用户名: 密码: 验证码:
基于激光干涉技术的微纳结构制造研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在本论文中,我们研究了利用激光干涉制造不同微纳结构的方法。基于偶氮苯聚合物,研究了可控的微纳结构的制造方法。掌握了一些激光控制技术,制作了一系列不同微纳尺度的结构。本文的主要内容包括:
     1.激光和偶氮苯聚合物材料相互作用研究。介绍了偶氮苯聚合物的种类和光致异构化的机理。详细分析了激光照射偶氮苯材料所导致的各种移动和对应的光响应性质,包括光致取向,光致质量迁移,光机效应等。然后重点介绍了光致取向的表征,测量方法。讨论了影响偶氮苯聚合物材料光响应性质的因素。研究了取代基,热交联和掺银纳米粒子对光致双折射的形成速度,幅度和可重复擦写性。实验结果表明,通过引入推拉电子基团(取代基)可以有效提高偶氮苯材料的光致响应速度和光致双折射的大小;热交联的方式可以有效抑制偶氮苯材料的光致质量迁移;研究了两种方法制作得到的银纳米粒子/偶氮苯聚合物复合材料的光响应性质,包括直接掺杂和原位还原得到的材料。
     利用干涉技术制作周期和准周期的微纳结构若干问题研究。
     利用多光束激光干涉技术在空间上可以形成周期或准周期分布的能量分布结构。通过参数控制,如相位控制,偏振态控制和能量配比可以调节干涉场单元结构的能量分布。偏振态控制的双光束全息干涉可以在偶氮苯材料中形成不同形式的光栅,如表面起伏光栅和纯折射率光栅。四光束以上的多光束干涉场能量分布受光束的相位和偏振态影响较大。三光束干涉的能量单元结构不受干涉光相位的影响,通过改变干涉光的偏振态组合可以得到不同的能量场分布,从而在材料上形成各种复杂的表面结构。通过双光束或三光束多曝光的技术可以在样品上制作多种准周期微纳结构。
     光致偶氮苯聚合物材料质量迁移规律研究
     基于高能量激光烧蚀,采用偏振控制三光束干涉技术在偶氮苯聚合物上制作得到的六角形分布的偶氮苯聚合物圆台结构。利用偏振全息技术调控空间的能量场和偏振分布,并照射圆形的偶氮苯聚合物产生凸起结构。(P, P)干涉模式下,圆形凸起结构沿着P偏振方向发生变形;(S, S)干涉模式下,圆形结构由于热效应在平面内没有发生变形;(+45°, -45°)和(S, P)干涉模式下,结构并不发生变形。采用单光束均匀能量照射时,圆形结构沿着光束的偏振方向发生变形。采用微透镜对光束聚焦的模型分析得到,单光束照射在微凸起结构内会形成能量梯度,且能量场分布关于中心对称。实验结果表明,照射光束的偏振矢量和能量梯度保持方向一致时,偶氮苯聚合物内发生光致质量迁移。
     光致偶氮苯聚合物双尺度微纳结构形成研究。
     从仿生学角度出发,双尺度结构在高疏水性,结构色和高吸附力等方面都具有潜在的应用。针对不同取代基(主要是氰基和甲基)的偶氮苯聚合物材料,采用干涉技术制造可控的双尺度结构。首先利用单光束照射技术在不同的偶氮苯聚合物材料制造单尺度纳米结构。实验结果表明在氰基聚合物材料上得到纳米级的带状液晶结构,其取向与照射光的偏振态保持一致;而甲基聚合物材料上只能得到纳米簇结构,簇的形态不受照射光的偏振态影响。利用干涉在偶氮苯聚合物上制作得到了具有纳米结构的微米周期结构,即形成双尺度微纳结构。纳米结构的大小,走向等可以通过控制干涉激光的偏振态,照射功率和照射时间进行控制。
     矢量偏振光形成技术和性质研究。
     基于高双折射C切钒酸钇晶体,我们得到了轴对称偏振光,包括径向偏振光和角向偏振光。采用C切钒酸钇晶体产生轴对称偏振光具有成本低,可以根据工作波长进行调节的优点,在实验应用中具有较强的可行性。基于波片对偏振的转换的原理和偶氮苯聚合物具有光致双折射的性质,我们设计并制作了轴对称相位延迟片。通过激光诱导在偶氮苯薄膜中形成轴对称分布的分子排列,得到相位延迟均匀,光轴轴对称分布的相位延迟片。这种相位延迟片可以通过改变材料的参数,如厚度、材料组分等,得到稳定的相位延迟,从而能够用于产生不同的轴对称偏振光。
In this thesis, the approaches of the fabrication of micro and nano structures are investigated. Several technologies of controlling laser beams are developed and applied to generate a series of surface patterns and volume structures. The contents of the thesis are as follows:
     1. Investigation of the laser and azopolymer interactions.
     The introduction of azopolymers and their properties are presented. Laser induced isomerization are introduced. The laser induced motions in different scales and the corresponding responsive properties, like photo-induced orientation, mass migration, photo-mechanics effect, are presented. The characterization and the measurement approach are discussed. Finally, azopolymer with different substituent groups, cross-linked degrees and composite polymer (azopolymer doped with Ag nano particles) are investigated by laser induced orientation. The experimental results illustrate that substituent group has strong influence upon the orientation of azopolymer. Cross-linking will suppress mass migration inside azopolymer. Azopolymer doped with Ag nano particle will quicken the orientation of the composite material in low consistency intermingle, while the orientation speed will be slacked off in high consistency intermingles. Ag nanoparticle/azopolymer nanocomposites are prepared with controlled concentration of Ag nanoparticles by in situ reduction of Ag(I)–diketone complexes in an azopolymer matrix. Compared with pure azopolymer, the birefringence of this nanocomposite is more stable.
     2. Fabrication of periodic and quasi-periodic micro and nano structures via laser interference technologies. The multiple-beam interference technology is used to modulate the intensity distribution and the polarization states in the space by controlling the phase, the polarization and the intensity of the interfering beams. Via two-beam polarization holography, surface relief gratings and refractive index gratings are generated. Simulative results by Matlab illuminate that if the number of the interfering beams is above (including) four, the phase and the polarization of the interference have strong influence upon the interfering field. In three-beam interference case, the phase of the interfering beams will not change the shape of the intensity patterns. However, by controlling the polarization of the interfering beams, we can obtain different patterns in the interfering field, which can be applied to generate different textures. Multiple exposures of two-beam interference and three-beam interference can be utilized to generate quasi-periodic microstructures on different sample surface.
