用户名: 密码: 验证码:
新型偶氮苯功能化聚合物的合成及其光学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
偶氮苯聚合物既具有偶氮苯基团的光致顺反异构化活性,又具有高分子材料优异的力学性能和加工性能,在液晶材料、光信息存储材料及非线性光学材料等许多领域都具有广泛的应用,近年来引起了研究工作者极大的关注。因此,探索并设计具有新颖结构和优异性能的偶氮苯聚合物成为高分子化学和材料领域的重要课题之一。
     本论文主要从聚合物合成设计的角度出发,设计并合成了结构新颖的偶氮苯聚合物,研究聚合物独特的光学性能。研究内容具体包括:
     (1).合成了新型含偶氮苯基团的二硫代氨基甲酸酯,苯乙基-N, N’-(4-偶氮苯基)苯基二硫代氨基甲酸酯(PPADC)。将其作为RAFT试剂,成功用于丙烯酸甲酯的RAFT聚合,聚合过程显示出“活性”/可控的特征:聚合呈现一级动力学特征,聚合物分子量随转化率的提高而线性增加,且聚合物分子量分布指数较小。然而,由于PPADC中N原子孤对电子与硫羰基相互作用依旧很强,降低了二硫键活性,使其在类似条件下不能对苯乙烯单体实现活性可控聚合。同时,结果显示PPADC可以作为ATRP假卤素引发剂用于引发苯乙烯的聚合,实现了对聚合过程的控制。对所获得端基含二硫代氨基甲酸酯结构片段的聚合物利用核磁、紫外和红外等手段进行了表征,证实了这些过程的活性特征。另外,还考察了端基含偶氮苯聚合物(PS和PMA)溶液的光致异构化性能。经测定聚合物PS,PMA和PPADC的在氯仿溶液中的光致异构化速率常数kexp分别为0.00733 s-1,0.00515 s-1和0.00651 s-1,聚合物链对偶氮苯光致异构化速率没有明显的影响。
     (2).首先利用RAFT聚合技术,制备了端基含α-炔基和偶氮苯基团的聚苯乙烯(PS)和端基含ω-叠氮基团的聚醋酸乙烯酯(PVAc);随后,用Cu(Ι)催化体系,进行聚合物端基上叠氮和炔基的“Click”化学反应,成功合成了分子量可控的嵌段共聚物PS-b-PVAc,实现了链段中间含偶氮苯功能基团聚合物的制备。经过GPC,核磁谱图和红外谱图对制备的嵌段共聚物PS-b-PVAc的结构进行了证实。得到的嵌段聚合物具有高的偶氮苯端基功能化度,窄的分子量分布。对含该嵌段共聚物PS-b-PVAc光致反-顺异构化和热致顺-反异构化行为进行了研究,发现聚合物的光致反-顺异构化速率常数(kexp)和热致顺-反异构化速率常数(kH)分别为0.0027 s-1,2.2×10-4 s-1,其中嵌段共聚物的光致反-顺异构化速率比均聚物PS (kexp= 0.0047 s-1)的速率慢很多,嵌段共聚物中的偶氮苯结构易受到聚合物链的阻碍而影响异构化速率。
     (3).利用偶氮苯马来酰亚胺(MAB)和苯乙烯(St)为交替共聚单体,α-二硫代萘甲酸异丁腈酯(CPDN)为RAFT链转移试剂,AIBN为引发剂,在1, 4-二氧六环溶液中进行RAFT聚合,合成了光响应的偶氮苯交替共聚物聚(偶氮苯马来酰亚胺-alt-苯乙烯) (PMSts),聚合过程显示出“活性”/可控的特征。利用红外、紫外和核磁等测试手段,对PMSt进行了表征,证实了聚合物的交替结构。另外,在聚合体系中加入二乙烯基单体,4, 4'-双马来酰亚胺二苯甲烷,制备了高分子量的超支化偶氮苯共聚物。所有偶氮苯聚合物都能溶解于大部分有机溶剂,成膜性好,具有高的玻璃化转变温度(Tg = 174 ~ 250 oC)以及良好的耐热性(Td >320 oC)。得到的偶氮苯交替共聚物PMSt可以用于表面起伏光栅的制备。其衍射效率最高达到3.4 %。此外,聚合物形成的光栅具有高的热稳定,能在150 oC环境中保持不变,高于玻璃化转变温度时可以顺利擦除。
     (4).成功合成了新型四唑偶氮苯单体MACA,并利用RAFT聚合技术成功合成了分子量可控的均聚物(PMACA)和嵌段聚合物(PMACA-b-PMMA)。利用核磁共振氢谱、凝胶色谱、红外谱图等测试方法对聚合物进行结构表征,表明聚合物分子量可控,较低的分子量分布指数(Mw/Mns <1.30)。同时聚合物的热性能和结晶性能通过差示扫描量热法(DSC)和广角X射线衍射(WAXD)进行了研究,结果表明偶氮苯聚合物具有较好热稳定性(Tg = 133-141 oC),并以无定形态存在。此外偶氮苯嵌段共聚物在365 nm光照下异构化较为特殊:光照前期,偶氮苯反式含量略有增加,可能由于四唑基团对偶氮苯基团有一定的影响。光照三分钟后,反式结构吸收峰开始减弱,其反式结构向顺式转变,同时反式偶氮苯吸收峰发生红移现象。循环伏安法也能发现光照后偶氮苯的氧化峰发生了明显的位移,偶氮苯聚合物溶液的氧化还原行为受紫外光照射调控。
     (5).利用“Cilck”化学技术成功合成了主链含三氮唑的偶氮苯聚合物PEAPA,利用核磁共振、凝胶色谱(GPC)、红外光谱仪器等方法对聚合物进行了结构表征。获得的聚合物PEAPA相对于不含杂环的主链偶氮苯聚合物PDHA (Tg = 109 oC, Td = 278 oC),具有更好的耐热性和热稳定性,如PEAPA1:Tg = 134 oC, Td = 357 oC,表明三氮杂环基团对偶氮苯聚合物的热稳定有很大的提高。通过差示扫描量热法(DSC)和广角X射线衍射(WAXD)显示聚合物具有一定的结晶性能。此外,研究了该偶氮苯聚合物在DMF溶液中的光致顺反异构化及其热回复行为。
     (6).高温下利用1, 3-偶极环加成聚法制备出高分子量的主链型偶氮苯聚合物PEHPA2。聚合物PEHPA2显示出良好的溶解性和成膜性。利用核磁对聚合物进行了结构表征,结果发现偶氮苯聚合物PEHPA2中含有78 %的1, 4-式和22 %的1, 5-式两种三唑环的区域异构体,另外,偶氮苯聚合物PEHPA2的热稳定达330 oC,表明三唑杂环基团引入到聚合物主链,可提高偶氮苯聚合物的耐热性。同时研究了偶氮苯聚合物PEHPA2的光致异构化性能,其一阶速率常数ke为0.010 s-1。此外,聚合物PEHPA2旋涂成膜,激光雕刻成表面起伏光栅(SRG),其槽深约74 nm,衍射效率约0.82 %。
Polymers bearing azobenzene moieties (azobenzene polymers) combine the unique optical trans-cis-trans isomerization behavior of azobenzene and the good processability and mechanical properties of polymer materials. These azobenzene polymers can be potentially applied in fascinating photo-responsive variations, such as liquid crystal displays, optical data storage, nonlinear optical materials and so on, which have attracted increasing attention in the past few years. Therefore, develop and design of new azobenzene polymers with the novelty structure and excellent optical activity has been an important assignment for polymer chemistry.
     In this thesis, we designed and synthesized a series of azobenzene polymers with the novel structures. Their trans-cis isomerization and so caused properties change were investigated. The detailed researches were summarized as the following:
     (1) A novel azobenzene-containing dithiocarbamate, 1-phenylethyl N, N’-(4-phenylazo)phenylphenyldithiocarbamate (PPADC), was successfully synthesized. PPADC was used as RAFT agent, the reversible addition-fragmentation chain transfer (RAFT) polymerization was well controlled in the case of MA. However, there was the slightly ill-controlled in the case of St, which was affected by a less reactive double bond due to the delocalization of the nonbonded electron pair on the nitrogen with the thiocarbonyl group. Interestingly, the polymerization of St could be well-controlled when using PPADC as the initiator via atom transfer radical polymerization (ATRP) technique. The obtained polymer was characterized by 1H NMR analysis, ultraviolet absorption, FT-IR spectra analysis and chain-extension experiments. The polymerizations by RAFT and ATRP system were both well controlled. Furthermore, the photoresponsive behaviors of azobenzene-terminated poly(methyl acrylate) (PMA) and polystyrene (PS) were similar to PPADC. The isomerization rate constants (kexps) of PPADC, PMA and PS were 0.00651 s-1, 0.00515 s-1 and 0.00733 s-1, respectively.
     (2) The well-defined block copolymers, poly(vinyl acetate)-b-poly(styrene)s (PS-b-PVAc) containing middle azobenzene moiety were successfully synthesized by a combination of RAFT and“Click”chemistry. This novel method provided an efficient way to prepare middle functionalized block copolymer: firstly,α-alkyne and azobenzene chromophore terminated poly(styrene) (PS), andω-azido-terminated poly(vinyl acetate) (PVAc) were designed via RAFT technology. Secondly,‘‘Click’’reaction was performed using the combination of CuBr and PMDETA as catalyst system. Thus, well-controlled block copolymer poly(vinyl acetate)-b-poly(styrene) (PS-b-PVAc) was obtained. Block copolymers (PS-b-PVAc) were demonstrated by GPC, 1H NMR, FT-IR spectra and differential scanning calorimetry (DSC) analysis. Furthermore, the trans-cis-trans isomerization of PS-b-PVAc was also observed in chloroform solution. The ke and kH of PS-b-PVAc was 0.0027 and 2.2×10-4 s-1, respectively.
     (3) The well-defined photo-responsive alternating copolymer containing azobenzene chromophore, poly(4-(N-maleimido)azobenzene-alt-styrene) (PMSt) was successfully synthesized from the copolymerization of 4-(N-maleimido)azobenzene (MAB) and styrene (St) via RAFT polymerization using CPDN as the RAFT agent and AIBN as an initiator in 1,4-dioxane solution. The copolymerization was well controlled, which showed polymers with controlled molecular weight and narrow molecular weight distribution. The alternating structure of the copolymers PMSts were characterized by 1H NMR, 13C NMR, UV-vis absorption and FT-IR. Furthermore, The highly branched azobenzne copolymers with high molecular weight were successfully obtained after adding N, N-4,4-diphenylmethyenebismaleimide (BMI) into the polymerization system. The copolymers showed high glass transition temperature (Tg = 174 ~ 250 oC) and decomposition temperature (Tg = 174 ~ 250 oC). On irradiation with a linearly polarized Kr+ laser beam, the diffraction efficiency of SRG decreased along with increasing the molecular weight of polymer film. For the same polymer, film with high thickness showed high SRG diffraction efficiency. The formed SRG on PMSt1 film was stable even at 150 oC due to the high Tg of PMSt1.
     (4) A novel methacrylate monomer containing azobenzene chromophore and tetrazole moiety, 4′-(2-methacryloxyethyl)methylamino-4- (5-chlorotetrazol-1-yl)azobenzene (MACA), was synthesized and polymerized to form homopolymers (PMACA) and block copolymers (PMMA-b-PMACA) via reversible addition-fragmentation chain transfer (RAFT) polymerization. The structures of these polymers were characterized by 1H NMR spectroscopy and FT-IR spectra, and gel permeation chromatography (GPC) characterization, which indicated that polymers with controlled molecular weights and narrow molecular weight distributions (Mw/Mns <1.30). Differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD) results indicated these polymers were amorphous. Furthermore, the photoisomerization of azobenzene polymers was investigated, it should be indicated that in the beginning period of irradiation (3 minutes), the absorption (430 nm) of trans-form azobenzene slightly increased upon UV irradiation, which may due to the bulky tetrazole substitution on the azobenzene. After UV irradiation of 3 minutes, the trans- form content of azobenzene was increased irradiation time of 365 nm UV light. Furthermore, during the tran-cis isomerization, the absorption peak at 430 nm was a“red-shift”peak from 413 to 513 nm. The electrochemical behavior of polymers in solution before and after UV irradiation was investigated using the cyclic voltammetry (CV), the oxidation peak in CV curve obviously shifted to 0.6V. The electrochemical behavior can be adjusted by the UV irradiation, which may find their applications in photo electronic materials.
