CT, Litman GW. Zebrafish as an immunological model system. Microbes Infect,2002,4:1469-78.
    [39]Shen G, Hebbar V, Nair S, Xu C, Li W, Lin W, Keum YS, Han J, Gallo MA, Kong AN. Regulation of Nrf2 transactivation domain activity [J].J Biol Chem,2004,279, 23052-23060.
    [40]Limon-Pacheco JH, Hernandez NA, Fanjul-Moles ML, Gonsebatt ME. Glutathione depletion activates mitogen-activated protein kinase (MAPK) pathways that display organ-specific responses and brain protection in mice [J]. Free Radic Biol Med, 2007,43,1335-1347.
    [1]Xiang JJ, Zhai YF, Tang Y, Wang H, Liu B, Guo CW. A competitive indirect enzyme-linked immunoassay for lead ion measurement using mAbs against the lead-DTPA complex [J]. Environ. Pollut,2010,158:1376-1380.
    [2]Shotyk W, Le Roux G. Biogeochemistry and cycling of lead [J]. Met Ions Biol Syst, 2005,43:239-75.
    [3]National Institute of Environmental Health Sciences [R]. Research Triangle Park, NC: Annual Report on Carcinogens. National Toxicology Program,1994.
    [4]IARC. Monographs on the Evaluation of the Carcinogenic Risk to Human-Genetic and Related Effects [M]. An Updating of Selected IARC Monographs,1987:1-42. (Suppl.6).
    [5]Pulido MD, Parrish AR. Metal-induced apoptosis:mechanisms [J]. Mutat Res,2003, 533,227-241.
    [6]Courtois E, Marques M, Barrientos A, Casado S, Lopez-Farre A. Lead-induced downregulation of soluble guanylate cyclase in isolated rat aortic segments mediated by reactive oxygen species and cyclooxygenase-2 [J]. J Am Soc Nephrol, 2003,14:1464-1470.
    [7]Patrick L. Lead toxicity part Ⅱ:the role of free radical damage and the use of antioxidants in the pathology and treatment of lead toxicity [J]. Altern Med Rev, 2006,11,114-127.
    [8]Ercal N, Gurer-Orhan H, Aykin-Burns N. Toxic metals and oxidative stress part Ⅰ: mechanisms involved in metal-induced oxidative damage [J]. Curr Top Med Chem, 2001,1:529-39.
    [9]Bolin CM, Basha R, Cox D, Zawia NH, Maloney B, Lahiri DK, Cardozo-Pelaez F. Exposure to lead and the developmental origin of oxidative DNA damage in the aging brain [J]. FASEB J,2006,20:788-790.
    [10]Silbergeld EK, Waalkes M, Rice JM. Lead as a carcinogen experimental evidence and mechanisms of action [J]. Am J Ind Med,2000,38:316-323.
    [11]Flora SJ, Mittal M, Mehta A. Heavy metal induced oxidative stress and its possible reversal by chelation therapy [J]. ndian J Med Res,2008,128:501-523.
    [12]Patra RC, Swarup D, Dwivedi SK. Antioxidant effects ofatocopherol, ascorbic acid and 1-methionine on lead induced oxidative stress to the liver, kidney and brain in rats [J]. Toxicology,2001,162:81-8.
    [13]Rice D, editor. Animal models of cognitive impairment produced by developmental lead exposure [M]. Boca Raton (FL):CRC Press,2006:[Chapter 6].
    [14]Winneke G. Developmental aspects of environmental neurotoxicology:lessons from lead and polychlorinated biphenyls [J]. J Neurol Sci,2011,308:9-15.
    [15]Giusi G, Facciolo RM, A16 R, Carelli A, Madeo M, Brandmayr P, et al. Some environmental contaminants influence motor and feeding behaviors in the ornate wrasse (Thalassoma pavo) via distinct cerebral histamine receptor subtypes [J]. Environ Health Perspect,2005,113:1522-9.
    [16]Giusi G, Alo R, Crudo M, Facciolo R, Canonaco M. Specific cerebral heat shock proteins and histamine receptor cross-talking mechanisms promote distinct lead-dependent neurotoxic responses in teleosts [J]. Toxicol Appl Pharmacol,2008, 227:248-56.
    [17]Giusi G, A16 R, Crudo M, Di Vito A, Facciolo RM, Canonaco M. Environmental stressors and neurobiological features of marine teleosts:histamine receptors as targets [J]. Crit Rev Toxicol,2010,40:620-32.
    [18]Rehman S. Lead-exposed increase in movement behavior and brain lipid peroxidation in fish [J]. J Environ Sci Health A Toxicol Hazard Subst Environ Eng, 2003,38:631-43.
    [19]Linney E, Upchurch L, Donerly S. Zebrafish as a neurotoxicological model [J]. Neurotoxicol Teratol,2004,26:709-718.
    [20]Senger MR, Rico EP, de Bem Arizi M, Rosemberg DB, Dias RD, Bogo MR, Bonan CD. Carbofuran and Malathion inhibit nucleotide hydrolysis in zebrafish (Danio rerio) brain membranes [J]. Toxicology,2005,212:107-115.