     3. Investigation of the mechanism laser induced mass migration inside azopolymer materials. Hexagonally distributed circular caps are generated on the surface of azopolymer films by polarization controlled three-beam interference ablation and utilized as the investigated objectives to demonstrate the mechanism of laser induced mass migration inside azopolymer materials. Two beam interference of different polarization arrangements are adjusted and used to expose the circular caps on azopolymers. While the interfering beams are of (P, P) mode, the caps are stretched along the direction of P polarization. If the interfering mode is set to (P, P) and (+45°, -45°), the caps are seldom deformed in the surface plane. When the interfering beams are of (S, P) mode, the caps are deformed in the tilted direction. The experimental results illuminate that only when the intensity gradient exists in the direction of the irradiating polarization, the mass migration happens inside azopolymers.
     4. Fabrication of dual-scale structure on azopolymer. Dual-scale microstructures can be used as superhydrophobic surface, structural color and high adhesive surface. Based on laser interference technology, dual-scale microstructures can be fabricated on azopolymer surface. Two different materials four amorphous side chain azopolymers with cyano group (AzoCN), methyl group (AzoCH3) are used as investigated objectives. Experimental results illuminate that nano band textures will be formed on the surface of azopolymers with cyano group (AzoCN) when the sample is exposed by single beam exposure. However, only nano cluster structures will be formed on azopolymers with methyl group (AzoCH3). The size of the nano structures is dependent on the laser exposure dose and the laser power. While the sample are exposed to two beam interference of different modes, on AzoCN, dual-scale structures with nano textures in different directions can be formed, and on AzoCH3, dual-scale structures with nano cluster structuresare formed.
     5. Generation of cylindrical vector beams. Cylindrical vector beams, like radially polarized beams and azimuthally polarized beams are generated by carefully selecting the output light of high birefringence C-cut YVO4 crystal. YVO4 crystal can be used produced cylindrical vector beams with different wavelengths. Based on azopolymer, we designed and produced axisymmetric phase retardation plates (ASPRP). The phase retardation of ASPRP can be easily controlled by materials, the thickness of the sample films and the laser dose. ASPRP can be used to generate cylindrical vector beams.
引文
[1]崔铮,微纳米加工技术及其应用综述,物理,35,34-39,2006。
    [2]郭锐,博士论文,合肥:中国科学技术大学,2008。
    [4]赵中里,聚合物微纳制造技术现状及展望[J], 2008,国际塑料加工技术高峰论坛(6.18-6.21,桂林)
    [5] Stephen A. Campbell,微电子制造科学原理与工程技术(第2版) [M],北京:电子工业出版社,2003。
    [6]崔铮,微纳米加工技术及其应用[M],北京:高等教育出版社, 2005。
    [7] W. Ehrfeld, V. Hessel, H. L?we, C. Schulz and L. Weber,Materials of LIGA technology[J], Microsystem technologies, 5, 105-112,1999。
    [8] Jost Goettert et al., Proc. Of The International MEMS Workshop 2001, 62
    [9] W. Ehrfeld, V. Hessel, H. L?we, C. Schulz and L. Weber,Materials of LIGA technology[J], Microsystem technologies, 5, 105-112,1999。
    [10] Kumar, A., Biebuyck, H.A. and Whitesides, G.M. J. Am. Chem. Soc. 114 (1992) 9188-9189.
    [11] http://www.research.ibm.com/nanoscience/local_oxidation.html
    [12] T. Fujimura, T. Itoh, T. Koda, H. Miyazaki and K. Ohtaka,“Near-field optical images on the surface of ordered dielectric microparticle layer”
    [13] Sanna Arpiainen, Fredrik Jonsson, James R. Dekker, Gudrun Kocher, Worawut Khunsin, Clivia M. Sotomayor Torres, Jouni Ahopelto, Site-Selective Self-Assembly of Colloidal Photonic Crystals, Advanced Functional Materials, 19, 1247–1253, 2009.
    [14] Chou, S.Y.; Krauss, P.R.; Renstrom, P.J. (1996). "Imprint Lithography with 25-Nanometer Resolution". Science 272 (5258): 85–7
    [15]李勇,王显军,郭旻,周兆英,严晓敏,胡敏,微细电火花加工关键技术研究,清华大学学报自然科学版,39,990812-1-8,1999
    [16]张璧,罗红平,周志雄,任莹晖,电化学微加工技术的新进展及关键技术,中国机械工程,2007, 18(12)
    [17]刘伟军.快速成型技术及其应用.北京:机械工业出版社, 2005.
    [18] Si Wu, Shiyuan Duan, Zhangyuan Lei, Wei Su, Zhoushun Zhang, Keyi Wang and Qijin Zhang, J. Mater. Chem., 20, 5202–5209, 2010
    [19] Yanlei Hu, Zhoushun Zhang, Yuhang Chen, Qijin Zhang, and Wenhao Huang, Two-photon-induced polarization-multiplexed and multilevel storage in photoisomeric copolymer film, 35, 46-48, 2010
    [20] http://www.scanlab.de/en/-/products/overview
    [21] M. Campbell, D.N. Sharp, M.T. Harrison, R.G. Denning and A.J. Turberfield, Nature, 2000, 404, 53.
    [22] Stefan Beckemper, Jintang Huang, Arnold Gillner and Keyi Wang, Generation of periodic micro- and nano-structures by parameter-controlled three-beam laser interference technique, JLMN-Journal of Laser Micro/Nanoengineering, 6, 49 ( 2011).
    [23]左铁钏,北京工业大学学报[J],北京工业大学学报,30,260-264,2004。
    [24]赵中里,聚合物微纳制造技术现状及展望[J], 2008,国际塑料加工技术高峰论坛(6.18-6.21,桂林)
    [25] Dalton, L.; Canva, M.; Stegeman, G. I., et al., Polymer for Photonics Application I. In Advanced in Polymer Science, Lee, K.-S., Ed. Springer-Verlag GmbH: 2002; Vol. 158.
    [26] Kajzar, F.; Lee, K.-S.; Jen, A. K.-Y., et al., Polymer for Photonics Application II. In Advanced in Polymer Science, Lee, K.-S., Ed. Springer-Verlag GmbH: 2003; Vol. 161.
    [27] Georgiou, S.; Kautek, W.; Kruger, J., et al., Polymer and light. In Advanced in Polymer Science, Lippert, T. K., Ed. Springer-Verlag GmbH: 2004; Vol. 168.
    [28] Hugel, T.; Holland, N. B.; Cattani, A., et al. 2002. Science 296, 1103-1106.
    [29] Yu, Y. L.; Nakano, M.; Ikeda, T. 2003. Nature 425, 145.