     (5) A novelα-azide andω-alkyne A-B type azobenzene monomer, 3'-enthynylphenyl[4-(4-azidobutoxy)phenyl]azobenzene (EAPA), was synthesized and used to generate a novel polymer via step-growth polymerization using“Click”chemistry. The structure of the resultant main-chain azobenzene polymer, PEAPA, was characterized by GPC, 13C-NMR, ultraviolet and FT-IR spectra. Thermal stability and crystallinity of PEAPA powder was studied by TGA and WAXD. The obtained linear main-chain azobenzene polymer PEAPA containing 1, 2, 3-triazol group showed a good thermal stability and crystallinity, for example: PEAPA1, Tg = 134 oC, Td = 357 oC, which was due to the introduction of the triazole ring in the polymer backbone. Comparing the rate constant of trans-cis photoisomerization of monomer EAPA (ke = 0.022 s-1), the corresponding value of PEAPA was much slower (ke = 0.0088 s-1). The reason was considered due to sterically hindering effect of the main-chain configuration and the triazole group in PEAPA2. However, the cis-trans thermal isomerization behavior of PEAPA2 (7.4×10-4 s-1) was similar to EAPA’s (5.4×10-4 s-1).
     (6) The main-chain azobenzene polymer PEHPA2 was obtained through thermal 1, 3-dipolar cycloaddition technique. All of these polymers showed high thermally resistance (Td above 330 oC). The polymer PEHPA2 showed good solubility in common organic solvents due to the formation of regiorandom structures, and the 1,4-regioisomeric ratios (F1,4, F1,4’) of PEHPA2 were calculated to be 78 % from NMR spectrum of PEHPA2. The photo-induced trans-cis isomerization of the polymers in CHCl3 solution was examined, and the photoisomerization rate constant was 0.010 s-1. The film prepared from PEHPA2 showed efficient surface relief gratings (SRGs) formation ability. The diffraction efficiency from SRG with film thickness of 465 nm was measured to be about 0.82 %.
引文
1. Zimmerman, G.; Chow, L. Y.; Paik, U. J. The Photochemical Isomerization of Azobenzene. J. Am. Chem. Soc., 1958, 80, 3528-3534.
    2. Kumar, G.; Neckers, D. Photochemistry of Azobenzene-Containing Polymers. Chem. Rev., 1989, 89, 1915-1937.
    3. Rau, H.“Photoisomerization of Azobenzenes,”in Photochemistry an Photophysics, Rabeck, F. J. ed. (CRC, Boca Raton, Fla., 1990), Vol. 2, Chap. 4, 119.
    4.樊美公.光化学基本原理与光子学材料科学,科学化学出版社, 2001, 173-180.
    5. Delange, J. J.; Robertson, J. M.; Woodward, I. X-Ray Crystal Analysis of Trans-Azobenzene. Proc. R. Soc. London, Sect. A, 1939, 171, 398-410.
    6. Zhao, Y.; Ikeda, T. Smart Light-Responsive Materials: Azobenzene-Containing Polymers and Liquid Crystals. Y. Zhao, ed. (A John Wiley & Sons, Inc., 2009), Chap. 1, 1-27.
    7. Rau H. Radiationless Deactivation of Azo Compounds and Light Fastness of Azo Dyes. Berichte der Bunsen-Gesellschaft., 1968, 72(3), 408–414.
    8. Altomare, A.; Ciardelli, F.; Tirelli, N.; Solaro, R. 4-Vinylazobenzene: Polymerizability and Photochromic Properties of Its Polymers. Macromolecules, 1997, 30, 1298-1303.
    9. Naito, T.; Horie, K.; Mita, I. Photochemistry in Polymer Solids. The Effects of the Size of Reaction Groups and the Mode of Photoisomerization on Photochromic Reactions in Polycarbonate Film. Macromolecules, 1991, 24, 2907-2911.
    10. Gegiou, D.; Muszkat, K. A.; Fischer, E. Temperature Dependence of Photoisomerization. V. Effect of Substituents on the Photoisomerization of Stilbenes and Azobenzenes. J. Am. Chem. Soc., 1968, 15, 3907-3918.
    11. Ho, C. H.; Yang, K. N.; Lee, S. N. Mechanistic Study of Trans-Cis Isomerization of the Substituted Azobenzene Moiety Bound on a Liquid-Crystalline Polymer. J. Polym. Sci. Part A: Polym. Chem., 2001, 39, 2296-2307.
    12. Natansohn, A.; Rochon, P. Photoinduced Motions in Azo-Containing Polymers, Chem. Rev., 2002, 102, 4139-4175.
    13. Weigert, F. Verh. Dtsch. Phys. Ges., 1919, 21, 485.
    14. Neporent, B. S.; Stolbova, O. V. Opt. Spectrosc., 1961, 10, 146.
    15. Todorov, T.; Tomova, N.; Nikolova, L. High-Sensitivity Material with Reversible Photo-Induced Anisotropy. Opt. Commun., 1983, 47(2), 123-126.
    16. Natansohn, A.; Rochon, P.; Pezolet, M.; Audet, P.; Brown, D.; To, S. Azo Polymers for Reversible Optical Storage. Macromolecules, 1994, 27(9): 2580-2585.
    17. Holme, N. C. R.; Ramanujam, P. S.; Hvilsted. Optical Write, Read, and Erase Cycles in an Azobenzene SidechainLiquid-Crystalline Polyester. Opt. Lett., 1996, 21, 902-904.
    18.苏育志,梁兆熙.光致变色液晶聚合物的光致再取向性能研究进展.感光科学与光化学, 2002, 20, 292-302.
    19. Kim, D. Y.; Li, L.; Kumar, J. Laser-Induced Holographic Surface Relief Gratings on Nonlinear OpticalPolymer Films. Appl. Phys. Lett., 1995, 66, 1166-1168.
    20. Rochon, P.; Batalla, E.; Natansohm, A. Optically Induced Surface Gratings on Azoaromatic Polymer Films. Appl. Phys. Lett., 1995, 66, 136-138.
    21. Kucharski, S.; Janik, R.; Szkodzinska, J. Heteroaromatic Azo-Sulfonamide Monolayers: Isomerisation and Photocurrent Generation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 198-200, 359-365.
    22. He, Y. N.; Wang, X. G.; Zhou, Q. X. Epoxy-Based Azo Polymers: Synthesis, Characterization and Photoinduced Surface-Relief-Gratings. Polymer, 2002, 43, 7325-7333.
    23. Mai, X.; Moshrefzadeh, R.; Gibson; U. J. Simple Versatile Method for Fabricating Guided-wave Gratings. Appl. Opt., 1985, 24, 3155-3161.
    24. Kumar, J.; Li, L.; Jiang, X. L.; Kim, D. Y.; Lee, T. S.; Tripathy, S. K. Nano-Fabrication of Surface Relief Gratings on Azo Dye Films Utilizing Interference of Evanescent Waves on Prism. Appl. Phys. Lett., 1998, 72, 2096-2098.
    25. Barrett, C. J.; Rochon, P.; Natansohn, A. Azobenzene-Containing Supramolecular Polymer Films for Laser-Induced Surface Relief Gratings. Chem. Phys.,1998, 109, 1505-1515.
    26. Pedersen, T. G.; Johansen, P. M. Mean-Field Theory of Optical Storage in Liquid Crystalline Side-Chain Polymers. Opt. Mater., 1998, 9(1-4), 212-215.
    27.谢仲辉,黄淳,黄新邦等.偶氮苯聚合物的光致异构与分子链段的取向效应.光子学报, 1998, 27(8), 699-703.
    28. Deng, Y.; Li, N.; He, Y.; Wang, X. Hybrid Colloids Composed of Two Amphiphilic Azo Polymers: Fabrication, Characterization, and Photoresponsive Properties. Macromolecular, 2007, 40, 6669-6678.
    29. Li, Y.; He, Y.; Tong, X.; Wang X. Photoinduced Deformation of Amphiphilic Azo Polymer Colloidal Spheres. J. Am. Chem. Soc., 2005, 127, 2402-2403.
    30. Chen, J. P.; Natansohn, A. Synthesis and Characterization of Novel Carbazole-Containing Soluble Polyimides. Macromolecular, 1999, 32, 3171-3177.
    31. Wu, Y.; Natansohn, A.; Rochon, P. Photoinduced Birefringence and Surface Relief Gratings in Polyurethane Eastomers with Azobenzene Chromophore in the Hard Segment. Macromolecules, 2004, 37, 6090-6095.
    32. Liu, B.; Wang, M.; He, Y.; Wang, X. Duplication of Photoinduced Azo Polymer Surface-Relief Gratings through a Soft Lithographic Approach. Langmuir, 2006, 22, 7405-7410.
    33. Wu, L.; Natansohn, A.; Rochon, Paul. Photoinduced Birefringence and Surface Relief Gratings in Novel Polyurethanes with Azobenzene Groups in the Main Chain. Macromolecules, 2001, 34, 7822-7828.
    34. Rochon, P.; Gosselin, J.; Natansohn, A.; Xie, S. Optically Induce and Erased Birefringence and Dichroism in Azoaromatic Polymer, Appl. Phys. Lett., 1992, 60, 4-5.
    35. Natansohn, A.; Rochon, P.; Gosselin, J.; Xie, S. Azo Polymers for Reversible Optical Storage. Macromolecules, 1992, 25, 2268-2273.
    36. Ho, M. S.; Natansohn, A.; Rochon, P. Azo Polymers for Reversible Optical Storage. 7. The Effect of the Size of the Photochromic Groups. Macromolecules, 1995, 28, 6124-6127.
    37. Chen, J. P.; Labarthet, F. L.; Natansohn, A.; Rochon, P. Highly Stable Optically Induced Birefringence and Holographic Surface Gratings on a NewAzocarbazole-Based Polyimide. Macromolecules, 1999, 32, 8572-8579.
    38. Christopher, J.; Barrett; Almeria, L.; Natasohn. A. Mechanism of Optically Inscibed High-Efficiency Diffraction Gratings kin Azo Polymer Films. J. Phys. Chem., 1996, 100, 8836-8842.
    39. Priimagi, A.; Lindfors, K.; Kaivola, M.; Rochon, P. Efficient Surface-Relief Gratings in Hydrogen-Bonded Polymer?Azobenzene Complexes. ACS Applied Materials & Interfaces, 2009, 1, 1183-1189.
    40. Caravalho, L. L.; Borges, T. F. C.; Cardoso, M. R.; Mendonca, C. R.; Balogh, D. T. Molecular Weight Effect on the Photoinduced Birefringence and Surface Relief Rratings Formation of a Methacrylate Azopolymer. Europ. Polym. J., 2006, 42, 2589-2595.
    41. Kim, M.; Seo, E.; Vak, D.; Kim, D. Photodynamic Properties of Azobenzene MolecularFilms with Triphenylamines. Chem. Mater., 2003, 15, 4021-4027.
    42. Fukuda, T.; Matsuda, H.; Shiraga, T.; Kimura, T.; Kato, M.; Viswanathan, N. K.; Kumar, J.; Tripathy, S. K. Photofabrication of Surface Relief Grating on Films of Azobenzene Polymer with Different Dye Functionalization. Macromolecules, 2000, 33, 4220-4225.
    42.苏育志,牛永平,梁兆熙.光致变色聚合物的光学性能与研究.高分子材料科学与工程, 2003, 19, 57-60.
    43. Walker, B. R.; Audorff, H.; Kador, L.; Schmido, H. W. Synthesis and Structure–Property Relations of a Seriesof Photochromic Molecular Glasses for Controlled and Efficient Formation of Surface Relief Nanostructures. Adv. Funct. Mater., 2009, 19, 2630-2638.
    44. Che, P. C.; He, Y. N.; Wang, X. G. Hyperbranched Azo-Polymers Synthesized by Azo-Coupling Reaction of an AB2 Monomer and Postpolymerization Modification. Macromolecules, 2005, 38, 8657-8663.
    45. Ishow, E.; Lebon, B.; He, Y. N.; Wang, X. G.; Bouteiller, L.; Galmiche, L.; Nakatani, K. Structural and Photoisomerization Cross Studies of Polar Photochromic Monomeric Glasses Forming Surface Relief Gratings. Chem. Mater., 2006, 18(5), 1261-1267.
    46. Gao, J.; He, Y. N.; Xu, H. P.; Song, B. Zhang, X.; Wang, Z. Q.; Wang, X. G. Azobenzene-Containing Supramolecular Polymer Films for Laser-Induced Surface Relief Gratings. Chem. Mater., 2007, 19, 14-17.
    47. Wang, D.; Ren, H.; Wang, X. Q.; Wang, X. Amphiphilic Diblock Copolymers Functionalized with Strong Push-Pull Azo Chromophores: Synthesis and Multi-Morphological Aggregation. Macromolecules, 2008, 41, 9382-9388.
    48. Zhao, Y.; He, J. Azobenzene-Containing Block Copolymers: the Interplay of Light and Morphology Enables New Functions. Soft Matter, 2009, 5, 2686-2693.
