用户名: 密码: 验证码:
聚偶氮苯中空微球的结构调控与响应性行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,功能化的聚合物微球(如磁性微球、荧光微球、pH响应微球和温度响应微球等)的制备技术日趋成熟,并在生物医药、电子信息、新材料等领域有广泛应用。由于光源具有快捷、可远程操控的优势,光敏性微球的的制备也成为研究的热点。然而,目前报道的光响应微球主要由含光敏基元的嵌段共聚物自组装或层层自组装的方法制得。本论文选用新颖的蒸馏沉淀聚合方法,以不同结构的具有优异的可逆光异构化行为的偶氮苯作为侧链或交联网络骨架,制备含偶氮苯的光响应智能微球,并将之应用于控制释放领域。
     首先,以Stober方法合成的粒径为250nm的单分散二氧化硅粒子为模板,含一个双键的甲基丙烯酸-6-(4-甲氧基-4’-氧-偶氮苯)已酯(AzoM)为单体,二乙烯苯(DVB)为交联剂,乙腈为溶剂,通过蒸馏沉淀聚合法,在不同的实验条件及配比下制得了一系列的聚偶氮苯包覆的二氧化硅(PAzo@SiO2)杂化微球。选择最优化的聚合条件(DVB含量为20wt%、乙腈用量为200mL、聚合时间为4.5h,乙腈蒸出量为100mL),经氢氟酸刻蚀制得了结构稳定的壳层厚度约20 nm的聚偶氮苯PAzo中空微球。紫外光谱和热失重(TGA)表明PAzo中空微球具有优异的可逆光异构化行为和较好的热稳定性。
     进一步引入5mol%的甲基丙烯酸甲酯作为共聚单体,在其它条件相同下,合成了窄分散、结构稳定的PAzo中空微球。氮气吸附解吸附测试表明壳层存在中孔通道。由于偶氮苯基元接枝在壳层聚合物网络间,在光异构化作用下,分子尺寸由反式的1.73nm减小为顺式的1.27nm,从而可调节壳层孔径的大小,并成功地应用于荧光分子罗丹明B的控制释放。达到50%释放量时,可见光下需要11.6h;而紫外光下减小为7.8h,扩散系数增加了44.2%。PAzo中空微球的壳层厚度通过蒸馏出不同的溶剂量来调节。接着,以粒径为80、130和180nm的二氧化硅为模板,分别制得不同粒径的聚偶氮苯杂化微球。粒径为80nm的杂化微球粘连程度较大,刻蚀后不能得到明显的中空球形结构,其余两者均为规整的中空微球结构,且具有较好的热稳定性和优异的可逆光异构化行为。
     选用含两个双键的4,4’-二甲基丙烯酰胺偶氮苯为交联剂,分别以粒径为250、180和130nm的二氧化硅粒子为模板,丙烯酸(AA)为单体,制备含偶氮苯基元的PAA@SiO2杂化微球。经氢氟酸刻蚀后得到含偶氮苯的PAA中空微球。三种中空微球结构稳定、壳层均一、单分散指数较低,并具有较好的热稳定性。对以250nm氧化硅为模板的PAA中空微球进行动态光散射(DLS)和光照下的紫外光谱研究,发现PAA中空微球具有pH和光双重响应性。在紫外光照下,其具有优异的可逆光异构化行为。交联点的偶氮苯基元发生由反式向顺式结构转化,而其它基元发生相应的协同运动,整个壳层网络会发生收缩,而且这种收缩的结构在可见光下可得到回复。动态光散射结果表明,当pH值分别为5、7、9时,其粒径分别为361、481、640nm。将这种双重响应性应用于智能控制释放,pH值为5时,释放量达28.3%;改变释放环境pH值为7,又有一部分罗丹明B分子释放出来,达到平衡时,释放量达38.1%;继续增加pH值为9,累积释放量达64.3%。在光控释放中,紫外光照下,释放320min时,达到平衡态,34.7%的罗丹明B被释放出来;可见光下,880min时,释放达到平衡,63.0%的罗丹明B被释放出来;而交替的紫外光和可见光下,880min达到平衡,释放量高达75.1%。这与交替光照下中空微球处于动态运动的状态有关。最后,对PAA中空微球进行了负载银的探索,有望进一步将之应用于催化、抗菌材料等领域。
The fabrication methods of polymer microspheres, such as magnetic microspheres, fluorescent microspheres, microspheres sensitive to pH and temperature, are increasingly mature. These microspheres could be applied in biologic medication, electric information and new materials areas, etc. Light has attracted much attention since it can be localized in time and space and it can also be triggered from outside of the system, so it is of great importance in developing photo-responsive microspheres. At present, photo-responsive microspheres have been normally fabricated through amphiphilic copolymer containing photoresponsive moieties by self-assemble methods and their structures were not robust. In this thesis, photo-responsive azobenzene moieties, as a side group or a backbone unit, have been introduced to fabricate various structures of polyazobenzene microspheres via a novel distillation precipitation polymerization method. The hollow microspheres have been obtained after etching the silica templates by hydrofluoric acid, and their controlled release for fluorescent molecules has been investigated also.
     Firstly, we synthesized silica particles with diameter of 250 nm through Stober method. A series of PAzo@SiO2 microspheres under different polymerization conditions have been synthesized with 250 nm silica particles as a template, azobenzene containing vinyl chain as a monomer, divinylbenzene as a cross-linker, acetonitrile as a solvent. The optimized condition was chosed:200 mL acetonitrile,20 wt% DVB content relative to monomer, and 100mL acetonitrile was distilled out of the system during 4.5 h of polymerization time. The robust PAzo hollow microspheres with 250 nm core and 20 nm shell have been fabricated. They have excellent reversible photoisomerization behaviors and good thermal stability.