    [21]Barbazuk WB, Korf I, Kadavi C, Heyen J, Tate S, Wun E, Bedell JA, McPherson JD, Johnson SL. The syntenic relationship of the Zebrafish and human genomes [J]. Genome Res,2000,10,1351-1358.
    [22]Briggs JP.The zebrafish:a new model organism for integrative physiology [J]. Am J Physiol Regul Integr Comp Physiol,2002,282:R3-R9.
    [23]Craig PM, Wood CM, McClelland GB.Gill membrane remodeling with softwater acclimation in Zebrafish (Danio rerio) [J]. Physiol Genomics,2007,30:53-60.
    [24]Neumann NF, Galvez F. DNA microarrays and toxicogenomics:applications for ecotoxicology [J]? Biotechnol Adv,2002,20:391-419.
    [25]Evans DH, Piermarini PM, Choe KP. The multifunctional fish gill:dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste [J]. Physiol Rev,2005,85(1):97-177.
    [26]Athikesavan S, Vincent S, Ambrose T, Velmurugan B. Nickel induced histopathological changes in the different tissues of freshwater fish, Hypophthalmichthys molitrix (Valenciennes) [J]. J Environ Biol,2006,27(2 Suppl): 391-5.
    [27]Abrahamson A, Andersson C, Jonsson ME, Fogelberg O, Orberg J, Brunstrom B, Brandt I. Gill EROD in monitoring of CYP1A inducers in fish:a study in rainbow trout (Oncorhynchus mykiss) caged in Stockholm and Uppsala waters [J]. Aquat Toxicol,2007,85(1):1-8.
    [28]Aykin-Burns N, Franklin EA, Ercal N. Effects of N-acetylcysteine on lead-exposed PC-12 cells [J]. Arch Environ Contam Toxicol,2005,49:119-123.
    [29]Chen L, Yang X, Jiao H, Zhao B. Tea catechins protect against lead-induced ROS formation, mitochondrial dysfunction, and calcium dysregulation in PC 12 cells [J]. Chem Res Toxicol,2003,16:1155-1161.
    [30]Farmand F, Ehdaie A, Roberts CK, Sindhu RK. Lead induced dysregulation of superoxide dismutases, catalase, glutathione peroxidase, and guanylate cyclase [J]. Environ Res,2005,98:33-39.
    [31]Gurer-Orhan H, Sabir HU, Ozgunes H. Correlation between clinical indicators of lead poisoning and oxidative stress parameters in controls and lead-exposed workers [J]. Toxicology,2004,195:147-154.
    [32]Ding Y, Gonick HC, Vaziri ND. Lead promotes hydroxyl radical generation and lipid peroxidation in cultured aortic endothelial cells [J]. Am J Hypertens,2000,13: 552-555.
    [33]Atli G, Alptekin O, Tukel S, Canli M. Response of catalase activity to Ag+, Cd2 Cr6+, Cu2+and Zn2+ in five tissues of freshwater fish Oreochromis niloticus [J]. Comp Biochem Physiol C Toxicol Pharmacol,2006,143:218-224.
    [34]Liu J, Qu W, Kadiiska MB. Role of oxidative stress in cadmium toxicity and carcinogenesis [J]. Toxicol Appl Pharmacol,2009,238:209-214.
    [35]Pretto A, Loro VL, Baldisserotto B, Pavanato MA, Moraes BS, Menezes C, Cattaneo R, Clasen B, Finamor IA, Dressler V. Effects of water cadmium concentrations on bioaccumulation and various oxidative stress parameters in Rhamdia quelen [J]. Environ Contam Toxicol,2011,60:309-318.
    [36]Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmental stresses via the Keapl-Nrf2-ARE pathway [J]. Annu Rev Pharmacol Toxicol,2007, 47:89-116.
    [37]Niture SK, Kaspar JW, Shen J, Jaiswal AK. Nrf2 signaling and cell survival [J]. Toxicol Appl Pharmacol,2009,244:37-42.
    [38]Alam J, Cook JL. Transcriptional regulation of the heme oxygenase-1 gene via the stress response element pathway [J].Curr Pharm Des,2003,9:2499-2511.
    [39]Lakin ND, Jackson SP. Regulation of p53 in response to DNA damage [J]. Oncogene,1999,18(53):7644-55.
    [40]Norbury CJ, Zhivotovsky B. DNA damage-induced apoptosis [J]. Oncogene,2004, 23:2797-2808.
    [41]Loikkanen J, Chvalova K, Naarala J, Vahakangas KH, Savolainen KM. Pb2+ induced toxicity is associated with p53-independent apoptosis and enhanced by glutamate in GT1-7 neurons [J]. Toxicol Lett,2003,144:235-246.
    [42]Yoder JA, Nielsen ME, Amemiya CT, Litman GW. Zebrafish as an immunological model system [J]. Microbes Infect,2002,4:1469-78.