    49. Lagugne, F.; Buffeteau, T.; Sourisseau, C. Analyses of the Diffraction Efficiencies, Birefringence, and Surface Relief Gratings on Azobenzene-Containing Polymer Films. J. Phys. Chem. B, 1998, 102, 2654-2662.
    50. Altomare, A.; Ciardelli, F.; Solaro, R.; Hvilsted, S.; Ramanujam, P. S. Holographic Gratings in Azobenzene Side-Chain Polymethacrylates, Macromolecules, 1999, 32, 448-454.
    51. Gao, J.; He, Y.; Liu, F.; Zhang, X. Wang, Z. Wang, X. Azobenzene-Containing Supramolecular Polymer Films for Laser-Induced Surface Relief Gratings. Chem. Mater., 2007, 19, 3877-3881.
    52. Gao, J.; He, Y.; Xu, H.; Song, B.; Zhang, X.; Wang, Z.; Wang, X. Azobenzene-Containing Supramolecular Polymer Films for Laser-Induced Surface Relief Gratings. Chem. Mater., 2007, 19, 14-17.
    53. Zhou, J. L.; Shen, J.; Yang, J. J.; Ke, Y.; Wang, K. Y.; Zhang, Q. J. Fabrication of a Pure Polarization Grating in a Cross-Linked Azopolymer by Polarization-Modulated Holography. Optics Letters, 2006, 31, 1370-1372.
    54. Zhou, J.; Yang, J.; Ke, Y.; Shen, J.; Zhang, Q.; Wang, K. Fabrication of Polarization Grating and Surface Relief Grating in Crosslinked and Non-Crosslinking Azopolymer by Polarization Holography Method. Opt. Mater., 2008, 30, 1787-1795.
    55. Zettsu, B. N.; Ogasawara, T.; Mizoshita, N.; Nagano, S.; Seki, T. Photo-Triggered Surface Relief Grating Formation in Supramolecular Liquid Crystalline Polymer Systems with Detachable Azobenzene Units. Adv. Mater., 2008, 20, 516-521.
    56. Goldenberg, L. M.; Kulikovsky, L.; Kuikikovskab, O.; Stump, J. New Materials with Detachable Azobenzene: Effective, Colourless and Extremely Stable Surface Relief Gratings. J. Mater. Chem., 2009, 19, 8068-8071.
    57. Liu, B.; Wang, M.; He, Y.; Wang, X. Duplication of Photoinduced Azo Polymer Surface-Relief Gratings through a Soft Lithographic Approach. Langmuir, 2006, 22, 7405-7410.
    58. Goldenberg, L. M.; Kulikovsky, L.; Kuikikovskab, O.; Stump, J. Extremely Hhigh Patterning Efficiency in Easily Made Azobenzene-Containing Polymer films. J. Mater. Chem., 2009, 19, 6103-6105.
    59. Chen, X.; Liu, B. Zhang, H.; Guan, S.; Zhang, J.; Zhang, W.; Chen, Q.; Jiang, Z.; Guiver, M. D. Fabrication of Fluorescent Holographic Micropatterns Based on Azobenzene-Containing Host-Guest Complexes. Langmuir, 2009, 25, 10444-10446.
    60. Kim, D. Y.; Tripathy, S. K.; Li, L.; Kumar, J. Laser-Induced Holographic Surface Relief Gratings on Nonlinear Optical Polymer Films. Appl. Phys. Lett., 1995, 66, 1166-1168.
    61. Motschmann, H. R.; Penner, T. L.; Armstrong, N. J. et al. Additive Second Order Nonlinear Susceptibilities in Langmuir-Blodgett Multibilayers: Testing the Oriented Gas Model. J. Phys. Chem., 1993, 97, 3933-3936.
    62. Yesodhaa, S. K.; Pillaia, C. K. S.; Tsutsumi, N. Stable Polymeric Materials for Nonlinear Optics: a Review Based on Azobenzene Systems. Progress in Polymer Science, 2004, 29, 45-74.
    63. Wang, X. G.; Chen, J.; Martunlcakul, S. et al. Epoxy-Based Noonlinear Optical Polymers Functionalized with Tricyanovinyl Chromophores. Chem. Mater., 1993, 9, 45-50.
    64. Yin, S. Xu, H.; Su, X. Li, G.; Song, Y.; Lam, J.; Tang, B. Optical-Limiting and Nonlinear Optical Polyacetylenes: Synthesis of Azobenzene-Containing Poly(1-alkyne)s with Different Spacer and Tail Lengths. J. Polym. Sci. Part A: Polym. Chem., 2006, 44, 2346-2357.
    65. Xie, S.; Natansohn, A.; Rochon, P. Recent Developments in Aromatic Azo Polmers Research. Chem. Mater., 1993, 5, 403-411.
    66. Ikeda T. Photomodulation of Liquid Crystal Orientations for Photonic Applications. J. Mater. Chem., 2003, 13, 2037-2057.
    67. Kondo, M.; Yu, Y.; Mamiya, J.; Kinoshita, M.; Ikeda, T. Photoinduced Deformation Behavior of Crosslinked Azobenzene Liquid-Crystalline Polymer Films with Unimorph and Bimorph Structure. Mol. Cryst. Liq. Cryst., 2007, 478, 245-257.
    68. Yu, Y.; Nakano, M.; Ikeda, T. Photoinduced Bending and Unbending Behavior of Liquid-Crystalline Gels and Elastomers. Pure Appl. Chem., 2004, 76, 1435-1445.
    69. Yu, Y.; Nakano, M.; Shishido, A.; Shiono, T.; Ikeda, T. Effect of Cross-Linking Density on Photoinduced Bending Behavior of Oriented Liquid-Crystalline Network Films Containing Azobenzene. Chem. Mater., 2004, 16, 1637-1643.
    70. Mamiya, J.; Yoshitake, A.; Kondo, M.; Yu, Y.; Ikeda, T. Is Chemical Crosslinking Necessary for the Photoinduced Bending of Polymer Films? J. Mater. Chem., 2008, 18, 63-65.
    71. Yu, Y.; Nakano, M.; Ikeda, T. Directed Bending of a Polymer Film by Light. Nature, 2003, 425, 145.
    72. Yamada, M.; Kondo, M.; Mamiya, J.; Yu, Y.; Kinoshita, M.; Barrett, C. J.; Ikeda, T. Photomobile Polymer Materials towards Light-Driven Plastic Motors. Angew Chem. Int. Ed Engl., 2008, 47, 4986-4988.
    73. Ikeda, T.; Tsutsumi, O. Optical Switching and Image Storage by Means of Azobenzene Liquid-Crystal Films. Science, 1995, 268, 1873-1875.
    74. Chen, J.; Zhang, H.; Wang, X.; Wang, X. Synthesis of a Novel Miktoarm Star Azobenzene Side-Chain Liquid Crystalline Copolymers by Atom Transfer Radical Polymerization. Polymer Bulletin, 2005, 53, 223-230.
    75. Ramanujam, P. S.; Holme, N. C. R.; Hvilsted, S. Atomic Force and Optical Near-Field Microscopic Investigations of Polarization Holographic Gratings in a Liquid Crystalline Azobenzene Side-Chain Polyester. Appl. Phys. Lett., 1996, 68, 1329-1331.
    76. Eich, M.; Wendorff, J. H. Erasable Holgrams in Polymeric Liquid Crystals. Macromol. Chem. Rapid. Commun., 1987, 8, 467-471.
    77. Wiesner, U.; Antonietti, M.; Boeffel, C.; Spiess, H. W. Dynamics of Photoinduced Isomerization of Azobenzene Moieties in Liquid-Crystalline Polymers.Macromol. Chem. and Phys., 2003, 191, 2133-2149.
    78. Ichimura, K. Photoalignment of Liquid-Crystal Systems. Chem. Rev., 2000, 100, 1847-1873.
    79. Tong, X.; Zhao, Y. Multiple Photochemical Processes in Liquid Crystalline Azo Dye-Doped Liquid Crystals. Chem. Mater., 2009, 21, 4047-4054.
    80. Yamada, M.; Kondo, M.; Miyasato, R.; Mamiya, J.; Kinoshita, M.; Yu, Y.; Barrett, C. J.; Ikeda, T. Photoresponsive Behavior of Laminated Films Composed of a Flexible Plastic Sheet and a Crosslinked Azobenzene Liquid-Crystalline Polymer Layer with Different Initial Alignment of Mesogens. Molecular Crystals. Liquid. Crystals, 2009, 498, 65-73.
    81. Zhao, J.; Si, J. H.; Wang. Y. G. et al. Light-Induced Noncentrosymmetry in Acceptor-Donor-Substituted Azobenzene Solutions. Optics Letters, 1995, 20, 1955-1957.
    82. Wang, G.; Tong, X.; Zhao, Y. Preoaration of Azobenzene-Containing Amphiphilic Didlock Copolymers for Light-Responsive Micellar Aggregates. Macromolecules, 2004, 37, 8911-8917.
    83. Ven, D.; Mooter, G.; Maris, B. et al. Use of Azo Polymers for Colon-Specific Drug Delivery. J. Pharm. Sci., 1997, 6, 1321-1427.
    84.Vollmer, M. S.; Clark, T. D.; Steinem, C. M. et al. Photoswitchable Hydrogen-Bonding in Self-Organized Cylindrical Peptide Systems. Angew Chem. Int. Ed Engl., 1999, 38, 1598-1601.
    85. Kronek, J.; Luston, J.; Bohme, F.; Komber, H. Azo-Group Labelled Polyester by End-Capping with 2-ozazoline Derivatives- Photochemical Properties. Macromol. Symp., 2001, 170, 301-310.
    86. Kronek, J.; Luston, J.; Bohme, F.; Komber, H. Azo-Group Labelled Polyester by End-Capping with 2-Ozazoline Derivatives- Preparation. Macromol. Symp., 2001, 164, 105-115.
    87. Bobrovsky, A.; Ponomarenko, S.; Boiko, N.; Shibaev, V.; Rebrov, E.; Muzafarov, E.; Stumpe, J. Photochemistry and Photoorientational Phenomena in Carbosilane Dendrimers with Terminal Azobenzene Groups. Macromol. Chem. Phys.,2002, 203, 1539-1546.
    88. Kimio, S.; Mitsuyoshi, K.; Toshiyuki, K.; Toshio, S. Characteristic Phase Transition of Aqueous Solution of Poly(n-isopropylacrylamide) Functionalized with Spirobenzopyran. Macromolecules, 2004, 13, 4949-4955.
    89. Ikeda, T.; Ooya, T.; Yu, N. Regulaton of Pseudo-Polyrotaxane Formation Betweenα-Cyclodextrins and Azobenzene-Terminated Poly(ethylene glycol). Polym. J., 1999, 31, 658-663.
    90. Bobrovsky, A. Y.; Pakhomov, A. A.; Zhu, X. M.; Shibaev, V. P.; Stumpe, J. Photochemical and Photoorientational Behavior of Liquid Crytalline Carbosilane Dendrimer with Azobenzene Terminal Groups. J. Phys. Chem., 2002, 106, 540-546.
    91. Barrio, J.; Oriol, L.; Alcala, R.; Sanchez, C. Azobenzene-Containing Linear-Dendritic Diblock Copolymers by Click Chemistry: Synthesis, Characterization, Morphological Study, and Photoinduction of Optical Anisotropy. Macromolecules, 2009, 42, 5752-5760.
    92. Jochum, F. D.; Borg, L.; Roth, P. J.; Theato, P.; Thermo- and Light-Responsive Polymers Containing Photoswitchable Azobenzene End Groups. Macromolecules, 2009, 42, 7854-7862.
    93. Percec, V.; Kim, H. J.; Barboiu, B. Scope and Limitations of Functional Sulfonyl Chlorides as Initiators for Metal-Catalyzed "Living" Radical Polymerization of Styrene and Methacrylates. Macromolecules, 1997, 30, 8526-8528.
    94. Wang, G.; Zhu, X. L.; Cheng, Z. P.; Zhu, J. Azobenzene-Based Initiator for Atom Transfer Radical Polymerization of Methyl Methacrylate. J. Polym. Sci. Part A: Polym. Chem., 2005, 43, 2358-2367.
    95. Viau, L.; Bidault, S.; Maury, O.; Brasselet, S.; Ledoux, I.; Zyss, J.; Ishow, E.; Nakatani, K.; Bozec, H. L. All-Optical Orientation of Photoisomerizable Octupolar Zinc(II) Complexes in Polymer Films. J. Am. Chem. Soc., 2004, 126, 8386-8387.
    96. Zhang, W. D.; Zhang, W.; Cheng, Z. P.; Zhou, N. C.; Zhu, X. L.; Atom Transfer Radical Polymerization of Methyl Methacrylate High Efficiently Initiated by Azo-containing Iniferter. J. Macromol. Sci. Part A: pure and appl. Chem., 2008, 45, 850-856.