     Methyl methacrylate (MMA,5 mol%) as a co-monomer was introduced to improve the stiffness of shells. The result of nitrogen adsorption-desorption isotherm indicated the existence of pore channels in the shell. Photo-isomerization behaviors of azobenzene moieties grafted on the network would change the pore diameter within the shell. These photoresponsive pore channels have been successfully applied in photo-controlled release. The half release of Rhodamine B required 11.6 h under visible light and 7.8 h under UV-light, respectively. The diffusion coefficient under UV light was 44.2% larger than that under visible light. PAzo microspheres with different shell thickness could be synthesized by distillation of different amounts of solvent from the reaction system. Silica particles with diameters of 80,130 and 180 nm prepared by Stober method were also used as templates to synthesize PAzo hollow microspheres. PAzo particles prepared with 80 nm core conglutinated each other and didn't show any hollow structure. The other PAzo particles with uniform hollow structures have been fabricated and showed excellent thermal stability and reversible photoisomerization behaviors.
     PAA@SiO2 hybrid microspheres have been synthesized with silica diameters of 250, 180 and 130 nm as templates, azobenzene with double vinyl units as a cross-linker, acrylic acid (AA) as a monomer. After etching by hydrofluoric acid, PAA hollow microspheres were obtained. Transmission electron microscopy (TEM) and Scanning electron microscope (SEM) results indicated that all of PAA hollow microspheres had uniform and stable shells, and their dispersion indexes were low. Thermogravimetric analysis (TGA) indicated all of them had excellent thermal stability. PAA hollow microspheres with 250nm core had reversible photoisomerization behaviors which have been proved by UV spectra under both UV and visible irradiation. Under UV irradiation, due to the photo-isomerization behaviors, azobenzene moities transformed from trans- to cis- isomer and other units would have cooperative movement, which would be induced the shrinkage of the shell of the hollow microspheres. Dynamic light scattering (DLS) results indicated the diameters of PAA hollow microspheres were 361,481, and 640 nm when pH values were 5,7, and 9, respectively. These dual-responsive properties have been applied in controlled release. When pH value of the release solution was 5, the total release percent was 28.3%. When the pH changed to 7, some other RhB molecules have been released and the total release percent was 38.1%. When the pH increased to 9, the total release percent was up to 64.3%. For the photo-controlled release, the release of Rhodamine B could reach 34.7% during 320 min under UV-light,63.0% during 880 min under visible-light, and 75.1% during 880 min under alternate UV light and visible light, repectively. At last, the hollow microspheres have been successfully loaded with silver, which could broaden their application on catalyst, antibacterial materials, and so on.
引文
[1]马光辉,苏志国.高分子微球材料.北京:化学工业出版社,2005.1-3
    [2]Reese C. E., Guerrero C. D., Weissman J. M., et al. Synthesis of highly charged, monodisperse polystyrene colloidal particles for the fabrication of photonic crystals. J.Colloid Polym. Sci.,2000,232:76-80.
    [3]Zhang J., Chen Z., Wang Z., et al. Preparation of monodisperse polystyrene spheres in aqueous alcohol system. Mater. Lett.,2003,57:4466-4470.
    [4]Zhang Q., Han Y., Wang W. C., et al. Preparation of fluorescent polystyrene microspheres by gradual solvent evaporation method. Eur. Polym. J.,2009,45:550-556.
    [5]苏大升,杨树明.液相色谱用粒度单分散大孔交联聚苯乙烯微球的制备.中国专利,CN 1132213,1995
    [6]Nolan J. P., Sklar L. A. The emergence of flow cytometry for the sensitive, real-time analysis of molecular assembly. Nat. Biotechnol.,1998,16:833-838.
    [7]Yang X. Y., Chen L. T., Huang B., et al. Synthesis of pH-sensitive hollow polymer microspheres and their application as drug carriers. Polymer,2009,50:3556-3563.
    [8]Mayes A. G., Mosbach K. Molecularly imprinted polymer beads:suspension polymerization using a liquid perfluorocarbon as the dispersing phase. Anal. Chem.,1996, 68:3769-3774.
    [9]Arshady R. Suspension, emulsion, and dispersion polymerization:A methodological survey. Colloid Polym. Sci.,1992,270:717-732.
    [10]Antonietti M., Bremser W., Miischenborn, D., et al. Synthesis and size control of polystyrene latices via polymerization in microemulsion. Macromolecules,1991,24: 6636-6643.
    [11]Liu Z., Xiao H. Soap-free emulsion copolymerisation of styrene with cationic monomer:effect of ethanol as a cosolvent. Polymer,2000,41:7023-7031
    [12]Zimehl R., Lagaly G., Ahrens J. Some aspects of polymer colloids I. Preparation and properties of different types of latex particles. Colloid Polym. Sci.,1990,268:924-933
    [13]Bagchi P., Gray B. V., Birnbaum S. M. Preparation of model poly(vinyl toluene) latices and characterization of their surface charge by titration and electrophoresis.J. Colloid Interface Sci.,1978,69:502-528
    [14]Gardon J. L. Emulsion polymerization. Ⅱ. Review of experimental data in the context of the revised Smith-Ewart theory.J. Polym. Sci. A Polym. Chem.,1968,6:643-664.