    [43]Roh YS, Cho A, Islam MR, Cho SD, Kim J, Kim JH, Lee JW, Lim CW, Kim B.3,3'-Diindolylmethane induces immunotoxicity via splenocyte apoptosis in neonatal mice [J]. Toxicol Lett,2011,206(2):218-28.
    [44]Battaglia CL, Gogal RM Jr, Zimmerman K, Misra HP.Malathion, lindane, and piperonyl butoxide, individually or in combined mixtures, induce immunotoxicity via apoptosis in murine splenocytes in vitro [J]. Int J Toxicol,2010,29(2):209-20.
    [45]Shen G, Hebbar V, Nair S, Xu C, Li W, Lin W, Keum YS, Han J, Gallo MA, Kong AN. Regulation of Nrf2 transactivation domain activity [J]. J Biol Chem,2004, 279:23052-23060.
    [46]Limon-Pacheco JH, Hernandez NA, Fanjul-Moles ML, Gonsebatt ME. Glutathione depletion activates mitogen-activated protein kinase (MAPK) pathways that display organ-specific responses and brain protection in mice [J]. Free Radic Biol Med, 2007,43:1335-1347.
    [1]Hebert CD, Elwell MR, Travlos GS, Fitz CJ, Bucher JR. Subchronic toxicity of cupric sulfate administered in drinking water and feed to rats and mice [J]. Fundam Appl Toxicol,1993,21:461-475.
    [2]Ricard A, Daniel C, Anderson P, Hontela A. Effects of subchronic exposure to cadmium chloride on endocrine and metabolic functions in rainbow trout Oncorhynchus mykiss [J]. Arch Environ Contam Toxicol,1998,34:377-381.
    [3]Lauren D, McDonald D. Acclimation to copper by rainbow trout,Salmo gairdneri [J]. Can J Fish Aquat Sci,1987,44:99-104.
    [4]McGeer JC, Szebedinszky C, McDonald DG, Wood CM. Effects of chronic sublethal exposure to waterborne Cu, Cd or Zn in rainbow trout.1:iono-regulatory disturbance and metabolic costs [J]. Aquat Toxicol (Amst),2000,50:231-243.
    [5]Teles M, Pacheco M, Santos M. Physiological and genetic responses of European eel (Anguilla anguilla L.) to short-term chromium or copper exposure-influence of preexposure to a PAH-like compound [J]. Environ Toxicol,2005,20:92-99.
    [6]Di Giulio R, Washburn P, Wenning R, Winston G, Jewell C. Biochemical responses in aquatic animals:a review of determinants of oxidative stress [J]. Environ Toxicol Chem,1989,8:1103-1123.
    [7]Linder MC. Copper and genomic stability in mammals [J]. MutRes,2001, 475:141-152.
    [8]Pocino M, Baute L, Malave I. Influence of the oral administration of excess copper on the immune response [J]. Fundam Appl Toxicol,1991,16:249-256.
    [9]Mitra S, Keswani T, Ghosh N, Goswami S, Datta A, Das S, Maity S, Bhattacharyya A. Copper induced immunotoxicity promote differential apoptotic pathways in spleen and thymus [J]. Toxicology,2013,306:74-84.
    [10]Harris ZH, Gitlin JD. Genetic and molecular basis of copper toxicity [J]. Am J Clin Nutr,1996,63:836S-41S.
    [11]Tapiero H, Townsend DM, Tew KD. Trace elements in human physiology and pathology [J]. Copper Biomed Pharmcother,2003,57:386-98.
    [12]Craig PM, Wood CM, McClelland GB. Oxidative stress response and gene expression with acute copper exposure in zebrafish (Danio rerio) [J]. Am J Physiol Regul Integr Comp Physiol,2007,293:1882-1892.
    [13]Linney E, Upchurch L, Donerly S. Zebrafish as a neurotoxicological model [J]. Neurotoxicol Teratol,2004,26(6):709-18.
    [14]Senger MR, Rico EP, de Bern Arizi M, Rosemberg DB, Dias RD, Bogo MR, Bonan CD. Carbofuran and malathion inhibit nucleotide hydrolysis in zebrafish (Danio rerio) brain membranes [J]. Toxicology,2005,212(2-3):107-15.
    [15]Barbazuk WB, Korf I, Kadavi C, Heyen J, Tate S, Wun E, Bedell JA, McPherson JD, Johnson SL. The syntenic relationship of the zebrafish and human genomes [J]. Genome Res,2000,10(9):1351-8.
    [16]Briggs JP. The zebrafish:a new model organism for integrative physiology [J]. Am J Physiol Regul Integr Comp Physiol,2002,282(1):R3-9.
    [17]Craig PM, Wood CM, McClelland GB. Oxidative stress response and gene expression with acute copper exposure in zebrafish (Danio rerio) [J]. Am J Physiol Regul Integr Comp Physiol,2007,293(5):R1882-92.