    97. Wan, X. M.; Zhu, X. L.; Zhu, J.; Zhang, Z. B.; Cheng, Z. P. A Novel Dithiocarbamate Bearing Azobenzene Group Suitable for the RAFT Polymerization of Methyl Methacrylate. J. Polym. Sci. Part A: Polym. Chem., 2007, 45, 2886-2896.
    98. Yu, L. P.; Zhu, J.; Cheng, Z. P.; Zhang, Z. B.; Zhu, X. L. Synthesis and Self-assembly Behavior of Azobenzene-Centered (Co) Polymer via Reversible Addition- Fragmentation Chain Transfer (RAFT) Polymerization. e-poylmer, 2007, No 029.
    99. Ma, F.; Zhou, N. C.; Zhu, J.; Zhang, W.; Fan, L. J.; Zhu, X. L.; Light-Driven Fluorescence Enhancement of Phenylazo Indazole-Terminated Polystyrene. Europ. Polym. J., 2009, 45, 2131-2137.
    100. Erdogan, T.; Durmaz, H.; Hizal, G.; Tunca,U. Photoresponsive Poly(methyl methacrylate)2-(polystyrene)2 Miktoarm Star Copolymer Containing an Azobenzene Moiety at the Core. J. Polym. Sci. Part A: Polym. Chem., 2006, 44, 1396-1403.
    101. Peptu, C.; Bogdan, V. H.; Simionescu, B. C.; Adamus, G.; Kowalczuk, M.; Nunzi, J. M. Disperse Red 1 End Capped Oligoesters. Synthesis by Noncatalyzed Ring Opening Oligomerization and Structural Characterization. J. Polym. Sci. Part A: Polym. Chem., 2009, 47, 534-547.
    102. Akiyama, H.; Tamaoki, N. Synthesis and Photoinduced Phase Transitions of Poly(N-isopropylacrylamide) Derivative Functionalized with Terminal Azobenzene Units. Macromolecules, 2007, 40, 5129-5132.
    103. Zou, J.; Guan, B.; Liao, X. J.; Jiang, M.; Tao, F. G.; Dual Reversible Self-Assembly of PNIPAM-Based Amphiphiles Formed by Inclusion Complexation. Macromolecules, 2009, 42, 7465-7473.
    104. Li, Y. B.; Deng, Y. H.; Tong, X. L.; Wang, X. G. Amphiphilic Azo Polymer Spheres Colloidal Monolayers, and Photoindced Chromophore Orientiation. Langmuir, 2005, 21, 6567-6571.
    105.邓永红,和亚宁,焉学佳,漆海波,王晓工.一种新型偶氮聚电解质的光致取向行为研究.高分子学报, 2004, 42, 299-303.
    106. Zhang, L. Z.; Li, Y.; Liang, Z. X. New Crosslinked Polymer System with High and Stable Optical Nonlinearity. React. Funct. Polym., 1999, 40, 255-262.
    107. Rachkev, A.; Rubner, J.; Springer, T.; Photoisomerization Study of p-Phenylazoacrylanilide and its Homo- and Copolymers. Optical. Mater., 2002, 21, 307-314
    108. Niesel, F. T.; Rubner, J.; Springer, T. Thermal and Ferroelectic Properties of two Series of Coloured Chiral Liquid Crystalline Side Group Copolymers. Macromol. Chem. Phys., 1995, 196, 103-112.
    109. Moebius, G.; Ringsdorf, H.; Pietsch, U. Light-Induced Modifications of Langmuir-Blodgett Multilayer Assemblies Containing Amphotropic Azocopolymers. Thin Solid Films, 1994, 247, 235-239.
    110. Armin, Wedel, Rudi. Absorption Studies of Opticallynonlinear Side-Chain Polymer and Polymer-Dye Films Orientedby Corona Poling [C].7th International Symposium on elec-trets, 1991, 9, 839-844.
    111. Eich, M.; Sen, A.; Looser, G. C. Corona Poling and Real-Time Second-Harmonic Generation Study of a Novel Covalently Functionalized Amorphous Nonlinear Optical Polymer. J. Appl. Phyc. 1989, 66, 2559-2567.
    112. Pedersen, T. G.; Johansen, P. M.; Holme, C. R.; Ramanujam, P. S.; Hvilsted, S. Mean-Field Theory of Photoinduced Formation of Surface Reliefs in Side-Chain Azobenzene Polymers. Phys. Rev. Lett., 1997, 80, 89-92.
    113. Andruzzi, L.; Altomare, A.; Clardelli, F.; Solaro, R.; Hcilsted, S.; Ramanujam, P. S. Holographic Gratings in Azobenzene Side-Chain Polymethacrylates. Macromolecules, 1999, 32, 448-454.
    114. Holme, N. C. R.; Nikolova, L.; Ramanujam, P. S.; Hvilsted, S. An Analysis of the Anisotropic and Topographic Gratings in a Side-Chain Liquid Crystalline Azobenzene Polyester. Appl. Phys. Lett., 1997, 70, 1518-1520.
    115. Wu, Y. L.; Demachi, Y.; Tsutsumi, O.; Kanazawa, A.; Shiono, T.; Ikeda, T. Photoinduced Alignment of Polymer Liquid Crystals Containing Azobenzene Moieties in the Side Chain. 1. Effect of Light Intensity on Alignment Behavior. Macromolecules, 1998, 31, 349-354.
    116. Naydenova, I.; Nikolova, L.; Todorov, T.; Holme N. C. R.; Ramanujam, P. S. Diffraction from Polarization Holographic Gratings with Surface Relief in Side-ChainAzobenzene Polyesters. J. Opt. Soc. Am. B, 1998, 15, 1256-1265.
    117. Wang, C. S.; Fei, H. S.; Yang, Y. Q.; Wei, Z. Q.; Qiu, Y.; Chen, Y. M. Photoinduced Anisotropy and Polarization Holography in Azobenzene Side-Chain Polymer. Optics Communications, 1999, 159, 58-62.
    118. Toshchevikov, V.; Saphiannikova, M.; Heinrich, G. Microscopic Theory of Light-Induced Deformation in Amorphous Side-Chain Azobenzene Polymers. J. Phys. Chem. B, 2009, 113, 5032-5045.
    119. Gao, J. G.; Sun, Y. Y.; Zhou, J. L.; Zheng, Z.; Chen, H. W.; Su, W.; Zhang, Q. J. Preparation of Ag Nanoparticles Termini-Protected Side-Chain Liquid Crystalline Azobenzene Polymers by RAFT Polymerization. J. Polym. Sci. Part A: Polym. Chem., 2007, 45, 5380-5386.
    120. Fujii, T.; Shiotsuki, M.; Inai, Y.; Sanda, F.; Masuda, T. Synthesis of Helical Poly(N-propargylamides) Carrying Azobenzene Moieties in Side Chains. Reversible Arrangement-Disarrangement of Helical Side Chain Arrays upon Photoirradiation Keeping Helical Main Chain Intact. Macromolecules, 2007, 40, 7079-7088.
    121. Zettsu, B. N.; Ubukata, T.; Seki, T.; Ichimura, K. Soft Crosslinkable Azo Polymer for Rapid Surface Relief Formation and Persistent Fixation. Adv. Mater., 2001, 13, 1693-1697.
    122. Marcos, M.; Alcala, R.; Barberá, J.; Romero, P.; Sanchez, C.; Serrano, J. L. Photosensitive Ionic Nematic Liquid Crystalline Complexes Based on Dendrimers and Hyperbranched Polymers and a Cyanoazobenzene Carboxylic Acid. Chem. Mater., 2008, 20, 5209-5217.
    123. Nishizawa, K.; Nagano, S.; Seki, T. Novel Liquid Crystalline Organic-Inorganic Hybrid for Highly Sensitive Photoinscriptions. Chem. Mater., 2009, 21, 2624-2631.
    124. Ohe, C.; Kamijo, H.; Arai, M.; Adachi, M.; Miyazawa, H.; Itoh, K.; Seki, T. Sum Frequency Generation Spectroscopic Study on Photoinduced Isomerization of Poly(vinyl alcohol) Containing Azobenzene Side Chain at the Air-Water Interface. J. Phys. Chem. C, 2008, 112, 172-181.
    125. Tong, X.; Wang, G.; Sokdera, A.; Zhao, Y. How Can Azobenzene BlockCopolymer Vesicles Be Dissociated and Reformed by Light? J. Phys. Chem. B, 2005, 109, 20281-20287.
    126. Tateishi, Y.; Tanaka, K.; Nagamura, T. Kinetics of Photoinduced E to Z Isomerization of Azobenzene in Polystyrene Films: Thickness, Molecular Weight and Temperature Effects. J. Phys. Chem. B, 2007, 111, 7761-7766.
    127. Sobolewska, A.; Miniewicz, A. On the Inscription of Period and Half-Period Surface Relief Gratings in Azobenzene-Functionalized Polymers. J. Phys. Chem. B, 2008, 112, 4526-4535.
    128. Zhao, Y.; Stoddart, J. F. Azobenzene-Based Light-Responsive Hydrogel System. Langmuir, 2009, 25, 8442-8446.
    129. Rochon, P.; Gosselin, J.; Natansohn, A.; Xie, S. Optically Induce and Erased Birefringence and Dichroism in Azoaromatic Polymer. Appl. Phys. Lett., 1992, 60, 4-5.
    130. Tanchak O. M.; Barrett C. J. Light-Induced Reversible Volume Changes in Thin Films of Azo Polymer: The Photomechanical Effect. Macromolecules, 2005, 38, 10566-10570.
    131. Zhang, Q.; Bazuin, C. G.; Barrett, C. J. Simple Spacer-Free Dye-Polyelectrolyte Ionic Complex: Side-Chain Liquid Crystal Order with High and Stable Photoinduced Birefringence. Chem. Mater., 2008, 20, 29-31.
    132. Zhang, Q.; Wang, X.; Barrett, C. J.; Bazuin, C. G. Spacer-Free Ionic Dye-Polyelectrolyte Complexes: Influence of Molecular Structure on Liquid Crystal Order and Photoinduced Motion. Chem. Mater., 2009, 21, 3216-3227.
    133. Gao, J.; He, Y.; Liu, F.; Zhang, X.; Wang. Z.; Wang, X. Azobenzene-Containing Supramolecular Side-Chain Polymer Films for Laser-Induced Surface Relief Gratings. Chem. mater., 2007, 19, 3877-3881.
    134. Kulikovsky, L.; Kulikovska, O.; Goldenberg, L. M.; Stumpe, J. Phenomenology of Photoinduced Processes in the Ionic Sol-Gel-Based Azobenzene Materials. ACS Applied Materials & Interfaces, 2009, 1, 1739-1746.
    135. Wang, D.; Ye, G.; Zhu, Y.; Wang, X. Photoinduced Mass-Migration Behavior of Two Amphiphilic Side-Chain Azo Diblock Copolymers with Different Length Flexible Spacers. Macromolecules, 2009, 42, 2651-2657.
    136. Liu, J.; He, Y.; Wang, X. Azo Polymer Colloidal Spheres Containing Different Amounts of Functional Groups and Their Photoinduced Deformation Behavior. Langmuir, 2008, 24, 678-682.
    137. Liu, J.; He, Y.; Wang, X. Size-Dependent Light-Driven Effect Observed for Azo Polymer Colloidal Spheres with Different Average Diameters. Langmuir, 2009, 25, 5974-5979.
    138. Luigi, A.; Tiziana, B.; Loris, G.; Elisabetta, S., Optically Active Photochromic Polymers with Three-Arm Star Structure by Atom Transfer Radical Polymerization, Macromolecules, 2006, 39, 3731-3737.
    139. Chen, J.; Zhang, H.; Wang, X. Synthesis of a Novel Miktoarm Star-Azobenzene Side-Chain Liquid Crystalline Copolymers by Atom Transfer Radical Polymerization. Polym. Bull., 2005, 53, 223-230.
    140. Li, X.; Lu, X.; Lu, Q.; Yan, D. Photo-orientation of Liquid Crystalline Azo-Dendrimer by Nanosecond Pulsed Laser for Liquid Crystal Alignment Macromolecules, 2007, 40, 3306-3312.
    141. Gharagozloo-Hubmann, K.; Kulikovska, O.; Borger. V.; Menzel, H.; Stumpe, J. Surface Relief Gratings in Azobenzene-Containing Polymers with Linear and Star-Branched Architectures: A Comparison. Macromol. Chem. Phys., 2009, 210, 1809-1817.
    142. He, X.; Yan, D. Branched Azobenzene Side-Chain Liquid-Crystalline CopolymersObtained by Self-Condensing ATRP Copolymerization. Macromol. Rapid Commun., 2004, 25, 949-953.