    [15]Paine A. J. Dispersion polymerization of styrene in polar solvents.7. A simplemechanistic model to predict particle size. Macromolecules,1990,23:3109-3117
    [16]Winnik F. M., Paine A. J. Dispersion polymerization of styrene in polar solvents, characterization of stabilizer in ordinary and precipitated particles by fluorescence quenching. Langmuir,1989,5:903-910
    [17]Paine A. J., Luymes W., McNulty J. Dispersion polymerization of styrene in polar solvents.6.Influence of reaction parameters on particle size and molecular weight in poly(N-vinylpyrrolidone)-stabilized reactions. Macromolecules,1990,23:3104-3109
    [18]Yasuda M., Seki H., Yokoyama H., et al. Simulation of a particle formation stage in the dispersion polymerization of styrene. Macromolecules,2001,34:3261-3270
    [19]Klein S. M., Manoharan V. N., Pine D. J., et al. Preparation of monodisperse PMMA microspheres in nonpolar solvents by dispersion polymerization with a macromonomeric stabilizer. Colloid Polym. Sci.,2003,282:7-13
    [20]Okubo M., Izumi J., Takekoh R. Production of micron-sized monodispersed core-shell composite polymer particles by seeded dispersion polymerization. Colloid Polym. Sci.,1999,277:875-880
    [21]Lepilleur C., Beckman E. J. Dispersion polymerization of methyl methacrylate in supercritical CO2. Macromolecules,1997,30:745-756
    [22]Liu Q. Q., Wang L., Xiao A. G., et al. Controllable preparation of monodisperse polystyrene microspheres with different sizes by dispersion polymerization. Macromol. Symp.,2008,261:113-120
    [23]Thomson B., Rudin. A., Lajoie G. Dispersion copolymerization of styrene and divinylbenzene:Synthesis of monodisperse, uniformly crosslinked particles. J. Polym. Sci. A, Polym. Chem.,1995,33:345-357
    [24]Tuncel A., Kahraman R., Piskin E. Monosize polystyrene microbeads by dispersion polymerization.J. Appl. Polym. Sci.,1993,50:303-319
    [25]Ober C. K., Hair M. L. The effect of temperature and initiator levels on the dispersion polymerization of polystyrene. J. Polym. Sci. A, Polym. Chem.,1987,25:1395-1407
    [26]Tseng C. M., Lu Y. Y., Elaasser M. S., et al. Uniform polymer particles by dispersion polymerization in alcohol. J. Polym. Sci. A, Polym. Chem.,1986,24:2995-3007
    [27]Bamford C. H., Ledwith A., Sengupta P. K. Particulate precipitation polymerization:A convenient procedure for the synthesis of crosslinked polymers useful as polymeric supports.J. Appl. Polym. Sci.,1980,25:2559-2566
    [28]Mackova H., Horak D. Effects of the reaction parameters on the properties of thermosensitive poly(N-isopropylacrylamide) microspheres prepared by precipitation and dispersion polymerization. J. Polym. Sci. A, Polym. Chem.,2006,44:968-982
    [29]Li K., Stover H. D. H. Synthesis of monodisperse poly(divinylbenzene) microspheres. J. Polym. Sci. A, Polym. Chem.,1993,31:3257-3263
    [30]Shim S. E., Yang S. H., Jin M. J., et al. Effect of the polymerization parameters on the morphology and spherical particle size of poly(styrene-co-divinylbenzene) prepared by precipitation polymerization. Colloid Polym. Sci.,2004,283:41-48
    [31]Bai F., Yang X. L., Huang W. Q. Synthesis of narrow or monodisperse poly(divinylbenzene) microspheres by distillation-precipitation polymerization. Macromolecules,2004,37:9746-9752.
    [32]齐东来,杨新林,黄文强.蒸馏沉淀聚合过程中交联度对单分散聚合物微球形成的影响.离子交换与吸附,2005,21:481-486
    [33]姚伟,高志贤,房彦军,程义勇.沉淀聚合法制备咖啡因分子印迹聚合物微球.化工进展,2007,26,6:869-877
    [34]Bai F., Yang X. L., Huang W. Q. Preparation of narrow or monodisperse poly(ethyleneglycol dimethacrylate) microspheres by distillation-precipitation polymerization. Eur. Polym. J.,2006,42:2088-2097
    [35]Shchukin D. G., Sukhorukov G. B. Selective YF3 nanoparticle formation in polyelectrolyte capsules as microcontainers for yttrium recovery from aqueous solutions. Langmuir,2003,19:4427-4431.
    [36]Xu X. L., Asher S. A. Synthesis and utilization of monodisperse hollow polymeric particles in photonic crystals.J. Am. Chem. Soc.,2004,126:7940-7945.
    [37]Peyratout C. S., Mohwald H., Dahne L. Preparation of photosensitive dye aggregates and fluorescent nanocrystals in microreaction containers. Adv. Mater.,2003,15: 1722-1726.
    [38]Cheng D. M., Zhou X. D., Xia H. B., et al. Novel method for the preparation of polymeric hollow nanospheres containing silver cores with different sizes. Chem. Mater., 2005,17:3578-3581
    [39]吕卉.聚合物中空微球的制备、功能化及自组装:吉林大学博士学位论文.吉林,2007.
    [40]Jonsson J. E., Hassander H., Todrnell B. Polymerization conditions and the development of a core-shell morphology in PMMA/PS latex particles.1. Influence of initiator properties and mode of monomer addition. Macromolecules,1994,27:1932-1937
    [41]Durant Y. G., Sundberg E. J., Sundberg D. C. Effects of cross-linking on the morphology of structured latex particles.2. Experimental evidence for lightly cross-linked systems. Macromolecules,1997,30:1028-1032.
    [42]Takahashi K., Nagai K. Preparation of reactive polymeric microspheres by seeded copolymerization using a polymerizable surfactant bearing an active ester group. Polymer, 1996,37:1257-1266.