    [18]Neumann NF, Galvez F. DNA microarrays and toxicogenomics:applications for ecotoxicology [J]? Biotechnol Adv,2002,20(5-6):391-419.
    [19]Vincent AM, Russell JW, Low P, Feldman EL. Oxidative stress in the pathogenesis of diabetic neuropathy [J]. Endocr Rev,2004,25:612-628.
    [20]Krumschnabel G, Manzl C, Berger C, Hofer B. Oxidative stress, mitochondrial permeability transition, and cell death in Cu-exposed trout hepatocytes [J]. Toxicol Appl Pharmacol,2005,209:62-73.
    [21]Jomova K, Valko M. Advances in metal-induced oxidative stress and human disease [J]. Toxicology,2011,283:65-87.
    [22]Hong MY, Chapkin RS, Barhoumi R, Burghardt RC, Turner ND, Henderson CE, Sanders LM, Fan YY, Davidson LA, Murphy ME, Spinka CM, Carroll RJ, Lupton JR. Fish oil increases mitochondrial phospholipid unsaturation, upregulating reactive oxygen species and apoptosis in rat colonocytes [J]. Carcinogenesis,2002, 23:1919-1925.
    [23]Pourahmad J, O'Brien PJ. Contrasting role of Na(+) ions in modulating Cu(+2) or Cd(+2) induced hepatocyte toxicity [J]. Chem Biol Interact,2000,126:159-169.
    [24]Atli G, Alptekin O, Tukel S, Canli M. Response of catalase activity to Ag+, Cd2+, Cr6+, Cu2+and Zn2+in five tissues of freshwater fish Oreochromis niloticus [J]. Comp Biochem Physiol C Toxicol Pharmacol,2006,143:218-224.
    [25]Liu J, Qu W, Kadiiska MB. Role of oxidative stress in cadmium toxicity and carcinogenesis [J]. Toxicol Appl Pharmacol,2009,238:209-214.
    [26]Pretto A, Loro VL, Baldisserotto B, Pavanato MA, Moraes BS, Menezes C, Cattaneo R, Clasen B, Finamor IA, Dressier V. Effects of water cadmium concentrations on bioaccumulation and various oxidative stress parameters in Rhamdia quelen [J]. Environ Contam Toxicol,2011,60:309-318.
    [27]Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway [J]. Annu Rev Pharmacol Toxicol,2007, 47:89-116.
    [28]Niture SK, Kaspar JW, Shen J, Jaiswal AK. Nrf2 signaling and cell survival [J].Toxicol Appl Pharmacol,2009,244:37-42.
    [29]Yoder JA, Nielsen ME, Amemiya CT, Litman GW. Zebrafish as an immunological model system [J]. Microbes Infect,2002,4:1469-78.
    [30]Roh YS, Cho A, Islam MR, Cho SD, Kim J, Kim JH, Lee JW, Lim CW, Kim B.3,3'-Diindolylmethane induces immunotoxicity via splenocyte apoptosis in neonatal mice [J]. Toxicol Lett,2011,206(2):218-28.
    [31]Battaglia CL, Gogal RM Jr, Zimmerman K, Misra HP.Malathion, lindane, and piperonyl butoxide, individually or in combined mixtures, induce immunotoxicity via apoptosis in murine splenocytes in vitro [J]. Int J Toxicol,2010,29(2):209-20.
    [32]Mitra S, Keswani T, Dey M, Bhattacharya S, Sarkar S, Goswami S, Ghosh N, Dutta A, Bhattacharyya A. Copper-induced immunotoxicity involves cell cycle arrest and cell death in the spleen and thymus [J]. Toxicology,2012,293(1-3):78-88.
    [1]Langard S. One hundred years of chromium and cancer:a review of epidemiological evidence and selected case reports [J]. Am J Ind Med,1990,17:189-215.
    [2]Salnikow K, Zhitkovich A. Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis:nickel, arsenic, and chromium [J]. Chem Res Toxicol,2008,21(1):28-44.
    [3]Davidson T, Kluz T, Burns F, Rossman T, Zhang Q, Uddin A, et al. Exposure to chromium (VI) in the drinking water increases susceptibility to UV-induced skin tumors in hairless mice [J]. Toxicol Appl Pharmacol,2004,196:431-437.
    [4]Ueno S, Kashimoto T, Susa N, Furukawa Y, Ishii M, Yokoi K, et al. Detection of dichromate (VI)-induced DNA strand breaks and formation of paramagnetic chromium in multiple mouse organs [J]. Toxicol Appl Pharmacol,2001,170:56-62.
    [5]Junaid M, Murthy RC, Saxena DK.1996. Embryotoxicity of orally administered chromium in mice:exposure during the period of organogenesis [J]. Toxicol Lett, 1996,84:143-148.
    [6]Kanojia RK, Junaid M, Murthy RC. Embryo and fetotoxicity of hexavalent chromium: a long-term study [J]. Toxicol Lett,1998,95:165-72.