    143. Goto, A.; Sato, K.; Fukuda, T.; Moad, G.; Rizzardo, E.; Thang, S. H. Mechanism and Kinetics of RAFT (Reversible Addition-Fragmentation Chain Transfer)-Based Controlled Radical Polymerization of Styrene. Polym. Prep., 1999, 40, 397-398.
    144. Su, W.; Han, K.; Luo, Y. H.; Wang, Z.; Li, Y. M.; Zhang, Q. J. Formation and Photoresponsive Properties of Giant Microvesicles Assembled from Azobenzene-Containing Amphiphilic Diblock Copolymers. Macromol. Chem. Phys., 2007, 208, 955-963.
    145. Li, W.; Nagano, S.; Seki, T. Photo-Crosslinkable Liquid-Crystalline Azo-Polymer for Surface Relie Gratings and Persistent Fixation. New J. Chem., 2009, 33, 1343-1348.
    146. Zhang, Y.; Cheng, Z.; Chen, X.; Zhang, W.; Wu, J.; Zhu, J.; Zhu, X. L. Synthesis and Photoresposive Behaviors of Well-Defined Azobenzene-Containing Polymers via RAFT Polymerization. Macromolecules, 2007, 40, 4809-4817.
    147. Yu, L.; Zhang, B.; Chen, X.; Zhang, W.; Wu, J.; Chen, Z.; Zhu, X. Synthesis of Tetrazole-Containing Azo Polymers with Properties of Photo-Induced Birefringence and Surface-Relief-Gratings via RAFT Polymerization. J. Polym. Sci. Part A: Polym. Chem., 2008, 46, 682-691.
    148. Zhang, Y.; Zhang, W.; Chen, X.; Cheng, Z.; Wu, J.; Zhu, J.; Zhu, X. Synthesis of Novel Three-Arm Star Azo Side-Chain Liquid Crystalline polymer via ATRP and Photoinduced Surface Relief Gratings. J. Polym. Sci. Part A: Polym. Chem., 2008, 46, 777-789.
    149 Sun, B.; Zhu, X.; Zhu, J.; Cheng, Z.; Zhang, Z., A Nover Synthetic Method for the Well-Defined Polymer Containing Benzotriazole and Bisazobenzene Chromophore. Macromol. Chem. Phys., 2007, 208, 1101-1109.
    150. Xu, J.; Zhang, W. Zhou, N.; Zhu, J.; Cheng, Z.; Zhu, X. Synthesis of Azobenzene-Containing Polymers via RAFT Polymerization and Investigation on Intense Fluorescence from Aggregates of Azobenzene-Containing Amphiphilic Diblock Copolymers. J. Polym. Sci, Part A: Polym. Chem., 2008, 46, 5652-5662.
    151. Zhang, C.; Zhao, X.; Chao, D. Lu, X.; Chen, C.; Wang, C. Zhang, W. Rapid Bending of a Nonliquid Crystal Azobenzene Polymer Film and Characteristics of Surface Relief Grating. J. Appl. Polym. Sci., 2009, 113, 1330–1334.
    152. Khalil, F.; Hagibeygi, M. New Polyamides Containing Azobenzene Unites and Hydantoin Derivatives in Main Chain: Synthesis and Characterization. Europ. Polym. J., 2003, 39, 2307-2311.
    153. Acierno, D.; Amendoia, E.; Bugatti, V.; Concilio, S.; Giorgini, L.; Iannelli, P.; Piotto. S. P. Synthesis and Characterization of Segmented Liquid Crystalline Polymers with the Azo Group in the Main Chain. Macromolecules, 2004, 37, 6418-6423.
    154. Jaycox, G. D. Azobenzene Modified Poly(aryl ether ketone amide)s.1. Synthesis and Physical Properties. Polymer, 1998, 12, 2589-2596.
    155. Beattie, M. S.; Jackson, C.; Jaycox, G. D. Azobenzene Modified Poly(aryl ether ketone amide)s.2. Photo- and Thermo-Responsive Behaciour in Dilute Solution. Polymer, 1998, 12, 2597-2605.
    156. Sanchez-Ferrer, A.; Finkelmann, H. Uniaxial and Shear Deformations in Smectic-C Main-Chain Liquid-Crystalline Elastomers. Macromolecules, 2008, 41, 970-980.
    157. Irie, M.; Hirano, Y.; Hashimoto, S.; Hayashi, K. Photoresponsive Polymers. 2. Reversible Solution Viscosity Change of Polyamides having Azobenzene Residues in the Main Chain. Macromolecules, 1981, 14, 262-267.
    158. Amgeloni, A. S.; Caretti, D.; Carlini, C.; Chiellint, E.; Galli, G.; Altomarea, A.; Solaror; Laus, M. Photochromic Liquid-Crystalline Polymers. Main Chain and Side Chain Polymers ContainingAzobenzene Mesogens. Liquid crystals, 2006, 33, 1302-1311.
    159. Xu, Z.; Drnoyan, V.; Natanshn, A.; Rochon, P. Novel Polyesters with Amino-Sulfone Azobenzene Chromophores in the Main Chain. J. Polym. Sci. Part A: Polym. Chem., 2000, 38, 2245-2253.
    160. Izumi. A.; Teraguchi, M.; Nomura, R.; Masuda, T. Synthesis of Poly(p-phenylene)-based Photoresponsive Conjugated Polymers having Azobenzene Units in the Main Chain. Macromolecules, 2000, 33, 5347-5352.
    161. Gabriel, I.; Francois, L. L.; Almeria, N.; Paul, R.; Krish, M. Main Chain-Containing Azo-Tetraphenyldiaminobiphenyl Photorefractive Polymers. Chem. Mater., 2002, 14, 68-174.
    162. Howe, L. A.; Jaycox G. D. Stimuli-Responsive Polymers. III. Poly(aryl ether ketone amide)s with Reversible Trans-Cis-4,4’-Azobenzene and Fixed 2,2’-Binaphthyl Kinking Elements in the Main Chain. J. Polym. Sci. Part A: Polym. Chem., 2000, 36, 2827-2837.
    163. Everlofa, G. J.; Jaycox, G. D. Stimuli-Responsive Polymers. 4. Photo- and Thermo-Regulated Chiroptical Behavior in Azobenzene-Modified Polymers Fitted withMain Chain Spirobiindane Turns and Chiral Binaphthyl Bends. Polymer, 2000, 41, 6527-6536.
    164. Lee, T. S.; Kim, D.; Jiang, X. L.; Li, L.; Kumar, J.; Tripathy, S. Photoinduced Surface Relief Gratings in High-Tg Main-Chain Azoaromatic Polymer Films. J. Polym. Sci. Part A: Polym. Chem., 1998, 36, 283-289.
    165 Altomare, A.; Andruzzi, L.; Ciardelli, F.; Gallot, B.; Solaro, R. Methacrylic Polymers Containing Permanent Dipole Azobenzene Chromophores Spaced from the Main Chain: Synthesis and Characterization. Polymer International, 1999, 47, 419-427.
    166. Faghihi, K.; Hagibeygi, M. New Polyamides Containing Azobenzene Unites and Hydantoin Derivatives in Main Chain: Synthesis and Characterization. Europ. Polym. J., 2003, 39, 2307-2314.
    167. Shirota, T.; Moritsugu, M.; Kubo, S.; Ogata, T.; Nonaka T.; Sato O.; Kurihara, S. Photoswitching Behavior of SiO2 Inverse Opal Films Infiltrated with Azo-Tolane Copolymer: Effect of Polymer Main Chain Structure. Molecular Crystals and Liquid Crystals, 2009, 513, 79-88
    168. Yu, X.; Luo, Y.; Deng, Y.; Yan, Q.; Zou, G.; Zhang, Q. J. Synthesis and Properties of Thermally Cross-Linkable Main-Chain Azobenzene Polymers Containing Diacetylene Moieties. Europ. Polym. J., 2008, 881-888.
    169. Aruna, P.; Raoa, B. S. Ionomeric Poly(urethane semicarbazides) with Azobenzene Groups in the Main Chain-Studies on Photoswitching Behaviour and Mechanical Properties. React. Funct. Polym., 2009, 69, 20-26.
    170. Ishige, R.; Osada, K.; Tagawa, H.; Niwano, H.; Tokita, M.; Watanabe, J. Elongation Behavior of a Main-Chain Smectic Liquid Crystalline Elastomer. Macromolecules, 2008, 41, 7566-7570.
    171. Keshtov1, M. L.; Venidiktova, O. V.; Barachevskii, V. A.; Vasnev1, V. A.; Petrovskii, P. V.; Khokhlov, A. R. Synthesis and Photophysical Properties of Photochromic Phenyl-Substituted Polyphenylenes with Main-Chain Azobenzene Fragments. Polym. Sci. Series A, 2007, 49, 176-182.
    172. Lee, M.; Choi, H. J.; Jeong, K.; Chien, L. A Photochromic Main-Chain Liquid Crystalline Polymer and Its Photo-Stimulated Actuating Properties. Proc. SPIE, 2008,6911, 69110B.
    173. Hosono, N.; Furukawa, H.; Masubuchi, Y.; Watanabe, T.; Horie K. Photochemical Control of Network Structure in Gels and Photo-Induced Changes in Their Viscoelastic Properties. Colloids Surf B Biointerfaces, 2007, 56, 285-289.
    174. Li, Z. A.; Yu, G.; Hu, P.; Ye, C.; Liu, Y. Q.; Qin, J. G.; Li, Z. New Azo-Chromophore-Containing Hyperbranched Polytriazoles Derived from AB2 Monomers via Click Chemistry under Copper(I) Catalysis. Macromolecules, 2009, 42, 1589-1596.
    175. Li, Z. A.; Yu, G.; Wu, W. B.; Liu, Y. Q.; Li, Z. Nonlinear Optical Dendrimers from Click Chemistry: Convenient Synthesis, New Function of the Formed Triazole Rings, and Enhanced NLO Effects Macromolecules, 2009, 42, 3864-3868.
    176. Li, Z. A.; Yu, G.; Ye, C.; Qin, J. G.; Li, Z. Dendronized Polyfluorenes with High Azo-Chromophore Loading Density: Convenient Synthesis and Enhanced Second-Order Nonlinear Optical Effects. Macromolecules, 2009, 42, 6463-6472.
    177. Li, Z. A.; Wu, W. B.; Ye, C.; Qin, J. G.; Li, Z. New Hyperbranched Polyaryleneethynylene Containing Azobenzene Chromophore Moieties in the Main Chain: Facile Synthesis, Large Optical Nonlinearity and High Thermal Stability. Polym. Chem., 2010, 1, 78-81.
    178. Shen, X. Q.; Liu, H. W.; Li, Y. S.; Liu, S. Y. Click-Together Azobenzene Dendrons: Synthesis and Characterization. Macromolecules, 2008, 41, 2421-2425.
    179. Ding, L.; Zhang, L.; Han, H.; Huang, W.; Song, C.; Xie, M.; Zhang, Y. Hyperbranched Azo-Polymers Synthesized by Acyclic Diene Metathesis Polymerization of an AB2 Monomer. Macromolecules, 2009, 42, 5036-5042.
    180. Chen, X.; Zhang, Y.; Liu, B.; Zhang, J. Wang, H.; Zhang, W.; Chen, Q.; Pei, S.; Jiang, Z. Novel Photoactive Hyperbranched Poly(aryl ether)s Containing Azobenzene Chromophores for Optical Storage. J. Mater. Chem., 2008, 18, 5019-5026.
    181. Wang, G.; Gan, F. Optical Parameters and Absorption Studies of Azo Dy~Doped Polymer Thin Films on Silicon. Mat. Lett., 2000, 43, 6-10.
    182.王光斌,候立松,干福熹.偶氮染料掺杂薄膜光记录性能研究.中国激光, 2000, 27, 264-268.
    183.王光斌,李晶,候立松等.偶氮染料掺杂高分子PMMA薄膜的光学参数.光子学报, 2000, 20, 565-569.
    184. He, T.; Cheng, Y.; Du, Y.; Mo, Y. Z-Scan Determination of Third-Order Nonlinear Optical Nonlinearity of Three Azobenzenes Doped Polymer Films. Optics Commun., 2007, 275, 240-244.
    185. Lee, C. R.; Lin, S. H.; Guo, C. H.; Chang, S. H.; Mo, T. S.; Chu, S. C. All-Optically Controllable Random Laser Based on a Dye-Doped Polymer-Dispersed Liquid Crystal with Nano-Sized Droplets. Optics Express, 2010, 18, 2406-2412.
    186. Choia, S. W.; Takezoec, H. Chiroptical Properties in Azobenzene Molecule-Doped Side-Chain Polymeric Films. Thin Solid Films, 2009, 517, 6142-6145.