    [43]Zheng G. D., Stover H. D. H. Grafting of polystyrene from narrow disperse polymer particles by surface-initiated atom transfer radical polymerization. Macromolecules,2002, 35:6828-6834
    [44]Li W. H., Stover H. D. H. Monodisperse cross-linked core-shell polymer microspheres by precipitation polymerization. Macromolecules,2000,33:4354-4360
    [45]Bai F., Yang X. L., Zhao Y. Z., et al. Synthesis of core-shell microspheres with active hydroxyl groups by two-stage precipitation polymerization. Polym. Int.,2005,54:168-174
    [46]Marinakos S. M., Novak J. P., Brousseau L. C., et al. Gold particles as templates for the synthesis of hollow polymer capsules. Control of capsule dimensions and guest encapsulation.J. Am. Chem. Soc.,1999,121:8518-8522
    [47]Shi Z. Q., Zhou Y. F., Yan D. Y. Preparation of poly(b-hydroxybutyrate) and poly(lactide) hollow spheres with controlled wall thickness. Polymer,2006,47: 8073-8079
    [48]Mcdonald C. J., Bouck K. J.; Chaput A. B. Emulsion polymerization of voided particles by encapsulation of a nonsolvent. Macromolecules,2000,33:1593-1605
    [49]Han J., Song G. P., Guo R. A facile solution route for polymeric hollow spheres with controllable size. Adv. Mater.,2006,18:3140-3144
    [50]Makarova O. V., Ostafin A. E., Miyoshi H., et al. Adsorption and encapsulation of fluorescent probes in nanoparticles. J. Phys. Chem. B,1999,103:9080-9084
    [51]Mckelvey C. A., Kaler E. W., Zasadzinski J. A. Templating hollow polymeric spheres from catanionic equilibrium vesicles:synthesis and characterization. Langmuir,2000,16: 8285-8290
    [52]Schmidt H. T., Ostafin A. E. Liposome directed growth of calcium phosphate nanoshells. Adv. Mater.,2002,14:532-535.
    [53]Liu T. B., Xie Y, Chu B. Use of block copolymer micelles on formation of hollow MoO3 nanospheres. Langmuir,2000,16:9015-9022.
    [54]Ma Y. R., Qi L. M., Ma J. M., et al. Facile synthesis of hollow ZnS nanospheres in block copolymer solutions. Langmuir,2003,19:4040-4042
    [55]Ma Y. R., Qi L. M., Ma J. M., et al. Synthesis of submicrometer-sized CdS hollow spheres in aqueous solutions of a triblock copolymer. Langmuir,2003,19:9079-9085
    [56]Zhang D. B., Qi L. M., Ma J. M., et al. Synthesis of submicrometer-sized hollow silver spheres in mixed polymer-surfactant solutions. Adv. Mater.,2002,14:1499-1502
    [57]Qi L., Li J., Ma J. Biomimetic morphogenesis of calcium carbonate in mixed solutions of surfactants and double-hydrophilic block copolymers. Adv. Mater.,2002,14:300-303
    [58]Song L., Ge X. W., Wang M. Z., et al. Anionic/nonionic mixed surfactants templates preparation of hollow polymer pheres via emulsion polymerization. J. Polym. Sci. A, Polym. Chem.,2006,44:2533-2541.
    [59]Mandal T. K., Fleming M. S., Walt D. R. Production of hollow polymeric microspheres by surface-confined living radical polymerization on silica templates. Chem. Mater.,2000,12:3481-3487
    [60]Fu G. D., Zhao J. P., Sun Y. M., et al. Conductive hollow nanospheres of polyaniline via surface-initiated atom transfer radical polymerization of 4-vinylaniline and oxidative graft copolymerization of aniline. Macromolecules,2007,40:2271-2275
    [61]Liu G. Y., Zhang H., Yang X. L., et al. Facile synthesis of silica/polymer hybrid microspheres and hollow polymer microspheres. Polymer,2007,48:5896-5904
    [62]Li G. L., Liu G, Kang E. T., et al. PH-responsive hollow polymeric microspheres and concentric hollow silica microspheres from silica-polymer core-shell microspheres. Langmuir,2008,24:9050-9055
    [63]Li G. L., Lei C. L., Wang C. H., et al. Narrowly dispersed double-walled concentric hollow polymeric microspheres with independent pH and temperature sensitivity. Macromolecules,2008,41:9487-9490.
    [64]Caruso F., Caruso R. A., Mohwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science,1998,282:1111-1114.
    [65]Okubo M., Yamashita T., Suzuki T., et al. Production of micron-sized monodispersed composite polymer particles by seeded polymerization utilizing the dynamic swelling method. Colloid Polym. Sci.,1997,275:288-292
    [66]Okubo M., Shiozaki M., Tsujihiro M., et al. Preparation of micron-size monodisperse polymer particles by seeded polymerization utilizing the dynamic monomer swelling method. Colloid Polym. Sci.,1991,269:222-226
    [67]Okubo M., Minami H. Control of hollow size of micron-sized monodispersed polymer particles having a hollow structure. Colloid Polym. Sci.,1996,274:433-438
    [68]Okubo M., Minami H. Formation mechanism of micron-sized monodispersed polymer particles having a hollow structure. Colloid Polym. Sci.,1997,275:992-997
    [69]Okubo M., Minami H., Morikawa K. Influence of shell strength on shape transformation of micron-sized, monodisperse, hollow polymer particles. Colloid Polym. Sci.,2003,281:214-219
    [70]Okubo M., Ito A., Kanenobu T. Production of submicron-sized multihollow polymer particles by alkali/cooling method. Colloid Polym. Sci.,1996,274:801-804
    [71]Okubo M., Mori H. Production of multi-hollow polymer particles by the stepwise acid/alkali method. Colloid Polym. Sci.,1997,275:634-639.
    [72]Okubo M., Mori H., Ito A. Effect of polymer composition on the production of cationic multihollow polymer particles by the stepwise acid/alkali method. Colloid Polym. Sci.,1999,277:589-594.