    [30] Kopp, V. I.; Churikov, V. M.; Singer, J., et al. 2004. Science 305, 74-75.
    [31] Camacho-Lopez, M.; Finkelmann, H.; Palffy-Muhoray, P., et al. 2004. Nat. Mater. 3, 307 -310.
    [32] Kondo, M.; Yu, Y.; Ikeda, T. 2006. Angew. Chem. Int. Ed. 45, 1378-1382.
    [33] Lin, T.-H.; Huang, Y.; Fuh, A. Y. G., et al. 2006. Opt. Express 14, 2359-2364.
    [34] Gao, J.; He, Y.; Liu, F., et al. 2007. Chem. Mater. 19, 3877-3881.
    [35] Luc, J.; Bouchouit, K.; Czaplicki, R., et al. 2008. Opt. Express 16, 15633-15639.
    [36] Wu, S.; Yu, X.; Huang, J., et al. 2008. J. Mater. Chem. 18, 3223–3229.
    [37] Yamada, M.; Kondo, M.; Mamiya, J.-i., et al. 2008. Angew. Chem. Int. Ed. 47, 4986-4988.
    [38] Henzl, J.; Mehlhorn, M.; Gawronski, H., et al. 2006. Angew. Chem. Int. Ed. 45, 603-606.
    [39] Koike, Y. 2006. Japan Nononet Bulletin, 1-3.
    [1]周京利. 2006特殊化学或物理因素对偶氮聚合物光致取向的影响.中国科学技术大学,合肥: pp.1-67.
    [2] Si Wu, Xiaowu Yu, Jintang Huang, Jing Shen, Qing Yan, Xin Wang, Wenxuan Wu, Yanhua Luo, Keyi Wang and Qijin Zhang, Optically controllable polarized luminescence from azopolymer films doped with a lanthanide complex, J.Mater.Chem.,18,3223 (2008).
    [3] Chigrinov, V.; Kwok, H. S.; Takada, H., et al. 2007. SID Symposium Digest of Technical Papers 38, 1474-1477
    [4] Zhou, J.; Yang, J.; Ke, Y., et al. 2008. Opt. Mater. 30, 1787-1795.
    [5] Si Wu, Shiyuan Duan, Zhangyuan Lei, Wei Su, Zhoushun Zhang, Keyi Wang and Qijin Zhang. Supramolecular bisazopolymers exhibiting enhanced photoinduced birefringence and enhanced stability of birefringence for four-dimensional optical recording, J. Mater. Chem., 20, 5202-5209, 2010
    [6] Yanhua Luo, Jingli Zhou, Qing Yan, Wei Su, Zengchang Li, Qijin Zhang, Jintang Huang andKeyi Wang, Optical manipulable polymer optical fiber Bragg gratings with azopolymer as core material, Appl. Phys. Lett. 91, 071110 (2007).
    [7] Todorov, T.; Tomova, N.; Nikolova, L. 1983. Opt. Commun. 1983, 123-126.
    [8] Rochon, P.; Gosselin, J.; Natansohn, A., et al. 1992. Appl. Phys. Lett. 60, 4-5.
    [9] Ichimura, K. 2000. Chem. Rev. 100, 1847-1874.
    [10] Eisenbach, C. D. 1978. Makromol. Chem. 179, 2489-2506.
    [11] Xie, S.; Natansohn, A.; Rochon, P. 1993. Chem. Mater. 5, 403-411.
    [12] Rau, H., 1990; Photochemistry and Photophysics. CRC Press: Boca Raton, FL, 11, 119–141.
    [13] Rau, H.; Lueddecke, E. 1982. J. Am. Chem. Soc. 104, 1616-1620.
    [14] Diau, E. W.-G. 2004. J. Phys. Chem. A 108, 950–956.
    [15]王罗新;王晓工2008.化学通报71,243-248.
    [16] Li, Z.; Ma, H.; Zhang, Q., et al. 2005. J. Optoelectron. Adv. Mater. 7, 1039 - 1046.
    [17] Mita, I.; Horie, K.; Hirao, K. 1989. Macromolecules 22, 558-563.
    [18]罗艳华,博士论文,合肥:中国科学技术大学,2009.
    [19] He Linghui, Deformation of azo elastomers due to illumination of polarized light,中国科技论文在线.
    [20] Choi, S. W.; Kawauchi, S.; Ha, N. Y., et al. 2007. Phys. Chem. Chem. Phys. 9, 3671-3681.
    [21] Zheng, Z.; Wang, L.; Su, Z., et al. 2007. J. Photochem. Photobiol. A-Chem. 185, 338–344.
    [22] Kevin G. Yager, Christopher J. Barrett, Light-Induced Nanostructure Formation using Azobenzene Polymers, Polymeric Nanostructures and Their Applications, 0: 1–38, 2006
    [23] Rochon P, Batalla E and Natansohn A 1995 Optically induced surface gratings on azoaromatic polymer films Appl. Phys. Lett. 66 136-9
    [24] Kim DY, Tripathy SK, Li L and Kumar J 1995 Laser-induced holographic surface relief gratings on nonlinear optical polymer films Appl. Phys. Lett. 66 1166-9
    [25] Nirmal K. Viswanathan, Dong Yu Kim, Shaoping Bian, John Williams, Wei Liu, Lian Li, Lynne Samuelson, Jayant Kumar and Sukant K. Tripathy, J. Mater. Chem., 1999, 9, 1941.
    [26] K. Ichimura, S.-K. Oh, and M. Nakagawa, Science 288, 1624 (2000).
    [27] Yu YL, Nakano M, Ikeda T,“Directed Bending of a Polymer Film by Light”, Nature, 2003, 425, 145.
    [28]王长顺,陈咏梅,杨延强,魏振乾,费浩生,光学学报,1999, 19, 1475.
    [29] Ono, H.; Kowatari, N.; Kawatsuki, N. 2000. Opt. Mater. 15, 33-39.
    [30] Jing Shen, Jintang Huang, Yanhua Luo, Qijin Zhang, Keyi Wang. Photo-induced Alignment Behavior of Azobenzene-containing Polymer Films with Different Cross-linking Degree, Chin. J. Chem. Phys., 21, 493 (2008).
    [31] Durr, H., Photochromism, Molecules and Systems. Elsevier: New York, 1990.
    [32] Tsutsumi, O.; Demachi, Y.; Kanazawa, A., et al. 1998. J. Phys. Chem. B. 102, 2869-2874.
    [33] Okano, K.; Shishido, A.; Ikeda, T. 2006. Macromolecules 39, 145-152
    [34] Tsutsumi, O.; Kitsunai, T.; Kanazawa, A., et al. 1998. Macromolecules 31, 355-359.