    [7]Vutukuru SS. Acute effects of hexavalent chromium on survival, oxygen consumption, hematological parameters, and some biochemical profiles of the Indian major carp,Labeo rohita [J]. Int J Environ Res Public Health,2005,2:456-62.
    [8]Danielsson A, Lorentzon R, Larsson SE. Normal hepatic vitamin-D metabolism in icteric primary biliary cirrhosis associated with pronounced vitamin-D deficiency symptoms [J]. Hepatogastroenterology,1982,29:6-8.
    [9]Chevreuil M, Carru AM, Chesterikoff A, et al. Contamination of fish from different areas of the river Seine (France) by organic (PCB and pesticides) and metallic (Cd, Cr, Cu, Fe, Mn, Pb, and Zn) micro pollutants [J]. Sci Total Environ,1995, 162:31-42.
    [10]Farag AM, May T, Marty GD, Easton M, Harper DD, Little EE, Cleveland L. The effect of chronic chromium exposure on the health of Chinook salmon (Oncorhynchus tshawytscha) [J]. Aquat. Toxicol,2006,76,246-257.
    [11]Li ZH, Zlabek V, Grabic R, Li P, Machova J, Velisek J, Randak T. Effects of exposure to sublethal propiconazole on the antioxidant defense system and Na+ K+-ATPase activity in brain of rainbow trout, Oncorhynchus mykiss [J]. Aquat. Toxicol,2010,98,297-303
    [12]Rahman MS, Molla AH, Saha N, Rahman A.. Study on heavy metals levels and its risk assessment in some edible fishes from Bangshi River, Savar, Dhaka, Bangladesh [J]. Food Chem,2012,134,1847-1854.
    [13]Velma V, Tchounwou PB.2011. Hexavalent chromium-induced multiple biomarker responses in liver and kidney of goldfish, Carassius auratus [J]. Environ. Toxicol, 2011,26,649-656.
    [14]International Agency for Research on Cancer (IARC). (1990). Chromium, nickel and welding. Monographs on the Evaluation of Carcinogenic Risks to Humans [M]. Vol.49. Lyon, France:Scientific Publications.
    [15]Mendil D, Uluozlu OD, Hasdemir E, Tuzen M, Sari H, Suic-mez M. Determination of trace metal levels in seven fish species in lakes in Tokat [J]. Food Chem,2005,90, 175-179.
    [16]Ahmad MK, Islam S, Rahman S, Haque MR, Islam MM. Heavy metals in water, sediment and some fish of Buriganga river, Bangladesh [J]. Int. J. Environ. Res, 2010,4,321-327.
    [17]Haque MR, Ahmad JU, Chowdhury MDA, Ahmed MK, Rahman MS. Seasonal variation of heavy metals concentration in surface water of the rivers and estuaries of Sundarban mangrove forest [J]. Pollut. Res,2005,24,463-472.
    [18]Mohiuddin KM, Ogawa Y, Zakir HM, Otomo K, Shikazono N. Heavy metals contamination in water and sediments of an urban river in a developing country [J]. Int J Environ Sci. Technol,2011,8,723-736
    [19]De Flora S. Threshold mechanism and site specificity in chromium (VI) carcinogenesis [J]. Carcinogenesis,2000,21:533-41.
    [20]Goodale BC, Walter R, Pelsue SR, Thompson WD, Wise SS, Winn RN, Mitani H, Wise JP Sr.The cytotoxicity and genotoxicity of hexavalent chromium in medaka (Oryzias latipes) cells [J]. Aquat Toxicol,2008,87(1):60-7.
    [21]Lushchak OV, Kubrak OI, Nykorak MZ, Storey KB, Lushchak VI. The effect of potassium dichromate on free radical processes in goldfish:possible protective role of glutathione [J]. Aquat Toxicol,2008,87,108-114.
    [22]Velma V, Paul BT. Chromium-induced biochemical, genotoxic, and histopathologic effects in liver and kidney of goldfish,Carassius auratus [J]. Mutat Res,2010, 698:43-51.
    [23]Ahmad I, Maria VL, Oliveira M, Pacheco M, Santos MA. Oxidative stress and genotoxic effects in gill and kidney of Anguilla anguillaL. exposed to chromium with or without pre-exposure to beta-naphthoflavon [J]. Mutat Res,2006,608, 16-28.
    [24]Lushchak OV, Kubrak OI, Lozinsky OV, Storey JM, Storey KB, Lushchak VI. Chromium(III) induces oxidative stress in goldfish liver and kidney [J]. Aquat Toxicol,2009,93,45-52.
    [25]Li XY, Chung IK, Kim JI, Lee JA. Oral exposure to Microcystis increases activity-augmented antioxidant enzymes in the liver of loach (Misgurnus mizolepis) and has no effect on lipid peroxidation [J]. Comp Biochem Physiol C Toxicol Pharmacol,2005,141:292-6.
    [26]Shi XL, Dalal NS. Evidence for a Fenton-type mechanism for the generation of OH radicals in the reduction of Cr(VI) in cellular media [J]. Arch Biochem Biophys, 1990,281:90-5.