    [73]Huang H. Y., Remsen E. E., Kowalewski T., et al. Nanocages derived from shell cross-linked micelle templates. J. Am. Chem. Soc.,1999,121:3805-3806
    [74]Sanji T. B., Nakatsuka Y., Ohnishi S., et al. Preparation of nanometer-sized hollow particles by photochemical degradation of polysilane shell cross-linked micelles and reversible encapsulation of guest molecules. Macromolecules,2000,33:8524-8526
    [75]Wang M., Jiang M., Ning F. L., et al. Block-copolymer-free strategy for preparing micelles and hollow spheres:self-assembly of poly(4-vinylpyridine) and modified polystyrene. Macromolecules,2002,35:5980-5989
    [76]Okubo M., Ichikawa K., Fujimura M. Production of multi-hollow polymer microspheres by stepwise alkali/acid method Ⅱ. Alkali treatment process. Colloid Polym. Sci,1991,269:1257-1262
    [77]Blankenship R. M. Encapsulated hydrophilic polymers and their preparation. USP 5545695,1996
    [78]Kowalski A., Martin V. Sequential heteropolymer dispersion and a particulate material obtainable therefrom, useful in coating compositions as an opacifying agent. USP 4469825,1984
    [79]Molday R. S., Yen S. P. S., Rembaum A. Application of magnetic microspheres in labelling and separation of cells. Nature,1977,268:437-438. [80] Safarik I, Safarikova M. Magnetic nanoparticles and biosciences. Mon. Chem.,2002, 133:737-759.
    [81]Weizmann Y., Patolsky F., Lioubashevski O., et al. Magneto-mechanical detection of nucleic acids and telomerase activity in cancer cells. J. Am. Chem. Soc.,2004,126: 1073-1080.
    [82]Uhlen M. Magnetic separation of DNA. Nature,1989,340:733-734
    [83]Haugland R. P., Haugland R. P., Bringkley J. M., et al. Dipyrrometheneboron difluoride labeled flourescent microparticles. USP 5723218,1998
    [84]赵艺强,高海峰,杨武利,等.荧光标记的高分子微球及其方法.中国专利,CN1278534,2001
    [85]Schwaetz A., Pepollet E. F. Fluorescent alignment microbeads with broad excitation and emission spectra and its use. USP 5073498,1991.
    [86]Pelton R. H., Chibante P. Preparation of aqueous latices with N-isopropylacrylamide. Colloids Surf.,1986,20:247-256.
    [87]Mephee W., Tam K. C., Pelton R. Poly(N-isopropylacrylamide) lattices prepared with sodium dodecyl-sulfate. J. Colloid Interface Sci.,1993,156:24-30
    [88]Zhou S. Q., Chu B. J. M. Synthesis and volume phase transition of poly (methacrylicacid acid-co-N-isopropylaerylamide) microgel particles in water. J. Phys. Chem. B,1998,102:1364-1371
    [89]Gao H. F., Yang W. L., Min K., et al. Thermosensitive poly(N-isopropylacrylamide) nanocapsules with controlled permeability. Polymer,2005,46:1087-1093
    [90]Deng Y. H., Wang C. C., Shen X. Z., et al. Preparation, charaeterization, and application of multistimuli-responsive microspheres with fluorescence-labeled magnetic cores and thermoresponsive shells. Chem.-Eur.J.,2005,11:6006-6013
    [91]Jiang J. Q., Tong X., Morris D., et al. Toward photocontrolled release using light-dissociable block copolymer micelles. Macromolecules,2006,39:4633-4640
    [92]Jiang J. Q., Tong X., Zhao Y. A new design for light-breakable polymer micelles.J. Am. Chem. Soc.,2005,127:8290-8291
    [93]Babin J., Pelletier M., Lepage M., et al. A new two-photon-sensitive block copolymer nanocarrier. Angew. Chem., Int. Ed.,2009,48:3329-3332
    [94]Lee H., Wu W., Oh J. K., et al. Light-induced reversible formation of polymeric micelles. Angew. Chem., Int. Ed.,2007,46:2453-2457.
    [95]Tong X., Wang G., Soldera A., et al. How can azobenzene block copolymer vesicles be dissociated and reformed by light? J. Phys. Chem. B,2005,109:20281-20287.
    [96]Natansohn A. Photoinduced motions in Azo-containing polymers. Chem. Rev.,2002, 102:4139-4175
    [97]Todorov T., Tomova N., Nikolova L. High-sensitivity material with reversible photo-induced anisotropy. Opt. Commun.,1983,47:123-126.
    [98]Song O. K., Wang C. H., Pauley M. A. Dynamic processes of optically induced birefringence of azo compounds in a morphous polymers below Tg. Macromolecules, 1997,30:6913-6919.
    [99]Wu Y, Demachi Y, Tsutsumi O. Photoinduced alignment of polymer liquid crystals containing azobenzene moieties in the side chain 1. Effect of light intensity on alignment behavior. Macromolecules,1998,31:349-354.
    [100]Bufeteau T., Pezolet M. Photoinduced orientation in azopolymers studied by infrared spectroscopy:cooperative and biaxial orientation in semi crystalline polymers. Macromolecules,1998,31:2631-2635.