    [35] Balazs, A. C.; Emrick, T.; Russell, T. P. Science 2006, 314, 1107-1110.
    [36] Delaire, J. A.; Nakatani, K. Chem. Rev., 2000, 100, 1817-1845.
    [37] Hubert, C.; Rumyantseva, A.; Lerondel, G.; Grand, J.; Kostcheev, S.; Billot, L.; Vial, A.; Bachelot, R.; Royer, P.; Chang, S.-h.; Gray, S. K.; Wiederrecht G. P.; Schatz, G. C. Nano Lett. 2005, 5, 615-619.
    [38] Jing Shen, Si Wu, Jintang Huang, Qijin Zhang, Keyi Wang, Localized surface plasmon resonance effect on photo-induced alignment of films composed of silver nanoparticles and azopolymers, Thin Solid Films, 518, 2128 (2010).
    [39] Barmatov, E. B.; Pebalk D. A.; Barmatova, M. V. Langmuir 2004, 20, 10868-10871.
    [40] Raether, H., 1977;Physics of Thin Films. Academic: New York, Vol. 9.
    [41] Rode, W. R. B.; Gould, J. H.; Wyman, G. 1952. J. Am. Chem. Soc. 74, 4641-4646.
    [42] Zhou, J.; Yang, J.; Sun, Y.; Zhang, D.; Shen, J.; Zhang, Q.; Wang, K. Thin Solid Films 2007, 515, 7242-7246.
    [1]张锦,2003,激光干涉光刻技术[M]:[博士论文]。四川:四川大学,15-22。.
    [2] Seokwoo Jeon, Jang-Ung Park, Ray Cirelli, Shu Yang, Carla E. Heitzman, Paul V. Braun, Paul J. A. Kenis, and John A. Rogers, Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks, PNAS, 101, 12428-12433, 2004
    [3] Kondo, Toshiaki; Matsuo, Shigeki; Juodkazis, Saulius; Mizeikis, Vygantas; Misawa, Hiroaki; Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses, Applied Physics Letters, 82, 2758– 2760, 2003.
    [4] C Tan, C S Peng, V N Petryakov, Yu K Verevkin, J Zhang, Z Wang, S M Olaizola, T Berthou, S Tisserand and M Pessa, Line defects in two-dimensional four-beam interference patterns, New Journal of Physics, 10, 023023 -1-8, 2008.
    [5] Yang Y, Li Q and Wang G, Design and fabrication of diverse metamaterial structures by holographic lithography, OPTICS EXPRESS, 16, 11275-11280, 2008
    [6] Ngoc Diep Laia, Jian Hung Lina, Yi Ya Huangb, and Chia Chen Hsu a,b, Fabrication of two- and three-dimensional quasiperiodic structures with 12-fold symmetry by interference technique, OPTICS EXPRESS, 14,10746-10752, 2006
    [7]雷铭,姚保利,多棱锥镜产生多光束干涉场的理论和实验研究,光学学报, 26,757-760, 2006.
    [8] Escuti MJ and Crawford GP, Holographic photonic crystals, Opt. Eng., 43, 1973–1987, 2004
    [9] J.T. Huang, S. Beckemper, A. Gillner and K.Y. Wang, Tunable surface texturing by polarization controlled three-beam interference, J. Micromech. Microeng., 20, 095004-095010, 2010
    [10] Cai, L. Z., Yang, X. L. and Wang, Y. R., Interference of three noncoplanar beams: patterns, contrast and polarization optimization, Journal of Modern Optics, 49, 1663- 1672, 2002
    [11] Menendez E, Liedke MO, Fassbender J, Gemming T, Weber A, Heyderman LJ, Rao KV, Deevi SC, Surinach S, Baro MD, Sort J, Nogues J, Direct Magnetic Patterning due to the Generation of Ferromagnetism by Selective Ion Irradiation of Paramagnetic FeAl Alloys, SMALL, 5, 229 (2009)
    [12] Ngoc Diep Lai, Wen Ping Liang, Jian Hung Lin, Chia Chen Hsu, and Cheng Hsiung Lin, Fabrication of two- and three-dimensional periodic structures by multi-exposure of two beam interference technique, OPTICS EXPRESS, 13, 9605-9611, 2005
    [13] P. Rochon, E. Batalla and A. Natansohn, Optically induced surface gratings on azoaromatic polymer films, Appl. Phys. Lett., 1995, 66, 136.
    [14] D.Y. Kim, S.K. Tripathy, L. Li and J. Kumar, Laser-induced holographic surface relief gratings on nonlinear optical polymer films, Appl. Phys. Lett., 66, 1166-1168, 1995
    [15] Goldenberg LM, Gritsai Y, Sakhno O, Kulikovska O and Stumpe J, All-optical fabrication of 2D and 3D photonic structures using a single polymer phase mask J. Opt., 12, 015103-1-7, 2010
    [16] Zhao Y, Bai SY, Asatryan K and Galstian T, Holographic recording in a photoactive elastomer, Advanced Functional Materials, 13, 781-788, 2003
    [17] Viswanathan NK, Kim DY, Bian SP, Williams J, Liu W, Li L, Samuelson L, Kumar J and Tripathy SK, Surface relief structures on azo polymer films Journal of Materials Chemistry, 9, 1941-1955, 1999
    [18] Andruzzi L, Altomare A, Ciardelli F, Solaro R, Hvilsted S and Ramanujam PS, Holographic gratings in azobenzene side-chain polymethacrylates Macromolecules, 32, 448-454, 1999
    [19] Guo MC, Xu ZD and Wang XG, Photofabrication of two-dimensional quasi-crystal patterns on UV-curable molecular azo glass films Langmuir, 24, 2740-2745, 2008
    [20] Kevin G. Yager, Christopher J. Barrett, Light-Induced Nanostructure Formation using Azobenzene Polymers, Polymeric Nanostructures and Their Applications, 0: 1–38, 2006
    [21]罗艳华,2009,光敏性偶氮苯聚合物波导光栅的制备及其特性,博士论文,合肥:中国科学技术大学。
    [22] Nobuhiro Kawatsuki and Emi Uchida, Formation of pure polarization gratings in 4-methoxyazobenzene containing polymer films using off-resonant laser light, APPLIED PHYSICS LETTERS, 83, 4544-4546, 2003
    [23]黄金堂,韦玮,申婧,王克逸,张其锦.偶氮苯聚合物全息光栅衍射效率和偏振特性研究,光学学报, 28, 2199 -2202, 2008
    [24] Zhou Jingli, Shen Jing, Yang Jianjun, Ke Yan, Wang Keyi, Zhang Qijin, Fabrication of a pure polarization grating in a cross-linked azo- polymer by polarization-modulated? holography, Optics Letters, 31(10), 1370-1372, 2006.