    [27]Sinha S, Mallick S, Misra RK, et al. Uptake and translocation of metals in Spinacia oleraceaL. grown on tannery sludge-amended and contaminated soils:effect on lipid peroxidation, morpho-anatomical changes, and antioxidants. Chemosphere,2007, 67:176-87.
    [28]Vlahogianni T, Dassenakis M, Scoullos MJ, Valavanidis A. Integrated use of biomarkers (superoxide dismutase, catalase, and lipid peroxidation) in mussels Mytilus galloprovincialisfor assessing heavy metals'pollution in coastal areas from the Saronikos Gulf of Greece [J]. Marin Pollut Bull,2007,54:1361-71.
    [29]Almroth BC, Sturve J, Berglund A, Forlin L. Oxidative damage in eelpout (Zoarces viviparus), measured as protein carbonyls and TBARS, as biomarkers [J]. Aquat Toxicol,2005,73:171-80.
    [30]Parvez S, Raisuddin S. Effects of paraquat on the freshwater fish Channa punctatus(Bloch):non-enzymatic antioxidants as biomarkers of exposure [J]. Arch Environ Contam Toxicol,2006,50:392-7.
    [31]Vlahogianni T, Dassenakis M, Scoullos MJ, Valavanidis A. Integrated use of biomarkers (superoxide dismutase, catalase, and lipid peroxidation) in mussels Mytilus galloprovincialisfor assessing heavy metals'pollution in coastal areas from the Saronikos Gulf of Greece [J]. Marin Pollut Bull,2007,54:1361-71.
    [32]Linney E, Upchurch L, Donerly S. Zebrafish as a neurotoxicological model [J]. Neurotoxicol Teratol,2004,26(6):709-18.
    [33]Senger MR, Rico EP, de Bem Arizi M, Rosemberg DB, Dias RD, Bogo MR, Bonan CD. Carbofuran and malathion inhibit nucleotide hydrolysis in zebrafish (Danio rerio) brain membranes [J].Toxicology,2005,212(2-3):107-15.
    [34]Barbazuk WB, Korf I, Kadavi C, Heyen J, Tate S, Wun E, Bedell JA, McPherson JD, Johnson SL. The syntenic relationship of the zebrafish and human genomes [J]. Genome Res,2000,10(9):1351-8.
    [35]Briggs JP. The zebrafish:a new model organism for integrative physiology [J]. Am J Physiol Regul Integr Comp Physiol,2002,282(1):R3-9.
    [36]Craig PM, Wood CM, McClelland GB. Oxidative stress response and gene expression with acute copper exposure in zebrafish (Danio rerio) [J]. Am J Physiol Regul Integr Comp Physiol,2007,293(5):R1882-92.
    [37]Neumann NF, Galvez F. DNA microarrays and toxicogenomics:applications for ecotoxicology [J]? Biotechnol Adv,2002,20(5-6):391-419.
    [38]Silva KT1, Pathiratne A. In vitro and in vivo effects of cadmium on cholinesterases in Nile tilapia fingerlings:implications for biomonitoring aquatic pollution. Ecotoxicology,2008,17,725-731.
    [39]Krumschnabel G, Nawaz M. Acute toxicity of hexavalent chromium in isolated teleost hepatocytes [J]. Aquat Toxicol,2004,70:159-67.
    [40]Shi XL, Dalal NS. Evidence for a Fenton-type mechanism for the generation of OH radicals in the reduction of Cr(VI) in cellular media [J]. Arch Biochem Biophys, 1990,281:90-5.
    [41]Pourahmad J, O'Brien PJ, Jokar F, Daraei B. Carcinogenic metal induced sites of reactive oxygen species formation in hepatocytes [J]. Toxicol In Vitro,2003, 17:803-10.
    [42]Kuykendall JR, Miller KL, Mellinger KN, Cain AV. Waterborne and dietary hexavalent chromium exposure causes DNA-protein crosslink (DPX) formation in erythrocytes of largemouth bass (Micropterus salmoides) [J]. Aquat Toxicol,2006, 78:27-31.
    [43]Li ZH, Li P, Randak T. Effect of a human pharmaceutical carbamazepine on antioxidant responses in brain of a model teleost in vitro:an efficient approach to biomonitoring [J]. J Appl Toxicol,2010,30:644-8.
    [44]Sturve J, Almroth BC, Forlin L. Oxidative stress in rainbow trout (Oncorhynchus mykiss) exposed to sewage treatment plant effluent [J]. Ecotoxicol Environ Saf, 2008,70:446-52.
    [45]Atli G, Alptekin O, Tiikel S, Canli M. Response of catalase activity to Ag+, Cd2+ Cr6+, Cu2+ and Zn2+ in five tissues of freshwater fish Oreochromis niloticus [J]. Comp Biochem Physiol C Toxicol Pharmacol,2006,143,218-224.
    [46]Liu J, Qu W, Kadiiska MB. Role of oxidative stress in cadmium toxicity and carcinogenesis [J]. Toxicol Appl Pharmacol,2009,238,209-214.