    [101]Rochon P., Batalla E., Natansohn A. Optically induced surface grating on azoaromatic polymerfilms. Appl. Phys. Lett.,1995,66:136-138
    [102]Labarthet F. L., Buffeteau T., Sourisseau C. Molecular orientationsin Azopolymer holographic diffraction gratingsas studied by raman confocal microspectroscopy. J. Phys. Chem. B,1998,102:5754-5765
    [103]Li Y. B., He Y. N., Tong X. L., et al. Photoinduced deformation of amphiphilic azo polymer colloidal spheres. J. Am. Chem. Soc.,2005,127:2402-2403
    [104]Deng Y. H., Li N., He Y. N., et al. Hybrid colloids composed of two amphiphilic Azo polymers:fabrication, characterization, and photoresponsive properties. Macromolecules,2007,40:6669-6678
    [105]Liu J. P., He Y. N.,Wang X. G. Size-dependent light-driven effect observed for Azo polymer colloidal spheres with different average diameters. Langmuir,2009,25: 5974-5979
    [106]Deng Y. H., Li N., He Y. N., et al. Hybrid colloids composed of two amphiphilic Azo polymers:fabrication, characterization, and photoresponsive properties. Macromolecules,2007,40:6669-6678
    [107]Wang D. R., Ye G., Zhu Y., et al. Photoinduced mass-migration behavior of two amphiphilic side-chain Azo diblock copolymers with different length flexible spacers. Macromolecules,2009,42:2651-2657
    [108]Kim D. Y., Tripathy S. K., Li, L., et al. Laser-induced holographic surface relief gratings on nonlinear optical polymer films. Appl. Phys. Lett.,1995,66:1166-1168
    [109]Motschmann H. R., Penner T. L., Armstrong N. J. et al. Additive second order nonlinear susceptibilities in langmuir-blodgett multibilayers:testing the oriented gas model. J. Phys. Chem.,1993,97:3933-3936
    [110]Wang X. G., Chen J., Martunlcakul S., et al. Epoxy-based noonlinear optical polymers functionalized with tricyanovinyl chromophores. Chem. Mater.,1993,9:45-50.
    [111]Xie S., Natansohn A., Rochon P. Recent developments in aromatic Azo polymers research. Chem. Mater.,1993,5:403-411
    [112]Eisenbach C. D. Isomerization of aromatic azo chromophores in poly(ethyl acrylate) networks and photomechanical effect. Polymer,1980,21:1175-1179
    [113]Ikeda T., Nakano M., Yu Y. L., et al. Anisotropic bending and unbending behavior of azobenzene liquid-crystalline gels by light exposure. Adv. Mater.,2003,15:201-205
    [114]Finkelmann H., Nishkawa E., Pereira G. G., et al. A new opto-mechanical effect in solids. Phys. Rev. Lett.,2001,87:015501-1-015501-4
    [115]Kulawardana E. U., Neckers D. C. Photoresponsive oil sorbers. J. Polym. Sci. A, Polym. Chem.,2010,48:55-62
    [116]Angelos S., Choi E., Vogtle F., et al. Photo-driven expulsion of molecules from mesostructured silica nanoparticles. J. Phys. Chem. C.,2007,111:6589-6592
    [117]Tanaka T., Ogino H., Iwamoto M. Photochange in pore diameters of azobenzene-planted mesoporous silica materials. Langmuir,2007,23:11417-11420
    [118]Zhu Y. C., Fujiwara M. Installing dynamic molecular photomechanics in mesopores: a multifunctional controlled-release nanosystem. Angew. Chem., Int. Ed.,2007,46: 2241-2244
    [119]Fujiwara M., Akiyama M., Nomura R., et al. Photoinduced acceleration of the effluent rate of developing solvents in azobenzene-tethered silica gel. ACS Nano,2008,2: 1671-1681
    [120]Liu N. G., Chen Z., Darren R. Photoresponsive nanocomposite formed by self-assembly of an azobenzene-modified silane. Angew. Chem., Int. Ed.,2003,42:1731-1734
    [121]Alvaro M., Benitez M., Da D. Reversible porosity changes in photoresponsive azobenzene-containing periodic mesoporous silicas. Chem. Mater.,2005,17:4958-4964
    [122]Wang Y. P., Han P., Xu H. P., et al. Photocontrolled self-assembly and disassembly of block ionomer complex vesicles:a facile approach toward supramolecular polymer nanocontainers. Langmuir,2010,26:709-715
    [123]Morris C. A., Anderson M. L., Stroud R. M., et al. Silica sol as a nanoglue flexible synthesis of composite aerogels. Science,1999,284:622-624
    [124]Cochran J. K. Ceramic hollow spheres and their applications. Solid State Mater. Sci., 1998,3:474-479
    [125]Shchukin D. G., Sukhorukov G. B., Mohwald H. Smart inorganic/organic nanocomposite hollow microcapsules. Angew. Chem., Int. Ed.,2003,42:4471-4475
    [126]Zou H., Wu S. S., Shen J. Polymer/silica nanocomposites:preparation, characterization, properties, and applications. Chem. Rev.,2008,108:3893-3957
    [127]Zou H., Wu S. S., Shen J. Preparation of silica-coated poly(styrene-co-4-vinyl pyridine) particles and hollow particles. Langmuir,2008,24:10453-10461
    [128]Zou H., Wu S. S., Ran Q. P., et al. A simple and low-cost method for the preparation of monodisperse hollow silica spheres. J. Phys. Chem. C.,2008,112:11623-11629
    [129]Liu G. Y., Zhang H., Yang X. L., et al. Facile synthesis of functional silica/polymer composite materials and hydrophilic hollow polymer microspheres. J. Appl. Polym. Sci., 2009,111:1964-1975.
    [130]Qi D. L., Bai F., Yang X. L., et al. Synthesis of core-shell polymer microspheres two-stage distillation-precipitation polymerization. Eur. Polym. J.,2005,41:2320-2328
    [131]Sun Q. H., Deng Y. L. In situ synthesis of temperature-sensitive hollow microspheres via interfacial polymerization. J. Am. Chem. Soc.,2005,127:8274-8275
    [132]Sauer M., Streich D., Meier W. PH-sensitive nanocontainers. Adv. Mater.,2001,13: 1649-1651.
    [133]Bhattacharya S., Eckert F., Pich A., et al. Temperature-, pH-, and magnetic- field-sensitive hybrid microgels. Small,2007,3:650-657
    [134]Guo H. X., Zhao X. P., Ning G. H. Synthesis of Ni/polystyrene/TiO2 multiply coated microspheres. Langmuir,2003,19:4884-4888
    [135]Garcia A., Marquez M., Hu Z. B., et al. Photo, thermally, and pH-responsive microgels. Langmuir,2007,23:224-229.