    187. Ono, H.; Takahashi, F.; Kawatsuki, N. Polarization Holograms in Azo Dye-Doped Polymer Dissolved Liquid Crystal Composites. J. Appl. Phys., 2005, 97, 053508.
    188. Xu, T.; Zhang, C.; Lin, Y.; Qi, S. Study on All-Optical Switching Characteristics of Ethyl Orange-Doped Polymer Film. Optik- Int. J. Light Electron Opt., 2008, 119, 643-647.
    189. Kuo, C.; Huang, S. Enhancement of Diffraction of Dye-Doped Polymer Film Assisted with Nematic Liquid Crystals. Appl. Phys. Lett ., 2006, 89, 111109.
    190. Hrozhyk, U. A.; Serak, S. V.; Tabiryan, N. V.; Bunning, T. J. Optical Tuning of the Reflection of Cholesterics Doped with Azobenzene Liquid Crystals. Adv. Funct. Mater., 2007, 17, 1735-1742.
    191. Wang, G.; Hou, L.; Gan, F. Thermal and Optical Characterization of Push-Pull Azo Dyes-Doped Poly(Methylmetuactrylate) Thin Film as Short Wavelength Optical Recording Media. Materials Science and Engineering, 1999, 65, 75-78.
    192. Otsu, T.; Yoshida, M.; Tazaki, T. A Model for Living Radical Polymerization. Makromol. Chem., Rapid Commun., 1982, 3, 133-140.
    193. Otsu, T.; Yoshida, M. Role of Initiator-Transfer Agent-Terminator (Iniferter) in Radical Polymerizations: Polymer Design by Organic Disulfides as Iniferters. Makromol. Chem., Rapid Commun., 1982, 3, 127-132.
    194. Abdallah, D.; Ghani, M. A. A.; Cunningham, M. F.; Kazmaier, P. M.;Keoshkerian, B.; Buncel, E. Multi-Armed, TEMPO-Functionalized Unimolecular Initiators for Starburst Dendrimer Synthesis via Stable Radical Polymerization. 1. Tri Azo-functionalized Unimer. J. Mater. Chem., 2005, 15, 3264-3267.
    195. Hawker, C. J.; Bosman, A. W.; Harth, E. New Polymer Synthesis by Nitroxide Mediated Living Radical Polymerizations. Chem. Rev., 2001, 101, 3661-3688.
    196. Benoit, D.; Grimaldi, S.; Robin, S.; Finet, J. P.; Tordo, P.; Gnanou, Y. Kinetics and Mechanism of Controlled Free-Radical Polymerization of Styrene and n-Butyl Acrylate in the Presence of An Acyclic ?-Phosphonylated Nitroxide. J. Am. Chem. Soc., 2000, 122, 5929-5939.
    197. Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P.; Rizzardo, E.; Thang, S. H. Living Free-Radical Polymerization by Reversible Addition- Fragmentation Chain Transfer: The RAFT Process. Macromolecules, 1998, 31, 5559-5562.
    198. Mayadunne, R. T. A.; Rizzardo, E.; Chiefari, J.; Chong, Y. K.; Moad. G.; Thang, S. H. Living Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization) Using Dithiocarbamates as Chain Transfer Agents. Macromolecules, 1999, 32, 6977-6980.
    199. Chaffey-Millar, H.; Stenzel, M. H.; Davis, T. P.; Coote, M. L.; Barner-Kowollik, C. Design Criteria for Star Polymer Formation Processes via Living Free Radical Polymerization. Macromolecules, 2006, 39, 6406-6419.
    200. Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T. Polymerization of Methyl Methacrylate with the Carbon Tetrachloride/ Dichlorotris- (triphenylphosphine) ruthenium (II)/ Methylaluminum Bis(2,6-di-tert-butylphenoxide) Initiating System: Possibility of Living Radical Polymerization. Macromolecules, 1995, 28, 1721-1723.
    201. Mittal, A.; Sivaram, S.; Baskaran, D. Unfavorable Coordination of Copper with Methyl Vinyl Ketone in Atom Transfer Radical Polymerization. Macromolecules, 2006, 39, 5555-5558.
    202. Roof, A. C.; Tillman, E. S.; Malik, R. E.; Roland, A. M.; Miller, D. J.; Sarry, L. R. Mechanistic Investigation of 9-Bromoanthracene Photodimers as Initiators in Atom Transfer Radical Polymerization. Polymer, 2006, 47, 3325-3335.
    203. Ostu, T. Iniferter Concept and Living Radical Polymerization. J. Polym. Sci. Part A: Polym. Chem., 2000, 38, 38, 2121-2136.
    204. Corpart, P.; Charmot, D.; Zard, S.; Franck, X.; Bouhadir, G. PCI Int. Appl. WO 9935177, 1999.
    205. Le, T. P.; Moad, G.; Rizzardo, E.; Thang, S. H. PCT Int. Pat. Appl. WO 9801478 Al, 1998.
    206. Mayadunne, R. T. A.; Rizzardo, E.; Chiefari, J.; Chong, Y. K.; Moad, G.; Thang, S. H. Living Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer(RAFT Polymerization) Using Dithiocarbamates as Chain Transfer Agents. Macromolecules, 1999, 32(21), 6977-6980.
    207. Deslongchamps, P. Stereoelectronic Effects in Organic Chemistry. Pergamon Press: New York, 1983.
    208. Destarac, M.; Charmot, D.; Franck, X.; Zard, S. Z. Dithiocarbamates as Universal Reversible Addition-Fragmentation Chain Transfer Agents. Macromol. Rapid. Commun., 2000, 21, 1035-1039.
    209. Di, Z.; Zhu, X. L.; Zhu, J.; Ying, H. S. Influence of the Chemical Structure of Dithiocarbamates with Different N-groups on the RAFT Polymerization of Styrene. J. Polym. Sci. Part A: Polym. Chem., 2005, 43, 4849-4856.
    210. Li, P.; Qin, S. H.; Qin, D. Q.; Qiu, K. Y. Preparation of Vinyl Polymers Bearing Photo-labile Diethylthiocarbamoylthiyl (S2CNEt2) Groups via ATRP. Polym. Int., 2004, 53, 756-765.
    211. Zhang, W.; Zhu, X. L.; Zhu, J.; Chen, J. Y. Atom Transfer Radical Polymerizationof Styrene Using a Novel Initiator Ethyl 2-N, N-(Diethylamino)dithiocarbamoyl-Butyrate. J. Polym. Sci. Part A: Polym. Chem., 2006, 44, 32-41.
    212. Zhang, W.; Zhou, N. C.; Zhu, J.; Sun, B.; Zhu, X. L. Synthesis of Well-defined Naphthalene and Photo-labile Group Labeled Polystyrene via ATRP. J. Polym. Sci. Part A: Polym. Chem., 2006, 44, 510-518.
    213.. Moad, G.; Chiefari, J.; Chong, Y. K.; Krstina, J.; Mayadunne, R. T. A.; Postma, A.; Rizzardo, E.; Thang, S. H. Living Free Radical Polymerization withReversible Addtion-Fragmentation Chain Transfer(the life of RAFT). Polym. Int., 2000, 49, 993-1001.
    214.. Barner-Kowollik, C.; Quinn, J. F.; Morsley, D. R.; Davis, T. P. Modeling the Reversible Addition-Fragmentation Chain Transfer Process in Cumyl Dithiobenzoate-Mediatedstyrene Homopolymerizations: Assessing Rate Coefficients for the Addition-Fragmentation Equilibrium. J. Polym. Sci. Part A: Polym. Chem., 2001, 39, 1353-1365.
    215. Monteiro, M. J.; De Brouwer, H. Intermediate Radical Termination as the Mechanism or Retardation in Reversible Addition-Fragmentation Chain Transfer Polymerization. Macromolecules, 2001, 34, 349-352.
    216. Kwak, Y.; Goto, A.; Tsujii, Y.; Murata, Y.; Komatsu, K.; Fukuda, T. A Kinetic Study on the Rate Retardation in Radical Polymerization of Styrene with Addition-Fragmentation Chain Transfer. Macromolecules, 2002, 35, 3026-3029.
    217. You, Y. Z.; Hong, C. Y.; Wang, W. P.; Wang, P. H.; Lu, W. Q.; Pan, C. Y. A NovelStrategy to Synthesize Graft Copolymers with Controlled Branch Spacing Length and Defined Grafting Sites. Macromolecules, 2004, 37(19), 7140-7145.
    218. Cheng, G. L.; Hu, C. P.; Ying, S. K. Kinetics of Heterogeneous Atom Transfer Radical Polymerization of Styrene by using Bis(1,10-phenanthroline)copper Bromide. Macromol. Rapid Commun., 1999, 20(6), 303-307.
    219. Sin. S. L.; Gan. L. H.; Hu. X.; Tam. K. C.; Gan. Y. Y. Photochemical and Thermal Isomerizations of Azobenzene-Containing Amphiphilic Diblock Copolymers in Aqueous Micellar Aggregates and in Film. Macromolecules, 2005, 38, 3943-3948.
    220. Chong, Y. K.; Le, T. P. T.; Moad, G.; Rizzardo, E.; Thang, S. H. A More Versatile Route to Block Copolymers and Other Polymers of Complex Architecture by Living Radical Polymerization: The RAFT Process. Macromolecules, 1999, 32, 2071-2074.
    221. Chiefari, J.; Mayadunne, R. T. A.; Moad, C. L.; Moad, G.; Rizzardo, E.; Postma, A.; Skidmore, M. A.; Thang, S. H. Thiocarbonylthio Compounds (S=C(Z)S-R) in Free Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization). Effect of the Activating Group Z. Macromolecules, 2003, 36,2273-2283.
    222. Destarac, M.; Bzducha, W.; Taton, D.; Gauthier-Gillaizeau, I.; Zard, S. Z. Xanthates as Chain-Transfer Agents in Controlled Radical Polymerization (MADIX): Structural Effect of the O-Alkyl Group. Macromol. Rapid. Commun., 2002, 23, 1049-1054.
    223. Adamy, M.; van Herk, A. M.; Destarac, M.; Monteiro, M. J. Influence of the Chemical Structure of MADIX Agents on the RAFT Polymerization of Styrene. Macromolecules, 2003, 36, 2293-2301.
    224. Coote, M. L.; Radom, L. Substituent Effects in Xanthate-Mediated Polymerization of Vinyl Acetate: Ab Initio Evidence for an Alternative Fragmentation Pathway. Macromolecules, 2004, 37, 590-596.
    225. Lai, J. T.; Filla, D.; Shea, R. Functional Polymers from Novel Carboxyl-Terminated Trithiocarbonates as Highly Efficient RAFT Agents. Macromolecules, 2002, 35, 6754-6756.
    226. Hong, J.; Wang, Q.; Lin, Y.; Fan, Z. Styrene Polymerization in the Presence of Cyclic Trithiocarbonate. Macromolecules, 2005, 38, 2691-2695.
    227. Laus, M.; Papa, R.; Sparnacci, K.; Alberti, A.; Benaglia, M.; Macciantelli, D. Controlled Radical Polymerization of Styrene with Phosphoryl- and (Thiophosphoryl) Dithioformates as RAFT Agents. Macromolecules, 2001, 34, 7269-7275.
    228. Alberti, A.; Benaglia, M.; Laus, M.; Sparnacci, K. A New Facile Synthesis of Tertiary Dithioesters. J. Org. Chem., 2002, 67, 7911-7914.
    229. Bai, R. K.; You, Y. Z.; Pan, C. Y. Study on Controlled Free-Radical Polymerization in the Presence of Dithiobenzoic Acid (DTBA). Polymer International, 2000, 49, 898-902.
    230. Hong, Y. K.; Krstina, J.; Le, T. P. T.; Moad, G.; Postma, A.; Rizzardo, E.; Thang, S. H. Thiocarbonylthio Compounds [S=C(Ph)S-R] in Free Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization) Role of the Free-Radical Leaving Group (R). Macromolecules, 2003, 36, 2256-2272.
    231. Shim, S.; Lee, H.; Choe, S. Synthesis of Functionalized MonodispersePoly(methyl methacrylate) Nanoparticles by a RAFT Agent Carrying Carboxyl End Group. Macromolecules, 2004, 37, 5565-5571.
    232. Takolpuckdee, P.; Mars, C. A.; Perrier, S.; Archibald, S. J. Novel Amide-Based Chain Transfer Agent for Reversible Addition Fragmentation Chain Transfer Polymerization. Macromolecules, 2005, 38, 1057-1060
    233. Chen, M.; Ghiggino, K. P.; Mau, A. W. H.; Sasse, W. H. F.; Thang, S. H.; Wilson. G. J. Amphiphilic Acenaphthylene-Maleic Acid Light-Harvesting Alternating Copolymers: Reversible Addition-Fragmentation Chain Transfer Synthesis and Fluorescence. Macromolecules, 2005, 38, 3475-3481.