    [47]Pretto A, Loro VL, Baldisserotto B, Pavanato MA, Moraes BS, Menezes C, Cattaneo R, Clasen B, Finamor IA, Dressler V. Effects of water cadmium concentrations on bioaccumulation and various oxidative stress parameters in Rhamdia quelen [J]. Environ Contam Toxicol,2011,60,309-318.
    [48]Wang XF, Xing ML, Shen Y, et al. (2006). Oral administration of Cr Ⅵ) induced oxidative stress, DNA damage and apoptotic cell death in mice [J]. Toxicology, 2006,228:16-23.
    [49]Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway [J]. Annu Rev Pharmacol Toxicol,2007, 47:89-116.
    [50]Niture SK, Jain AK, Jaiswal AK. Antioxidant-induced modification of INrf2 cysteine 151 and PKC-delta-mediated phosphorylation of Nrf2 serine 40 are both required for stabilization and nuclear translocation of Nrf2 and increased drug resistance [J]. J Cell Sci,2009,122(Pt 24):4452-64.
    [51]Yoder JA, Nielsen ME, Amemiya CT, Litman GW. Zebrafish as an immunological model system [J]. Microbes Infect,2002,4:1469-78.
    [52]Roh YS, Cho A, Islam MR, Cho SD, Kim J, Kim JH, Lee JW, Lim CW, Kim B.3,3'-Diindolylmethane induces immunotoxicity via splenocyte apoptosis in neonatal mice [J]. Toxicol Lett,2011,206(2):218-28.
    [53]Battaglia CL1, Gogal RM Jr, Zimmerman K, Misra HP. Malathion, lindane, and piperonyl butoxide, individually or in combined mixtures, induce immunotoxicity via apoptosis in murine splenocytes in vitro [J]. Int J Toxicol,2010,29(2):209-20.
    [1]Halliwell B, Gutteridge J. Free radicals in biology and medicine, fourth ed. Clarendon, Oxford, UK,2007.
    [2]Papas AM. Antioxidant status, diet, nutrition and health [J]. CRC Press,1999, Boca Laton, USA.
    [3]Prior RL, Wu XL, Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements [J]. J Agric Food Chem,2005,53:4290-4302.
    [4]Cao G, Alessio HM, Cutler RG. Oxygen-radical absorbance capacity assay for antioxidants [J]. Free Radic Biol Med,1993,14 (3):303-311.
    [5]Cao G, Verdon CP, Wu AH, et al. Automated assay of oxygen radical absorbance capacity with the COBAS FARAⅡ [J]. Clin Chem,1995,41 (12 Pt 1):1738-1744.
    [6]Ou BX, Hampsch-Woodill M, Prior RL. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe [J]. J Agric Food Chem,2001,49:4619-4626.
    [7]Togashi DM, Szczupak B, Ryder AG, et al. Investigating tryptophan quenching of fluorescein fluorescence under protolytic equilibrium [J]. J Phys Chem A,2009,113: 2757-2767.
    [8]Posokhov YO, Kyrychenko A, Ladokhin AS. Steady-state and time-resolved fluorescence quenching with transition metal ions as short-distance probes for protein conformation [J]. Anal Biochem,2010,407:284-286.
    [9]Nkhili E, Brat P. Reexamination of the ORAC assay:effect of metal ions[J]. Anal Bioanal Chem,2011,400:1451-1458.
    [10]Huang D, Ou B, Hampsch-Woodill M., et al. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format [J]. J Agric Food Chem,2002,50(16):4437-4444.
    [11]Naguib YM. A fluorometric method for measurement of oxygen radical-scavenging activity of water-soluble antioxidants [J]. Anal Biochem,2000,284:93-8.
    [12]Naguib Y M. Antioxidant activities of astaxanthin and related carotenoids [J]. J Agric Food Chem,2000,48,1150-4.
    [13]Niki E. Assessment of antioxidant capacity in vitro and in vivo [J]. Free Radic Biol Med,2010,49:503-515.
    [14]Niki E, Omata Y, Fukuhara A et al. Assessment of radical scavenging capacity and lipid peroxidation inhibiting capacity of antioxidant [J]. J Agric Food Chem,2008, 56:8255-8260.
    [15]Litescu SC, Eremia S, Radu GL. Methods for the determination of antioxidant capacity in food and raw materials [J]. Adv Exp Med Biol,2011,698:241-249.
    [16]Kohri S, Fujii H, Oowada S, et al. An oxygen radical absorbance capacity-like assay that directly quantifies the antioxidant's scavenging capacity against AAPH-derived free radicals [J]. Anal Biochem,2009,386:167-171.
    [17]Endo N, Oowada S, Sueishi Y, et al. Serum hydroxyl radical scavenging capacity as quantified with iron-free hydroxyl radical source [J]. J Clin Biochem Nutr,2009,45: 193-201.