    [136]Kondo M., Yu Y. L., Ikeda T. How does the initial alignment of mesogens affect the photoinduced bending behavior of liquid-crystalline elastomers? Angew. Chem., Int. Ed., 2006,45:1378-1382.
    [137]Tong X., Wang G., Zhao Y. Dual-mode switching of diffraction gratings based on azobenzene-polymer-stabilized liquid crystals. Adv. Mater.,2005,17:370-374.
    [138]Zhao Y., Bai S. Y., Asatryan K., el al. Holographic recording in a photoactive elaster. Adv. Funct. Mater.,2003,13:781-788.
    [139]Liu N. G., Yu K., Brinker J., et al. Self-directed assembly of photoactive hybrid silicates derived from an azobenzene-bridged silsesquioxane. J. Am. Chem. Soc.,2002, 124:14540-14541
    [140]Angelos S., Stoddart J. F., Zink J. I., et al. Mesostructured silica supports for functional materials and molecular machines. Adv. Funet. Mater.,2007,17:2261-2271
    [141]Stewart D., Imrie C. T. Synthesis and characterization of spin-labelled and spin-probed side-chain liquid crystal polymers. Polymer,1996,37:3419-3425.
    [142]Haitjema H. J., Buruma R., Tan Y. Y., et al. New photoresponsive (meth)acrylate (co)polymers containing azobenzene pentant sidegroups with carboxylic and copolymers. Eur. Polym. J.,1996,32:1447-1455.
    [143]王小涛.含POSS侧基的偶氮侧链液晶共聚物的合成与性质:华中科技大学硕土学位论文.武汉,2007.
    [144]Bai F., Huang B., Yang X. L., et al. Synthesis of monodisperse poly(methacrylic acid) microspheres by distillation-precipitation polymerization. Eur. Polym. J.,2007,143: 3923-3932.
    [145]Yang Y. K., Wang X. T., Liu L., el al. Structure and photoresponsive behaviors of multiwalled carbon nanotubes grafted by polyurethanes containing azobenzene side chains, J. Phys. Chem. C,2007,111:11231-11239.
    [146]Li Y. B., Deng Y. H., Tong X. L., et al. Formation of photoreaponsive uniform colloidal spheres from amphiphilic azobenzene-containing random copolymer. Macromolecules,2006,39:1108-1115
    [147]Deng Y. H., Li Y. B., Wang X. G. Colloidal sphere formation, H-aggregation, and photoresponsive properties of an amphiphilic random copolymer bearing branched Azo side chains. Macromolecules,2006,39:6590-6598
    [148]Feng Z., Lin L., Yan Z., et al. Dual responsive block copolymer micelles functionalized by NIPAM and azobenzene. Macromol. Rapid Commun.,2010,31: 640-644
    [149]Bedard M., Skirtach A. G., Sukhorukov G. B. Optically driven encapsulation using novel polymeric hollow shells containing an azobenzene polymer. Macromol. Rapid. Commun.,2007,28:1517-1521
    [150]Li W. H., Stover H. D. H. Porous monodisperse poly(divinylbenzene) microspheres by precipitation polymerization. J. Polym. Sci. Part A:Polym. Chem.,1998,36: 1543-1551
    [151]Bai F., Huang B., Yang X. L., Huang W. Q. Synthesis of monodisperse porous poly(divinylbenzene) microspheres by distillation-precipitation polymerization. Polymer, 2007,48:3641-3649.
    [152]Kim H. B., Hayashi M., Nakatani K., et al. In situ measurements of ion-exchange processes in single polymer particles:laser trapping microspectroscopy and confocal fluorescence microspectroscopy. Anal. Chem.,1996,68:409-414. (correction:Anal. Chem.,1996,68:1987).
    [153]Ritger P. L., Peppas N. A. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J. Control Release,1987,5:23-26.
    [154]Srikar R., Yarin A. L., Megaridis C. M., et al. Desorption-limited mechanism of release from polymer nanofibers. Langmuir,2008,24:965-974.
    [155]Gendron P. O., Avaltroni F., Wilkinson K. J. Diffusion coefficients of several rhodamine derivatives as determined by pulsed field gradient-nuclear magnetic resonance and fluorescence correlation spectroscopy. J. Fluoresc.,2008,18:1093-1101
    [156]Tsunomori F., Ushiki H. Pore size effect on diffusion coefficient of rhodamine B in PNIPA gel. Phys. Lett. A.,1999,258:171-176.
    [157]Teo B. M., Prescott S. W., Price G. J., et al. Synthesis of temperature responsive poly(N-isopropylacrylamide) using ultrasound irradiation. J. Phys. Chem. B,2010,114: 3178-3184.
    [158]Reznik C., Darugar Q., Wheat A., et al. Single ion diffusive transport within a poly(styrene sulfonate) polymer brush matrix probed by fluorescence correlation spectroscopy.J. Phys. Chem.B,2008,112:10890-10897.
    [159]Jiang J., Qi B., Lepage M., et al. Polymer micelles stabilization on demand through reversible photo-cross-linking. Macromolecules,2007,40:790-792
    [160]Babin J., Lepage M., Zhao Y. "Decoration of shell cross-linked reverse polymer micelles using ATRP:a new route to stimuli-responsive nanoparticles. Macromolecules, 2008,41:1246-1253
    [161]Green D. L., Lin J. S., Hu M. Z. C., et al. Size, volume fraction, and nucleation of stober silica nanoparticles. J. Colloid Interface Sci.,2003,266:346-358
    [162]Kim J. W., Kim L. U., Kim C. K. Size control of silica nanoparticles and their surface treatment for fabrication of dental nanocomposites. Biomacromolecules,2007,8: 215-222
    [163]程新建.PMMA/SiO2有机-无机复合粒子及无机空心微球的制备与表征:复旦大学博士学位论文.上海,2007.