    234. Uhrich, K. E.; Cannizzaro, S. M.; Langer, R. S.; Shakesheff, K. M. Polymeric Systems for Controlled Drug Release. Chem. Rev., 1999, 99, 3181-3198.
    235. Lee, K. Y.; Mooney, D. J. Hydrogels for Tissue Engineering. Chem. Rev., 2000, 101, 1869-1880.
    236. Orienti, I.; Di Piera, A; Luppi, B.; Zecchi, V.; Arch, P. Crosslinked Polyvinylalcohol as Vellicles Forhydrophilic Drugs Harm. Pharm. Med. Chem., 2000, 333, 421-424.
    237. Hassan, C. M.; Stewart, J. E.; Peppas, N. A. Diffusion Characteristics of Frrze/thawed Po1y(vinyl alcohol)hydrogels: Applications to Protein Controlled Release from Multilaminate Devices. Eur. J. Pharm. Biopharm., 2000, 49, 161-165.
    238. Simms, R. W.; Davis, T. P.; Cunningham, M. F. Xanthate-Mediated Living Raical Polymerization of Vinyl Acetate in Miniemulsion. Macromol. Rapid Commun., 2005, 26, 592-596.
    239. Stenzel, M. H.; Cummins, L.; Roberts, G. E.; Davis, T. P.; Vana, P.; Barner-Kowollik, C. Xanthate Mediated Living Polymerization of Vinyl Acetate: A Systematic Variation in MADIX/RAFT Agent Structure. Macromol. Chem. Phys., 2003. 204, 1160-1168.
    240. Destarac, M.; Charmot, D.; Franck, X.; Zard, S. Z. Dithiocarbamates as Universal Reversible Addition-Fragmentation Chain Transfer Agents. Macromol. Rapid Commun., 2000, 21, 1035-1039.
    241. Mardare, D.; Matyjaszewski, K.“Living”Radical Polymerization of VinylAcetate. Macromolecules, 1994, 27, 645-649.
    242. Iovu, M. C.; Matyjaszewski, K. Controlled/Living Radical Polymerization of Vinyl Acetate by Degenerative Transfer with Alkyl Iodides. Macromolecules, 2003, 36, 9346-9354.
    243. Koumura, K.; Satoh, K.; Kamigaito, M.; Okamoto, Y. Iodine Transfer RadicalPolymerization of Vinyl Acetate in Fluoroalcohols for Simultaneous Control of Molecular Weight, Stereospecificity, and Regiospecificity. Macromolecules, 2006, 39, 4054-4061.
    244. Bryaskova, R.; Detrembleur, C.; Debuigne, A.; Jér?me, R. Cobalt-Mediated Radical Polymerization (CMRP) of Vinyl Acetate Initiated by Redox Systems: Toward the Scale-up of CMRP. Macromolecules, 2006, 39, 8263-8268.
    245. Debuigne, A.; Caille, J. R.; Jér?me, R. Synthesis of End-Functional Poly(vinyl acetate) by Cobalt-Mediated Radical Polymerization. Macromolecules, 2005, 38, 5452-5458.
    246. Debuigne, A.; Caille, J. R.; Jér?me, R. Highly Efficient Cobalt-Mediated Radical Polymerization of Vinyl Acetate. Angew Chem. Int. Ed., 2005, 44, 1101-1104.
    247. Wakioka, M.; Baek, K. Y.; Ando, T.; Kamigaito, M.; Sawamoto, M. Possibility of Living Radical Polymerization of Vinyl Acetate Catalyzed by Iron(I) Complex. Macromolecules, 2002, 35, 330-333.
    248. Xia, J. H.; Paik, H. J.; Matyjaszewski, K. Polymerization of Vinyl Acetate Promoted by Iron Complexes. Macromolecules, 1999, 32, 8310-8314.
    249. Yoshida, E. Nitroxide-Mediated Photo-Living Radical Polymerization of Vinyl Acetate. Colloid Polym. Sci., 2010, 288, 73-78.
    250. Otsu, T.; Matsunaga, T.; Doi, T.; Matsumoto, A. Features of Living Radical Polymerization of Vinyl Monomers in Homogeneous System Using N,N-Diethyldithiocarbamate Derivatives as Photoiniferters. Eur. Polym. J., 1995, 31, 67-78.
    251. Benaglia, M.; Chiefari, J.; Chong, Y. K.; Moad, G.; Rizzardo, E.; Thang, S. H. Universal (Switchable) RAFT Agents. J. Am. Chem. Soc., 2009, 131, 6914-6915.
    252. Benaglia, M.; Chen, M.; Chong, Y. K.; Moad, G.; Rizzardo, E.; Thang, S. H.Polystyrene-block-poly(vinyl acetate) through the Use of a Switchable RAFT Agent. Macromolecules, 2009, 42, 9384-9386.
    253. Tong, Y. Y.; Dong, Y.Q.; Du, F. S.; Li, Z. C. Synthesis of Well-Defined Poly(vinyl acetate)-b-Polystyrene by Combination of ATRP and RAFT Polymerization. Macromolecules, 2008, 41, 7339-7346.
    254. Debuigne, A.; Caille, J. R.; Willet, N.; Jér?me, R. Synthesis of Poly(vinyl acetate) and Poly(vinyl alcohol) Containing Block Copolymers by Combination of Cobalt-Mediated Radical Polymerization and ATRP. Macromolecules, 2005, 38, 9488-9496.
    255. Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem. Int. Ed., 2001, 40, 2004-2021.
    256. Demko, Z. P.; Sharpless, K. B. A Click Chemistry Approach to Tetrazoles by Huisgen 1,3-Dipolar Cycloaddition: Synthesis of 5-Sulfonyl Tetrazoles from Azides and Sulfonyl Cyanides. Angew Chem. Int. Ed., 2002, 41, 2110-2113.
    257. Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V. V.; Noodleman, L.; Fokin, V. V.; Sharpless, K. B. Copper(I)-Catalyzed Synthesis of Azoles. DFT Study Predicts Unprecedented Reactivity and Intermediates. J. Am. Chem. Soc., 2005, 127, 210-216.
    258. Himo, F.; Demko, L.; Noodleman, K. B.; Sharpless, K. B. Mechanisms of Tetrazole Formation by Addition of Azide to Nitriles. J. Am. Chem. Soc., 2002, 124, 12210-12216.
    259.Tsarevsky, N. V.; Bernaerts, K. V.; Dufour, B.; Matyjaszewski, K. Well-Defined (Co)polymers with 5-Vinyltetrazole Units via Combination of Atom TransferRadical (Co)polymerization of Acrylonitrile and“Click Chemistry”-Type Postpolymerization Modification. Macromolecules, 2004, 37, 9308-9313.
    260. Sumerlin, B. S.; Tsarevsky, N. V.; Louche, G.; Robert, Y.; Matyjaszewski, K. Highly Efficient“Click”Functionalization of Poly(3-azidopropyl methacrylate) Prepared by ATRP. Macromolecules, 2005, 38, 7540-7545.
    261. Lutz, J-F.; Brner, H. G.; Weichehan, K. Combining ATRP and“Click”Chemistry: a Promising Platform toward Functional Biocompatible Polymers and Polymer Bioconjugates. Macromolecules, 2006, 39, 6376-6383.
    262. Gao, H.; Louche, G.; Jahed, N.; Golas, P.; Sumerlin, B. S.; Matyjaszewski, K. Gradient Polymer Elution Chromatographic Analysis ofα,ω-Dihydroxypolystyrene Synthesized via ATRP and Click Chemistry. Macromolecules, 2005, 38, 8979-8982.
    263. Hest, J. C. M.; Opsteen, J. A. O. Modular Synthesis of Block Copolymers via Cycloaddition of Terminal Azide and Alkyne Functionalized Polymers. Chem. Commun., 2005, 57-59.
    264. Dirks, A. J. T.; Berkel, S. S.; Hatzakis, N. S.; Opsteen, J. A. O.; Delft, F. L.; Cornelissen, L. M.; Rowan, A. E.; Hest, J. C. M. Preparation of Biohybrid Amphiphiles via the Copper Catalyzed Huisgen [3+2] Dipolar Cycloaddition Reaction. Chem. Commun., 2005, 33, 4172-4174.
    265 Gao, H.; Matyjaszewski, K. Synthesis of Star Polymers by a Combination of ATRP and the“Click”Coupling Method. Macromolecules, 2006, 39, 4960-4965.
    266. Johnson, J. A.; Lewis, D. R.; Diaz, D. D.; Finn, M. G.; Koberstein, J. T.; Turro, N. J. Synthesis of Degradable Model Networks via ATRP and Click Chemistry. J. Am. Chem. Soc., 2006, 128, 6564-6565.
    267. Mantovani, G.; Ladmiral, V.; Tao, L.; Haddleton, D. M. One-pot Tandem Living Radical Polymerisation–Huisgens Cycloaddition Process (‘‘Click’’) Catalysed by N-alkyl-2-pyridylmethanimine/Cu(I)Br Complexes. Chem. Commun., 2005, 2089-2091.
    268. Quémener, D.; Davis, T. P.; Barner-Kowollik, C.; Stenzel, M. H. RAFT and Click Chemistry: A Versatile Approach to Well-Defined Block Copolymers. Chem. Commun., 2006, 48, 5051-5053.
    269. Chen, F.; Cheng, Z. P.; Zhu, J.; Zhang, W.; Zhu, X. L. Synthesis of Poly (vinyl acetate) with Fluorescence via a Combination of RAFT/MADIX and“Click”Chemistry. Eur. Polym. J., 2008, 44, 1789-1795.
    270.Golas, P. L.; Tsarevsky, N. V.; Sumerlin, B. S.; Matyjaszewski, K. Catalyst Performance in“Click”Coupling Reactions of Polymers Prepared by ATRP: Ligand and Metal Effects. Macromolecules, 2006, 39, 6451-6457.
    271.Chan, T. R.; Hilgraf, R.; Sharpless, K. B.; Fokin, V. V. Polytriazoles as Copper(I)-Stabilizing Ligands in Catalysis. Org. Lett., 2004, 6, 2853-2855.
    272. Huang, X.; Huang, Z.; Huang, J. Copolymerization of Styrene and Vinyl Acetate by Successive Photoinduced Charge-Transfer Polymerization. J. Polym. Sci. Part A: Polym. Chem., 2000, 38, 914-920.
    273. Widmarier, J. M.; Meyer, G. C. J. Therm. Anal., 1982, 23, 193-199.
    274. Hirai, H.; Gotoh, Y. Alternating Radical Copolymerization in Polymeric Materials Encyclopedia; CRC Press: Boca Raton, FL, 1996.
    275. Trivedi, B. C.; Culbertson B. M. Maleic anhydride. New York: Plenum Press; 1982.
    276. Cowie, J. M. G. editor. Alternating copolymers. New York: Plenum Press; 1985.
    277. Zhao, Y.; Jiang, J.; Liu, H.; Chen, C.; Xi, F. Atom Transfer Radical Copolymerization of n-Hexylmaleimide and Styrene in an Ionic Liquid. J. Polym. Sci. Part A: Polym. Chem., 2002, 40, 3360-3366.
    278. Shi, Y.; Fu, Z.; Yang, W. Synthesis of Comb-like Polystyrene with Poly(N-phenyl maleimide-alt-p-chloromethyl styrene) as Macroinitiator. J. Polym. Sci. Part A: Polym. Chem., 2006, 44, 2069-2075.
    279. Chen, G. Q.; Wu, Z. Q.; W, J. R.; Li, Z. C.; Li, F. M. Synthesis of Alternating Copolymers of N-Substituted Maleimides with Styrene via Atom Transfer Radical Polymerization. Macromolecules, 2000, 33, 232-234.
    280. Oishi, T.; Sase, K.; Tsutsumi, H. Syntheses and Thermostabilities of N-[4-(N-substituted aminocarbonyl)phenyl]maleimide Polymers J. Polym. Sci. Part A: Polym. Chem., 1998, 36, 2001-20012.
    281. Mohanmed, A. A.; Jebrael, F. H. Copolymerization of Styrene with N-arylmaleimides. Macromolecules, 1986, 19, 32-37.
    282. Nieuwhof, R. P.; Koudijs, A.; Marcelis, A. T. M.; Sudholter, E. J. R. Modification of Side-Chain Liquid-Crystalline Poly(maleic anhydride-alt-1-alkene)s with Mesogen-Containing Alcohols. Macromolecules, 1999, 32, 6499-6506.