    [18]Nakajima A, Matsuda E, Masuda Y, et al. Characteristics of the spin-trapping reaction of a free radical derived from AAPH:further development of the ORA-ESR assay [J]. Anal Bioanal Chem,2012,403:1961-1970.
    [19]Lopez-Alarcon C, Lissi E. A novel and simple ORAC methodology based on the interaction of pyrogallol red with peroxyl radicals [J]. Free Radical Research,2006, 40(9),979-985.
    [20]Atala E, Vasquez L, Speisky H, et al. Ascorbic acid contribution to ORAC values in berry extracts:An evaluation by the ORAC-pyrogallol red methodology [J]. Food Chemistry,2009,113:331-335.
    [21]Bangaore DV, McGlynn W, Scott DD. Effect of β-cyclodextrin in improving the correlation between lycopene concentration and ORAC values [J]. J A qric Food Chem,2005,53:1878-1883.
    [22]Mercader-Ros MT, Lucas-Abellan C, Fortea MI, et al. Effect of HP-β-cyclodextrins complexation on the antioxidant activity of flavonols [J]. Food Chem,2010,118: 769-773.
    [23]Huang D, Ou B, Hampsch-Woodill M, et al. Development and validation of oxygen radical absorbance capacity assay for lipophilic antioxidants using randomly methylated beta-cyclodextrin as the solubility enhancer [J]. J Agric Food Chem, 2002,50:1815-1821.
    [24]Kim H, Choi J, Jung S. Inclusion complexes of modified cyclodextrins with some flavonols [J]. J Incl Phenom Macrocycl Chem,2009,64:43-47.
    [25]Sueishi Y, Ishikawa M, Yoshioka D, et al. Oxygen radical absorbance capacity (ORAC) of cyclodextrin-solubilized flavonoids, resveratrol and astaxanthin as measured with the ORAC-EPR method [J]. J Clin Biochem Nutr,2012,50:127-32.
    [26]Folch-Cano C, Jullian C, Speisky H, et al. Antioxidant activity of inclusion complexes of tea catechins with β-cyclodextrins by ORAC assays [J]. Food Res Int,2010,43:2039-2044.
    [27]Ou B, Hampsch-Woodill M, Flanagan J, et al. Novel fluorometric assay for hydroxyl radical prevention capacity using fluorescein as the probe [J]. J Agric Food Chem. 2002,50 (10):2772-7.
    [28]Schauss AG, Wu X, Prior RL, Ou B et al. Antioxidant capacity and other bioactivities of the freeze-dried Amazonian palm berry, Euterpe oleraceae mart. (acai) [J]. J Agric Food Chem,2006,54(22):8604-10.
    [29]Zhang L, Huang D, Kondo M, et al. Novel High-Throughput Assay for Antioxidant Capacity against Superoxide Anion [J]. J Agric Food Chem,2009,57 (7):2661-7.
    [30]Prior RL, Hoang H, Gu L, et al. Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORACFL) of plasma and other biological and food samples [J]. Journal of Agricultural and Food Chemistry,2003, 51 (11):3273-3279.
    [31]Fernandez-Pachon MS, Villano D, Troncoso AM. Antioxidant capacity of plasma after red wine intake in human volunteers [J]. Journal of Agricultural and Food Chemistry,2005,53 (12),5024-5029.
    [32]Bank G, Schauss A. Antioxidant testing an ORAC update [J/OL]. Nutraceuticals World,2004.
    [33]Nerin C, Tovar L, Djenane D, et al. Stabilization of beef meat by a new active packaging containing natural antioxidants [J]. J Agric Food Chem,2006, 54(20):7840-7846.
    [34]Niki E, Fukuhara A, Omata Y, et al. Antioxidant capacity of BO-653, 2,3-dihydro-5-hydroxy-4,6-di-tert-butyl-2,2-dipentylbenzofuran, and uric acid as evaluated by ORAC method and inhibition of lipid peroxidation [J]. Bioorganic & Medicinal Chemistry Letters,2008,18:2464-2466.
    [35]Bentayeb K, Vera P, Rubio C,et al. Adaptation of the ORAC assay to the common laboratory equipment and subsequent application to antioxidant plastic films [J]. Anal Bioanal Chem.,2009,394 (3):903-10.
    [36]Alberti-Fidanza A, Burini G, Perriello G. Total antioxidant capacity of colostrum, and transitional and mature human milk [J]. The Journal of Maternal Fetal and Neonatal Medicine,2002,11(4):275-279.
    [37]Saenz AT, Elisia I, Innis SM, et al. Use of ORAC to assess antioxidant capacity of human milk [J]. Journal of Food Composition and Analysis,2009,22(7-8):694-698.
    [38]Prior RL, Cao G. In vivo total antioxidant capacity:comparison of different analytical methods [J]. Free Rad Biol Med,1999,27(11-12):1173-1181.
    [39]Ishimoto H, Tai A, Yoshimura M, et al. Antioxidative Properties of Functional Polyphenols and Their Metabolites Assessed by an ORAC Assay [J]. Biosci Biotechnol Biochem,2012,76:395-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700