    [25] Yager KG and Barrett CJ, Temperature modeling of laser-irradiated azo-polymer thin films, J. Chem. Phys. 120 1089-9106, 2004
    [26] F. Lagugne′Labarthet, T. Buffeteau, and C. Sourisseau, Analyses of the Diffraction Efficiencies, Birefringence, and Surface Relief Gratings on Azobenzene-Containing Polymer Films [J], J. Phys. Chem. B 1998, 102, 2654-266
    [27] L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, et al.., Polarization holographic gratings in side-chain azobenzene polyesters with linear and circular photoanisotropy[J], Appl. Opt, 1996, 35, 3835-3840
    [28] Reinke, N.Draude, A.Fuhrmann, et all, Electric field assisted holographic recording of surface relief grating in an azo-glass [J],Appl. Phys. B, 2004, 78, 205-209.
    [29] Ikeda, T.; Sasaki, T.; Ichimura, K., Photochemical switching of polarization in ferroelectric liquid-crystal films, Nature 361, 428-430, 1993.
    [30] J. J. Cowan, Method and apparatus for exposing photosensitive material, US Patent No. 4,496, 216, 1985
    [31] M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, Optical binding, Phys. Rev. Lett. 63, 1233–1236, 1989.
    [32] D. Mei, B. Cheng, W. Hu, Z. Li, and D. Zhang, Three-dimensional ordered patterns by light interference, Opt. Lett., 20, 429–431,1995.
    [33] M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, Fabrication of photonic crystals for the visible spectrum by holographic lithography, Nature (London) 404, 53–56, 2000.
    [34] S. Shoji, H.-B. Sun, and S. Kawata, Photofabrication of wood-pile three-dimensional photonic crystals using four-beam laser interference, Appl. Phys. Lett. 83, 608–610, 2003.
    [35] Jun Hyuk Moon, Shu Yang, David J. Pine and Seung-Man Yang, Translation of interference pattern by phase shift for diamond photonic crystals, OPTICS EXPRESS, 13, 9871-9876, 2005
    [36] L. Z. Cai, X. L. Yang, and Y. R. Wang, All fourteen Bravais lattices can be formed by interference of four noncoplanar beams, Opt. Lett. 27, 900–902, 2002.
    [37] X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng,‘‘Large-area two-dimensional mesoscale quasi-crystals,’’Adv. Mater. 15, 1526–1528, 2003.
    [38] Jules Mikhael, Michael Schmiedeberg, Sebastian Rausch, Johannes Roth, Holger Stark, and Clemens Bechinger, Proliferation of anomalous symmetries in colloidal monolayers subjected to quasiperiodic light fields, PNAS, 107, 7214-7218, 2010
    [39] Hui Min Su, Y. C. Zhong, X. Wang, X. G. Zheng, J. F. Xu, and H. Z. Wang, Effects of polarization on laser holography for microstructure fabrication, PHYSICAL REVIEW E, 67, 056619-1-6, 2003.
    [40] X. Jia, T. Q. Jia, L. E. Ding, P. X. Xiong, L. Deng, Z. R. Sun, Z. G. Wang, J. R. Qiu, and Z. Z. Xu, Complex periodic micro/nanostructures on 6H-SiC crystal induced by the interference of three femtosecond laser beams, OPTICS LETTERS,34, 788-790, 2009
    [41] Vita F, Lucchetta DE, Castagna R, Criante L, Simoni F, Large-area photonic structures in freestanding films, Appl. Phys. Lett., 91 103114(1-3), 2007
    [42] Kondo T, Matsuo S, Juodkazis S and Misawa H, Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals, Appl. Phys. Lett., 79, 725-727, 2001
    [43] Klein-Wiele J, Wielea K and Simon P, Fabrication of periodic nanostructures by phase-controlled multiple-beam Interference, Appl. Phys. Lett., 83, 4707-4709, 2003
    [44] Jun Hyuk Moon and Seung-Man Yang, Multiple-exposure holographic lithography with phase shift, APPLIED PHYSICS LETTERS, 85, 4184-4186, 2004 [45] Yang Y, Li Q and Wang G, Design and fabrication of diverse metamaterial structures by holographic lithography, OPTICS EXPRESS, 16, 11275-11280, 2008
    [46] Xie XS, Li M, Guo J, Liang B, Wang ZX, Sinistkii A, Xiang Y, and Zhou JY, Phase manipulated multi-beam holographic lithography for tunable optical lattices, Optics Express, 15, 7032-7037, 2007
    [47] S. Beckemper, J.T. Huang, A. Gillner and K. Wang, Generation of periodic micro- and nano-structures by parameter-controlled three-beam laser interference technique, JLMN-Journal of Laser Micro/Nanoengineering, 6, 49-53, 2011.
    [48] X Li, D H Feng, T Q Jia, H Y He, P X Xiong, S S Hou, K Zhou Z R Sun and Z Z Xu, Fabrication of a two-dimensional periodic microflower array by three interfered femtosecond laser pulses on Al:ZnO thin films, New Journal of Physics, 12 (2010) 043025-1-8
    [49] X. Jia, T. Q. Jia Y. Zhang, P. X. Xiong, D. H. Feng, Z. R. Sun, J. R. Qiu, and Z. Z. Xu, Periodic nanoripples in the surface and subsurface layers in ZnO irradiated by femtosecond laser pulses, OPTICS LETTERS, 35, 1248-1250, 2010
    [50] Andrés Lasagni, Marina Cornejo, Fernando Lasagni and Frank Muecklich, Laser AblationModeling of Periodic Pattern Formation on Polymer Substrates, ADVANCED ENGINEERING MATERIALS, 2008, 10, 488-493
    [51] H Ki, P S Mohanty and J Mazumder, Modelling of high-density laser–material interaction using fast level set method, J. Phys. D: Appl. Phys. 34 (2001) 364–372
    [52] Reinhart Poprawe,激光制造工业,2008,北京:清华大学出版社,57-67
    [53] R. C. Gauthier and A. Ivanov, Production of quasi-crystal template patterns using a dual beam multiple exposure technique, Opt. Exp. 12, 990–1003, 2004.