    283. Cherioux, F.; Audebert, P. New Third-Order Nonlinear Polymers Functionalized with Disperse Red and Disperse Orange Chromophores with Increased Stability. Chem. Mater., 1997, 9, 2921-2927.
    284. Sung, P.; Chen, C.; Wu, S.; Huang, J. Y. New Third-Order Nonlinear Polymers Functionalized with Disperse Red and Disperse Orange Chromophores with Increased Stability. J. Polym. Sci. Part A: Polym. Chem., 1996, 34, 2189-2197.
    285. Jeng, R. J.; Chang, C. C.; Chen, C. P.; Chen, C. T.; Su, W. C. Thermally stable crosslinked NLO materials based on maleimides. Polymer, 2003, 44, 143-155.
    286. Moad, G.; Rizzardo, E.; Thang, S. H. Living Radical Polymerization by the RAFT Process. Aust. J. Chem., 2005, 58, 379-410.
    287. De Brouwer, H.; Schellekens, M. A. J.; Klumperman, B.; Monteiro, M. J.; German, A. L. Controlled Radical Copolymerization of Styrene and Maleic Anhydride and the Synthesis of Novel Polyolefin-Based Block Copolymers by Reversible Addition- Fragmentation Chain-Transfer (RAFT) Polymerization. J. Polym. Sci., Part A: Polym. Chem., 2000, 38, 3596-3603.
    288. Wang, R.; Luo, Y. W.; Li, B. G.; Zhu, S. P. Modeling of Branching and Gelation in RAFT Copolymerization of Vinyl/Divinyl Systems. Macromolecules, 2009, 42, 85-94.
    289. Vo, C. D.; Rosselgong, J.; Armes, S. P.; Billingham, N. C. RAFT Synthesis of Branched Acrylic Copolymers. Macromolecules, 2007, 40, 7119-7125.
    290. Rosselgong, J.; Armes, S. P.; Barton, W.; Price, D. Synthesis of Highly Branched Methacrylic Copolymers: Observation of Near-Ideal Behavior using RAFT Polymerization. Macromolecules, 2009, 42, 5919-5924.
    291. Ho, M. S.; Barrett. C.; Paterson, J.; Esteghamatian, M.; Natansohn, A.; Rochon, P. Synthesis and Optical Properties of Poly{(4-nitrophenyl) -[3-[N-[2- (methacryloyloxy)ethyl]-carbazolyl]] diazene. Macromolecules, 1996, 29, 4613-4618.
    292. Jiang, X. L.; Li, L.; Kumar, J.; Kim, D. Y. Unusual Polarization Dependent Optical Erasure of Surface Relief Gratings on Azobenzene Polymer Films. Appl. Phys. Lett., 1998, 72, 2502-2504.
    293. Tripathy S. K.; Kim D. Y.; Li, L.; Kumar, J. Photofabrication of Surfaces for Holograms. Chemtech., 1998, 28, 34-40.
    294. Barret, C. J.; Rochon, A. L.; Natansohn, A. L. J. Chem. Phys., 1998, 109, 1506-1516.
    295. Caruso, U.; Diana, R.; Fort, A.; Panunzi, B.; Roviello, A. Synthesis of Polymers Containing Second Order NLO-Active Thiophene and Thiazole Based Chromophores. Macromol. Symposia., 2006, 234, 87-93.
    296. Facchetti, A.; Abbotto, A.; Beverina, L.; van der Boom, M. E.; Dutta, P.; Evmenenko, G.; Marks, T. J.; Pagani, G. A. Azinium?(π-Bridge)?Pyrrole NLO-Phores: Influence of Heterocycle Acceptors on Chromophoric and Self-Assembled Thin-Film Properties. Chem. Mater., 2002, 14, 4996-5005.
    297. Tsarevsky, N. V.; Bernaerts, K. V.; Dufour, B.; DuPrez, F. E.; Matyjaszewski, K. Well-Defined (Co)polymers with 5-Vinyltetrazole Units via Combination of Atom Transfer Radical (Co)polymerization of Acrylonitrile and "Click Chemistry"-Type Postpolymerization Modification. Macromolecules, 2004, 37, 9308-9313.
    298. Darkow, R.; Yoshikawa, M.; Kitao, T.; Tomaschewski, G.; Schellenberg, J. Photomodification of a Poly(acrylonitrile-co-butadiene-co-styrene) Containing Diaryl Tetrazolyl Groups. J. Polym. Sci., Part A: Polym. Chem., 1994, 32, 1657-1664.
    299. Szwarc, M. Living Polymerization of Styrene, Nature, 1956, 178, 1168-1175.
    300. Johnstone, R. A. W.; Pricet, P. J. Metal-Assisted Reactions: part 19. Burst Kinetics in Heterogeneous Catalytic Transfer Hydrogenolysis. J. Chem. Soc., Perkin Trans. 1, 1987, 1069-1076.
    301. Ramadas, K.; Srinivasan, N. Synthetic Communications an International Journal for Rapid Communication of Synthetic Organic Chemistry. Syn. Commun., 1992, 22, 3189-3195.
    302. Cao, H. Z.; Zhang, W.; Zhu, J.; Chen, X. R.; Cheng, Z. P.; Wu, J. H.; Zhu, X. L. Azo Polymers with Electronical Push and Pull Structures Prepared via RAFT Polymerization and Its Photoinduced Birefringence Behavior. Express Polymer Letters, 2008, 2, 589-601.
    303. Klopman, G.; Doddapaneni, N. Electrochemical Behavior of Cis and Trans Azobenzenes. J. Phys. Chem., 1974, 78, 1825-1828.
    304. Li, Z. A.; Zeng, Q.; Yu, G.; Li, Z.; Ye, C.; Liu, Y. Q.; Qin, J. G. New Azo Chromophore-Containing Conjugated Polymers: Facile Synthesis by Using“Click”Chemistry and Enhanced Nonlinear Optical Properties through the Introduction ofSuitable Isolation Groups. Macromol. Rapid Commun., 2008, 29, 136-141.
    305. Moss, R. A.; Jang, E, J.; Jespersen, K. K. Kinetics of the Reactions of Phenylchlorocarbene with Alkyl Azides. Tetra. Lett., 1995, 36, 1409-1412.
    306. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective“Ligation”of Azides and Terminal Alkynes. Angew. Chem. Int. Ed., 2002, 41, 2596-2599.
    307. Tornoe, C. W.; Christensen C.; Meldal, M. Peptidotriazoles on SolidPhase: [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of TerminalAlkynes to Azides. J. Org. Chem., 2002, 67, 3057-3064.
    308. D. Diaz, S.; Punna, R. P.; Holze, A. K.; McPherson, K. B.; Sharpless, V. V.; Fokin; Finn, M. G. Click Chemistry in Materials Synthesis. 1. Adhesive Polymers from Copper-Catalyzed Azide-Alkyne Cycloaddition. J. Polym. Sci. Part A: Polym. Chem., 2004, 42, 4392-4403.
    309. Meudtner, R.; Hecht, S. Responsive Backbones Based on Alternating Triazole-Pyridine/Benzene Copolymers: From Helically Folding Polymers to Metallosupramolecularly Crosslinked Gels. Macromol. Rapid Commun., 2008, 29, 347-351.
    310. Binauld, S.; Damiron, D.; Hamaide, T. Pasault, J. P.; Fleury, E.; Drockenmuller. E. Click chemistry step growth polymerization of novel -azide--alkyne monomers. Chem. Commun., 2008, 4138-4140.
    311. Killops, K. L.; Campos, L. M.; Hawker, C. J. Robust, Efficient, and Orthogonal Synthesis of Dendrimers via Thiol-ene“Click”Chemistry. J. Am. Chem. Soc., 2008, 130, 5062-5064.
    312. Helms, B.; Mynar, J. L.; Hawker, C. J.; Fréchet, J. M. J. Dendronized Linear Polymers via“Click Chemistry”. J. Am. Chem. Soc., 2004, 126, 15020-15021.
    313. Malkoch, M.; Schleicher, K.; Drockenmuller, E.; Hawker, C. J.; Russell, T. P. Structurally Diverse Dendritic Libraries: A Highly Efficient Functionalization Approach Using Click Chemistry. Macromolecules, 2005, 38, 3663-3678.
    314. Wu, P.; Malkoch, M.; Hunt, J. N.; Vestberg, R.; Fokin, V. V.; Sharpless, K. B.; Hawker, C. J. Multivalent, Bifunctional Dendrimers Prepared by Click Chemistry.Chem. Commun., 2005, 5775-5777.
    315. Wu, P.; Feldman, A. K.; Nugent. A. K.; Hawker, C. J.; Scheel, A.; Fréchet, J. M. J.; Sharpless, K. B.; Fokin, V. V. Efficiency and Fidelity in a Click-Chemistry Route to Triazole Dendrimers by the Copper(I)- Catalyzed Ligation of Azides and Alkynes. Angew Chem. Int. Ed., 2004, 43, 3928-3932.
    316. Slater, M.; Snauko, M.; Svec, F.; Fréchet, J. M. J.“Click Chemistry”in the Preparation of Porous Polymer-Based Particulate Stationary Phases forμ-HPLC Separation of Peptides and Proteins. Anal. Chem., 2006, 78, 4969-4975.
    317. Joralemon, M. J.; O’Reilly, R. K.; Matson, J. B.; Nugent, A. K.; Hawker, C. J.; Wooley, K. L. Dendrimers Clicked Together Divergently. Macromolecules, 2005, 38, 5436-5443.
    318. Malkoch, M.; Thibault, R. J.; Drockenmuller, E.; Messerschmidt, M.; Viot, B.; Russell, T. P.; Hawker, C. J. Orthogonal Approaches to the Simultaneous and Cascade Functionalization of Macromolecules Using Click Chemistry. J. Am. Chem. Soc., 2005, 127, 14942-14949.
    319. Tsarevsky, N. V.; Bernaerts, K. V.; Dufour, B.; Matyjaszewski, K. Well-Defined (Co)polymers with 5-Vinyltetrazole Units via Combination of Atom Transfer Radical (Co)polymerization of Acrylonitrile and“Click Chemistry”-Type Postpolymerization Modification. Macromolecules, 2004, 37, 9308-9313.
    320. Smitha, P.; Asha, S. K.; Pillai, C. K. S. Synthesis, Characterization, and Hyperpolarizability Measurements of Main-Chain Azobenzene Molecules. J. Polym Sci. Part A Polym. Chem., 2005, 43, 4455-4468.
    321. Qin, A. J.; Lam, J. W. Y.; Tang, L.; Jim, C. K. W.; Zhao, H.; Sun, J. Z.; Yang, B. Z. Polytriazoles with Aggregation-Induced Emission Characteristics: Synthesis by Click Polymerization and Application as Explosive Chemosensors. Macromolecules, 2009, 42, 1421-1424.
    322. Nagao, Y.; Takasu, A. Click Polyester: Synthesis of Polyesters Containing Triazole Units in the Main Chain by Click Chemistry and Improved Thermal Property. Macromol. Rapid Commun., 2009, 30, 199-203.
    323. Chernykh, A.; Agag, T.; Ishida, H. Synthesis of Linear Polymers ContainingBenzoxazine Moieties in the Main Chain with High Molecular Design Versatility via Click reaction. Polymer, 2009, 50, 382-390.
    324. Donnelly, P. S.; Zanatta, S. D.; Zammit, S. C.; White, J. M.; Williams, S. J. Click Cycloaddition Catalysts: Copper(I) and Copper(II) Tris(triazolylmethyl)amine Complexes. Chem. Commun., 2008, 21, 2459-2461.
    325. Qin, A. J.; Lam, J. W. Y.; Jim, C. K. W.; Zhang, L.; Yan, J. J.; Haussler, M.; Liu, J. Z.; Dong, Y. Q.; Liang, D. H.; Chen, E. Q.; Jia, G. C.; Tang, B. Z. Hyperbranched Polytriazoles: Click Polymerization, Regioisomeric Structure, Light Emission, and Fluorescent Patterning. Macromolecules, 2008, 41, 3808-3822.
    326. Qin, A. J.; Jim, C. K. W.; Lu, W. X.; Lam, J. W. Y.; Haussler, M.; Dong, Y. Q.; Sung, H. H. Y.; Wikkiams, I. D.; Wong, G. K. L.; Tang, B. Z. Click Polymerization: Facile Synthesis of Functional Poly(aroyltriazole)s by Metal-Free, Regioselective 1,3-Dipolar Polycycloaddition. Macromolecules, 2007, 40, 2308-2317.
    327. Tian, J. J.; Wan, L. Q.; Huang, J. Z.; Hu, Y. H.; Huang, F. R.; Du, L. Synthesis and Characterization of a Novel Polytriazole Resin with Low-Temperature Curing Character. Polym. Adv. Technol., 2007, 18, 556-561.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700