    [164]Krishnamurthy R., Kannan P. Synthesis and characterization of a-methylstilbene and azobenzene-based thermotropic liquid crystalline polymers. Polym. Int.,2006,55: 151-157.
    [165]Yang Y. K., Wang X. T., Liu L., et al. Structures and photoresponsive behaviors of multiwalled carbon nanotubes grafted by polyurethanes containing azobenzene side-chains.J. Phys. Chem. C,2007,111:11231-11239.
    [166]Imai Y., Naka K., Chujo Y. Isomerization behavior of azobenzene chromophores attached to the side chain of organic polymer in organic-inorganic polymer hybrids. Macromolecules,1999,32:1013-1017
    [167]Zhang Y. Y., Xu J. X., Cheng F. T. Photoinduced bending behavior of crosslinked liquid-crystalline polymer films with a long spacer. J. Mater. Chem.,2010,20:7123-7130
    [168]Liu G. Y., Yang X. L., Wang Y. M. Preparation of monodisperse hydrophilic polymer microspheres with N, N'-methylenediacrylamide as crosslinker by distillation precipitation polymerization. Polym. Int.,2007,56:905-913
    [169]Kneissl S., Loveridge E. J., Williams C. Photocontrollable peptide-based switches targetthe anti-apoptotic protein Bcl-xL. ChemBioChem,2008,9:3046-3054.
    [170]Li S. F., Liu X. L. Synthesis, characterization, and evaluation of enzymatically degradable poly(N-isopropylacrylamide-co-acrylicacid) hydrogels for colon-specific drug delivery. Polym. Adv. Technol.,2008,19:1536-1542
    [171]Liu Z. L., Hu H., Zhao R. X. Konjac glucomannan-graft-acrylic acid hydrogels containing Azo crosslinker for colon-specific delivery. J. Polym. Sci. A, Polym. Chem., 2004,42:4370-4378
    [172]Li S. F., Yang Y. J., Li H. B. PH-responsive semi-interpenetrating networks hydrogels of poly(acrylicacid-acrylamide-methacrylate) and amylose. Ⅰ. synthesis and characterization. J. Appl. Polym. Sci.,2007,106:3792-3799
    [173]Gong C. B., Wong K. L., Lam M. H. W. Photoresponsive molecularly imprinted hydrogels for the photoregulated release and uptake of pharmaceuticals in the aqueous media. Chem. Mater.,2008,20:1353-1358
    [174]Umeki N., Yoshizawa T., Sugimoto Y. Incorporation of an azobenzene derivative into the energy transducing site of skeletal muscle myosin results in photo-induced conformational changes. J. Biochem.,2004,136:839-846
    [175]Cheng F. T., Zhang Y. Y., Yin R. Y. Visible light induced bending and unbending behavior of crosslinked liquid-crystalline polymer films containing azotolane moieties.J. Mater. Chem.,2010,20:4888-4896
    [176]Bird R., Freemont T. J., Saunders B. R. Hollow polymer particles that are pH-responsive and redox sensitive:two simple steps to triggered particle swelling, gelation and disassembly. Chem. Comm.,2011,47:1443-1445
    [177]Sonaje K., Lin K. J., Wang J. J., et al. Self-assembled pH-sensitive nanoparticles:a platform for oral delivery of protein drugs. Adv. Funct. Mater.,2010,20:3695-3700
    [178]Du P. C., Liu P., Mu B. Monodisperse superparamagnetic pH-sensitive single-layer chitosan hollow microspheres with controllable structure.J. Polym. Sci. A, Polym. Chem., 2010,48:4981-4988
    [179]Fundueanu G., Constantin M., Ascenzi P. Poly(vinyl alcohol) microspheres with pH- and thermosensitive properties as temperature-controlled drug delivery. Acta biomater.,2010,6:3899-3907
    [180]Mu B., Liu P., Dong Y., et al. Superparamagnetic pH-sensitive multi layer hybrid hollow microspheres for targeted controlled release. J. Polym. Sci. A, Polym. Chem.,2010, 48:3135-3144
    [181]Ma L. W., Liu M. Z., Liu H. L. In vitro cytotoxicity and drug release properties of pH- and temperature-sensitive core-shell hydrogel microsphere. Int. J. Pharm.,2010,385: 86-91
    [182]Chuang C. Y., Don T. M., Chiu W. Y. Synthesis and characterization of stimuli-responsive porous/hollow nanoparticles by self-assembly of chitosan-based graft copolymers and application in drug release. J. Polym. Sci. A, Polym. Chem.,2010,48: 2377-2387
    [183]Fundueanu G., Constantin M., Ascenzi P. Preparation and characterization of pH-and temperature-sensitive pullulan microspheres for controlled release of drugs. Biomaterials,2008,29:2767-2775
    [184]Sierocki P., Maas H., Dragut P., et al. Photoisomerization of azobenzene derivatives in nanostructured silica. J. Phys. Chem. B,2006,110:24390-24398
    [185]Angelos S., Johansson E., Stoddart J. F., et al. Mesostructured silica supports for functional materials and molecular machines. Adv. Funct. Mater.,2007,17:2261-2271
    [186]Angelos S., Liong M., Choi E., et al. Mesoporous silicate materials as substrates for molecular machines and drug delivery. Chem. Eng. J.,2008,137:4-13
    [187]Peng K., Tomatsu I., Alexander K. Light controlled protein release from a supramolecular hydrogel. Chem. Commun.,2010,46:4094-4096
    [188]Suzuki T., Shinkai S. J., Sada K. Supramolecular crosslinked linear poly(trimethylene iminium trifluorosulfonimide) polymer gels sensitive to light and thermal stimuli. Adv. Mater.,2006,18:1043-1046
    [189]Patnaik S., Sharma A., Garg B. S. Photoregulation of drug release in azo-dextran nanogels. Int. J. Pharm.,2007,342:184-193

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700