    [1] Kevin G. Yager, Christopher J. Barrett, Light-Induced Nanostructure Formation using Azobenzene Polymers, Polymeric Nanostructures and Their Applications, 0: 1–38, 2006
    [2] Rochon P, Batalla E and Natansohn A 1995 Optically induced surface gratings on azoaromatic polymer films Appl. Phys. Lett. 66 136-9
    [3] Kim DY, Tripathy SK, Li L and Kumar J 1995 Laser-induced holographic surface relief gratings on nonlinear optical polymer films Appl. Phys. Lett. 66 1166-9
    [4] Goldenberg LM, Gritsai Y, Sakhno O, Kulikovska O and Stumpe J 2010 All-optical fabrication of 2D and 3D photonic structures using a single polymer phase mask J. Opt. 12 015103-1-7
    [5] Zhao Y, Bai SY, Asatryan K and Galstian T 2003 Holographic recording in a photoactive elastomer Advanced Functional Materials 13 781-8
    [6] Klaus Kreger, Pascal Wolfer, Hubert Audorff, Lothar Kador, Natalie Stingelin-Stutzmann, Paul Smith, and Hans-Werner Schmidt, Stable Holographic Gratings with Small-Molecular Trisazobenzene Derivatives, J. AM. CHEM. SOC. 2010, 132, 509–516
    [7] Rau, H. in“Photochemistry and Photophysics”(J. Rebek, Ed.), Vol. 2, pp. 119–141, CRC Press, Boca Raton, FL, 1990.
    [8] Barrett CJ, Rochon PL and Natansohn AL 1998 Model of laser-driven mass transport in thin films of dye-functionalized polymers Journal of Chemical Physics 109 1505-16
    [9] Christopher J. Barrett and Almeria L. Natansohn, Mechanism of Optically Inscribed High-Efficiency Diffraction Gratings in Azo Polymer Films, J. Phys. Chem. 1996, 100, 8836-8842
    [10] Thomas Garm Pedersen, Per Michael Johansen, Niels Christian Romer Holme and P. S. Ramanujam, Theoretical model of photoinduced anisotropy in liquid-crystalline azobenzene side-chain polyesters, J. Opt. Soc. Am. B, 15, 1120-1129, 1998
    [11] Pedersen TG, Johansen PM, Holme NCR, Ramanujam PS and Hvilsted S 1998 Mean-field theory of photoinduced formation of surface reliefs in side-chain azobenzene polymers Phys. Rev. Lett. 80, 89-92
    [12] P. S. Ramanujam, M. Pedersen, and S. Hvilsted, Instant holography, Appl. Phys. Lett., 74, 3227-3229, 1999
    [13] N. C. R. Holme, L. Nikolova, and P. S. Ramanujam S. Hvilsted, An analysis of the anisotropic and topographic gratings in a side-chain liquid crystalline azobenzene polyester, Appl. Phys. Lett. 70 (12), 24 March 1997, 1518
    [14] Yager KG and Barrett CJ, Temperature modeling of laser-irradiated azo-polymer thin films, J.Chem. Phys. 120 1089-9106, 2004
    [15] Kevin G. Yager, Oleh M. Tanchak, and Christopher J. Barrettc, Temperature-controlled neutron reflectometry sample cell suitable for study of photoactive thin films, REVIEW OF SCIENTIFIC INSTRUMENTS 77, 045106 -1-6, 2006
    [16] Sumaru K, Yamanaka T, Fukuda T and Matsuda H 1999 Photoinduced surface relief gratings on azopolymer films: Analysis by a fluid mechanics model Appl. Phys. Lett. 75 1878-80
    [17] Kimio Sumaru, Takashi Fukuda, Tatsumi Kimura, and Hiro Matsuda, Tadae Yamanaka, Photoinduced surface relief formation on azopolymer films: A driving force and formed relief profile, JOURNAL OF APPLIED PHYSICS VOLUME 91, NUMBER 5 1 MARCH 2002, 3421
    [18] S. Bian, L. Li, and J. Kumar, D. Y. Kim, J. Williams, and S. K. Tripathy, Single laser beam-induced surface deformation on azobenzene polymer films, Appl. Phys. Lett., Vol. 73, No. 13, 28 September 1998, 1817
    [19] Bian S, Williams J, Kim D Y, Li L, Balasubramanian S, Kumar J and Tripathy S K 1999 Photoinduced surface deformations on azobenzene polymer films J. Appl. Phys. 86 4498
    [20] Yang K, Yang SZ and Kumar J 2006 Formation mechanism of surface relief structures on amorphous azopolymer films Physical Review B 73 165204-1-14
    [21] Li YB, He YN, Tong XL and Wang XG 2005 Photoinduced deformation of amphiphilic azo polymer colloidal spheres Journal of the American Chemical Society 127 2402-3
    [22] Audorff H, Walker R, Kador L and Schmidt HW 2009 Polarization Dependence of the Formation of Surface Relief Gratings in Azobenzene-Containing Molecular Glasses Journal of Physical Chemistry B 113 3379-84
    [23] Liu JP, He YN and Wang XG 2009 Size-Dependent Light-Driven Effect Observed for Azo Polymer Colloidal Spheres with Different Average Diameters Langmuir 25 5974-9
    [24] Kunihiko Okano, Masato Shinohara, and Takashi Yamashita, Light-Induced Deformation of Photoresponsive Liquid Crystals on a Water Surface, Chem. Eur. J. 2009, 15, 3657– 3660
    [25] Chang-Dae Keum, Taiji Ikawa, Masaaki Tsuchimori, and Osamu Watanabe, Photodeformation Behavior of Photodynamic Polymers Bearing Azobenzene Moieties in Their Main and/or Side Chain, Macromolecules 2003, 36, 4916-4923
    [26] V. P. Shibaev, S. G. Kostromin, and N. A. Plate, Eur. Polym. J. 18, 651 (1982).
    [27] Shen J, Huang J, Luo Y, Zhang Q, and Wang K 2008 Photoinduced Alignment Behavior of Azobenzene-containing Polymer Films with Different Cross-linking Degree Chin.J.Chem.Phys. 21 493-9
    [28] Tsutsumi N and Fujihara A 2004 Pulsed laser induced spontaneous gratings on a surface of azobenzene polymer Appl. Phys. Lett. 85 4582-4
    [29] Tsutsumi A and Fujihara A 2007 Self-assembled spontaneous structures induced by a pulsed laser on a surface of azobenzene polymer film J. Appl. Phys. 101 033110-1-5
    [30] Luo YH, Zhou JL, Yan Q, Su W, Li ZC, Zhang QJ, Huang JT and Wang KY 2007 Optical manipulable polymer optical fiber Bragg gratings with azopolymer as core material Appl. Phys. Lett. 91 071110-1-3
    [31] Goodman JW 2005 Introduction to Fourier Optics 3rd ed, p 45
    [1]江雷,冯琳,仿生智能纳米界面材料[M],北京:化学工业出版社。.
    [2] L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, D. Zhu, Superhydrophobic Surfaces: From Natural to Artificial, Advanced Materials, 14, 1857–1860, 2002
    [3] Jian Zi, Xindi Yu, Yizhou Li, Xinhua Hu, Chun Xu, Xingjun Wang, Xiaohan Liu, and Rongtang Fu, Coloration strategies in peacock feathers, PNAS, 100 (22) 12576-12578, 2003.
    [4] Pete Vukusic and Ian Hooper, Directionally Controlled Fluorescence Emission in Butterflies, Science, 310, 1151, 2005.
    [5] P. Vukusic, J. R. Sambles, C. R. Lawrence and R. J. Wootton, Structural colour: Now you see it—now you don't, Nature, 410, 36, 2001.
    [6] C. NEINHUIS and W. BARTHLOTT, Characterization and Distribution of Water-repellent, Self-cleaning Plant Surfaces, Annals of Botany 79, 667-677, 1997.
    [7] Neelesh A. Patankar, Mimicking the Lotus Effect: Influence of Double Roughness Structures and Slender Pillars, Langmuir, 20, 8209-8213, 2004.
    [8] W. Barthlott, C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces, Planta, 202: 1-8, 1997.
    [9] Pete Vukusic, J. Roy Sambles, Photonic structures in biology, Nature, 424, 852-855, 2003.
    [10] George Mayer, Rigid Biological Systems as Models for Synthetic Composites, Science, 18, 1144-1147, 2005
    [11] Anvar A. Zakhidov, Ray H. Baughman, Zafar Iqbal, Changxing Cui, Ilyas Khayrullin, Socrates O. Dantas, Jordi Marti, and Victor G. Ralchenko, Carbon Structures with Three-Dimensional Periodicity at Optical Wavelengths, Science, 30, 897-901, 1998
    [12] Kellar Autumn, Yiching A. Liang, S. Tonia Hsieh, Wolfgang Zesch, Wai Pang Chan, Thomas W. Kenny, Ronald Fearing and Robert J. Full, Adhesive force of a single gecko foot-hair, NATURE, 405, 681-685, 2000
    [13] W. R. Hansen and K. Autumn,Evidence for self-cleaning in gecko setae, PNAS, 102, 385-389, 2005.
    [14] T. Onda, S. Shibuichi, N. Satoh, and K. Tsujii, Super-Water-Repellent Fractal Surfaces, Langmuir, 12, 2125-2127, 1996
    [15] Wei Chen, Alexander Y. Fadeev, Meng Che Hsieh, Didem ?ner, Jeffrey Youngblood, and Thomas J. McCarthy, Ultrahydrophobic and Ultralyophobic Surfaces: Some Comments and Examples, Langmuir, 15, 3395–3399, 1999.
    [16] Didem Oner and Thomas J. McCarthy, Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability, Langmuir, 16, 7777-7782, 2000.
    [17] Kiyoharu Tadanaga,* Junichi Morinaga, Atsunori Matsuda, and Tsutomu Minami, Superhydrophobic?Superhydrophilic Micropatterning on Flowerlike Alumina Coating Film by the Sol?Gel Method, Chem. Mater., 12, 590–592, 2000
    [18] Shuhong Li, Huanjun Li, Xianbao Wang, Yanlin Song, Yunqi Liu, Lei Jiang, and Daoben Zhu, Super-Hydrophobicity of Large-Area Honeycomb-Like Aligned Carbon Nanotubes, Langmuir, 16, 7777-7782, 2000.
    [19] TAOLEI SUN, LIN FENG, XUEFENG GAO, AND LEI JIANG, Bioinspired Surfaces with Special Wettability, Acc. Chem. Res., 38, 644-652, 2005
    [20] Xi Zhang, Feng Shi, Xi Yu, Huan Liu, Yu Fu, Zhiqiang Wang, Lei Jiang, and Xiaoyuan Li, Polyelectrolyte Multilayer as Matrix for Electrochemical Deposition of Gold Clusters: Toward Super-Hydrophobic Surface, J. AM. CHEM. SOC. 126, 3064-3065, 2004,
    [21] Lin Feng, Zhenglong Yang, Jin Zhai, Yanlin Song, Biqian Liu, Yongmei Ma, Zhenzhong Yang, Lei Jiang and Daoben Zhu, Superhydrophobicity of Nanostructured Carbon Films in a Wide Range of pH Values., ChemInform, 34, , 2003
    [22] Jan Genzer and Kirill Efimenko, Creating Long-Lived Superhydrophobic Polymer Surfaces Through Mechanically Assembled Monolayers, Science, 15, 2130-2133, 2000
    [23] Q. Xie, G. Fan, N. Zhao, X. Guo, J. Xu, J. Dong, L. Zhang, Y. Zhang, Facile Creation of a Bionic Super-Hydrophobic Block Copolymer Surface, Advanced Materials, 16, 1830–1833, 2004.
    [24] Gil E S, Hudson S M,. Prog Polym Sci, 2004, 9:1173
    [25] Binil Itty Ipe, S. Mahima, and K. George Thomas, Light-Induced Modulation of Self-Assembly on Spiropyran-Capped Gold Nanoparticles: A Potential System for the Controlled Release of Amino Acid Derivatives, J. Am. Chem. Soc., 2003, 125 (24), 7174–7175.
    [26] Liu Y, Mu L, Liu B, Zhang S, Yang P, Kong J, Chem Commun, 2004, 1194
    [27] Wang X, Kharitonov A B, Katz E, Willner I. Chem Commun, 2003, 1542
    [28] Yoshihiro Ito, Yong Soon Park, and Yukio Imanishi, Nanometer-Sized Channel Gating by a Self-Assembled Polypeptide Brush, Langmuir, 16, 5376–5381, 2000.
    [29] Bulmus V, Ding Z, Long Cj, Stayton PS, Hoffman AS, Bioconjugate Chem, 2000, 11,78
    [30]崔铮,微纳米加工技术及其应用综述,物理,35,34-39,2006。
    [31] C. Hubert, C. Fiorini-Debuisschert, I Maurin, JM Nunzi, P. Raimond, Spontaneous patterning of hexagonal structures in an azo-polymer using light-controlled mass transport, Adv. Mater. 2002, 14, 729.
    [32] N. Tsutsumi and Arata Fujihara, Pulsed laser induced spontaneous gratings on a surface ofazobenzene polymer, Appl. Phys. Lett. 2004, 85, 4852.
    [33] N. Tsutsumi and A. Fujihara, Self-assembled spontaneous structures induced by a pulsed laser on a surface of azobenzene polymer film, J. Appl. Phys. 2007, 101, 033110
    [34] M.J. Kim, J. Kumar , D.Y. Kim, Photofabrication of superhelix-like patterns on azobenzene polymer films Adv. Mater. 2003, 15, 2005.
    [35] S. Lee, Y. C. Jeong and J. K. Park, Unusual surface reliefs from photoinduced creeping and aggregation behavior of azopolymer, Appl. Phys. Lett. 2008, 93, 031912
    [36] J. Yin, G. Ye, and X. Wang, Self-Structured Surface Patterns on Molecular Azo Glass Films Induced by Laser Light Irradiation, Langmuir 2010, 26, 6755
    [37] Zhihong Nie and Eugenia Kumacheva, Patterning surfaces with functional polymers, Nature, 7, 277-290, 2008
    [38] Z. Guosheng, P. M. Fauchet, and A. E. Siegman, Phys. Rev. B 26, 5366, 1982.
    [39] A. M. Bonch-Bruevich, M. N. Libenson, V. S. Makin, and V. Trubaev, Opt. Eng. 31, 718, 1992.
    [40] Quan-Zhong Zhao, Stefan Malzer, and Li-Jun Wang, Self-organized tungsten nanospikes grown on subwavelength ripples induced by femtosecond laser pulses, OPTICS EXPRESS, 15, 15741-15746
    [41] J. Liu, K. Sun, Z. Li, J. Gao, W. Su, J. Yang, J. Zhang, P. Wang, Q. Zhang, Banded texture of photo-aligned azobenzene-containing side-chain liquid crystalline polymers, Polymer 2004, 45, 4331.
    [42]刘剑,侧链型偶氮液晶聚合物的光致取向,博士论文,合肥:中国科学技术大学,2004
    [43] Si Wu, Xiaowu Yu, Jintang Huang, Jing Shen, Qing Yan, Xin Wang, Wenxuan Wu, Yanhua Luo, Keyi Wang and Qijin Zhang, Optically controllable polarized luminescence from azopolymer films doped with a lanthanide complex, J.Mater.Chem.,18,3223 (2008).
    [44] Pedersen T.G. and Johansen P.M. Phys. Rev. Lett. 1997, 79: 2470.
    [45] Pedersen T.G., Johansen P.M., Holme N.C.R. and Ramanujam P.S. J. Opt. SoAm. B 1998, 15: 1120.
    [46] Han M., Morino S.y. and Ichimura K. Macromolecules 2000, 33: 6360
    [47] Wiesner U., Reynolds N., Boeffel C. and Spiess H.W. Liq. Cryst. 1992, 11: 251.
    [48] Fukuda K., Seki T. and Ichimura K. Macromolecules 2002, 35: 1951.
    [49] Han M. and Ichimura K. Macromolecules 2001, 34: 82
    [50] Han M., Kidowaki M., Ichimura K., Ramanujam P.S. and H Macromolecules 2001, 34: 4256.
    [51] Chen S.X. and Qian R.Y. Makromol. Chem. 1990, 191: 2475.
    [52] Song W.H., Chen S.X., Jin Y.Z. and Qian R.Y. Liquid. Cryst. 1995, 19: 549.
    [53] Eich M. and Wendorff J. H. Makromol. Chem. RaPid Commun. 1987, 8:467.
    [54] K. Sun, J. Liu, J. Gao, W. Su, D. Zhang, P. Wang, Q. Zhang, Photoinduced alignment of azobenzene side-chain polymers with short spacer: Biaxial orientation and fast response, J Polym. Sci. Pol. Phys. 2006, 44, 1378.
    [1] Huang JT, Beckemper S, Gillner A and Wang KY, Tunable surface texturing by polarization-controlled three-beam interference, J. Micromech. Microeng., 20, 095004-1-6, 2010
    [2] Jingli Zhou, Jing Shen, Jianjun Yang, Yan Ke, Keyi Wang, and Qijin Zhang, Fabrication of a pure polarization grating in a cross-linked azopolymer by polarization modulated holography, Optics Letters, 31, 1370-1372, 2006.
    [3]黄金堂,韦玮,雷张源,王克逸,利用C切钒酸钇晶体产生轴对称偏振光,光学学报, 30, 557, 2010.
    [4] Qiwen Zhan and James R. Leger, Focus shaping using cylindrical vector beams[J], OPTICS EXPRESS, 10, 324-331, 2002.
    [5] K.S. Youngworth and T G Brown, lnhomogeneous polarization in scanning optical microscopy”,Proe.SPlE,39, l 9, 2000.
    [6] J.Courtial,D.A.Robertson,K.Dholakia,L.Allen and M.J.Padgett,Rotational frequency shift ofa light beam,Phys.Rev.Lett.8l,4828, 1998.
    [7] B.Hafizi,E.Esarey and P.Sprangle, Laser-driven acceleration with Bessel beams, Phys.Rev.E 55,3539 , 1997.
    [8] V G Niziev and A V Nesterov, Influence of beam polarization on laser cutting efficiency [J], J. Phys. D, 1999, 32, 1455–1461.
    [9] Qiwen Zhan and James R. Leger, High-resolution imaging ellipsometer [J], APPLIED OPTICS, 2002, 4443-4450.
    [10]张艳丽,赵逸琼,詹其文等,高数值孔径聚焦三维光链的研究[J],物理学报,55,1253-1258,2006.
    [11] Oron,S.Blit,N.Davidson,A.A.Friesem,Z.Bomzon and E.Hasman, The formation of laser beams with pure azimuthal or radial polarization, Appl.Phys.Lett.77,3322-3324,2000
    [12] JoséA.Ferrari,Wolfgang Dultz,Heidrun Schmitzer,etl. Achromatic wavefront forming with space-variant polarizers: Application to phase singularities and light focusing [J], PHYSICAL REVIEW A, 2007, 76, 053815-1-7S
    [13] QUABIS,R. DORN,G. LEUCHS, Generation of a radially polarized doughnut mode of high quality[J], 2005, Appl. Phys. B,81,597–600
    [14] Ze’ev Bomzon, Vladimir Kleiner, and Erez Hasman, Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings [J], OPTICS LETTERS, 2002, 27, 285-287.
    [15] http://www.kjmti.com/products_detail/&productId=8e0145b6-4ac0-4248-9b3f-6 b8623ae2ea 7&comp_stats=comp-FrontProducts_list01-1284380358150.html
    [16] Ono, H.; Kowatari, N.; Kawatsuki, N., Study on dynamics of laser-induced birefringence in azo dye doped polymer films, Opt. Mater. 15, 33-39, 2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700