用户名: 密码: 验证码:
三种重要仓储害虫的检测及其寄主定位的化学机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
赤拟谷盗Tribolium castaneum (Herbst)、谷蠹Rhyzopertha dominica (F.)、以及谷象Sitophilus granarius (L.)是三种最重要的世界性仓储害虫。快捷、可靠、简便的储粮质量检测对国际检验检疫、储藏、及整个粮食供应链都至关重要。顶空挥发性物质的变化可作为储粮质量下降与害虫危害的判断依据。弄清仓储害虫及其与储粮间的化学通讯机制,揭示储粮害虫的寄主寻找与定位机制,可为及时调整储藏条件、有效进行害虫管理提供科学依据。
     本研究采用固相静态微萃取-气象色谱(SPME-GC)与固相静态微萃取-气质联用(SPME-GC-MS)等技术检测了小麦含水量、储藏温度、及储藏时间对小麦顶空挥发性物质的影响;分离、鉴定了小麦、赤拟谷盗、谷蠹、及谷象等三种仓储害虫的挥发性物质,以及分别受这三种仓储害虫为害的小麦的挥发性物质,分析、比较了这三类挥发性物质的图谱。为更好地理解仓储害虫的寄主寻找与定位机制,采用触角电位仪(EAG)与嗅觉仪行为测定等方法,鉴定、证实了能引起这三种仓储害虫电生理和行为反应的挥发性物质及其活性。主要研究结果如下:
     1.建立了一种新的、快捷、可靠的储粮与仓储害虫的挥发性物质的检测方法。SPME-GC-MS被证实为一种诊断小麦、仓储害虫小麦、赤拟谷盗、谷蠹、谷象、及分别受这三种害虫为害的小麦挥发性物质有效方法。推荐使用二乙烯苯/聚二甲基硅烷(CAR/PDMS)萃取头提取、收集谷物与赤拟谷盗、谷蠹、及谷象等的挥发性物质。
     2.储藏条件(包括含水量、储藏时间与储藏温度)共同影响小麦的挥发性物质。含水量的作用相对更重要,即使在15oC低温条件下,含水量低的小麦与含水量高的挥发性物质即显出差异;25oC差异更为显著,且储藏时间越长,含水量高低不等的小麦的挥发性物质差异越显著。含水量越高,挥发性物质越复杂。储藏时间影响小麦挥发性物质的释放。
     3.从健康麦粒的顶空挥发性物质中鉴定出15种化合物,分别为二甲基硫、丙酮、甲醇、乙醇、2,3-丁二酮、2-丁醇、己醛、2-甲基-1-丙醇、1-丁醇、1-戊烯-3-醇、3-甲基-1-丁醇、正戊醇、3-甲基-2-丁烯-1-醇、1-己醇、1-十五烯;从赤拟谷盗成虫中鉴定出甲基苯醌、甲氢醌、及4-乙基-1,3-苯二酚;从谷蠹中鉴定出(E)-2-甲基-2-戊烯酸(S)-(+)-1-甲基丁基酯1和(E)-2,4-二甲基-2-戊烯酸(S)-(+)-1-甲基丁基酯2;首次从谷象中鉴定出3-羟基-2-丁酮。
     4.行为学研究发现,赤拟谷盗成虫不受单纯的未受害小麦面粉与麦粒吸引,而偏好小麦面粉+赤拟谷盗成虫。麦粒+谷蠹成虫也有较好的引诱效果,而麦粒+谷象则具有排斥效果。赤拟谷盗幼虫比成虫对潜在的食物与受害的小麦面粉更为敏感。
     5.赤拟谷盗雄成虫触角对所测定的化合物在各个浓度下均有反应,其反应强度随化合物浓度的增加而增强。其中甲基苯醌在1000μg/10μl浓度时达到最强,为2.63±0.90 mV,其次为4-乙基-1,3-苯二酚, 2.23±0.41 mV;3-羟基-2-丁酮,1.95±0.69 mV,甲氢醌, 1.19±0.34 mV。甲氢醌虽然能引起触角反应,强度值随浓度的增加而增大,所测定的各浓度都比对照的值大,但各浓度之间、化合物与对照之间没有显著性差异,表明赤拟谷盗对甲氢醌没有明显反应。测定的其余三种化合物的各浓度之间、化合物与对照之间均存在显著性差异,表明赤拟谷盗对这三种化合物均有明显反应。雌虫触角对甲基苯醌在1000μg/10μl浓度时反应强度最大(2.04±0.81 mV),其次分别为3-羟基-2-丁酮1.82±0.68 mV和甲氢醌1.54±0.32 mV,而对4-乙基-1,3-苯二酚无反应。
     6. 3-羟基-2-丁酮对谷象的排斥或示警信息素功能在行为学中得到了证实。在低浓度1 ng/10μl条件下,该化合物对谷象具轻微吸引作用,但随着浓度增至10μg/10μl则开始显示出排斥作用。无论其浓度高低,1-十五烯对谷象均显示排斥效果。
     7.谷象雌、雄虫对3-羟基-2-丁酮均有明显的反应。其中雄虫的反应比雌虫在所测定的浓度条件下稍强。雄虫对该化合物的反应强度随浓度的升高而增强,在1000μg/10μl条件下达到最大,为5.35±0.82 mV;其次为10μg/10μl, 3.66±0.61 mV;0.1μg/10μl,1.92±0.38 mV;0.001μg/10μl,0.95±0.11 mV。方差分析显示,不同浓度的化合物引起的触角反应强度存在显著差异。雌虫对化合物的反应强度随浓度的升高而增强,在1000μg/10μl条件下达到最大,为4.99±0.64 mV,其次为10μg/10μl,3.36±0.48 mV;0.1μg/10μl,1.88±0.46 mV;0.001μg/10μl,0.94±0.26 mV。方差分析显示,不同浓度的化合物引起的触角反应强度存在差异显著性。
     本研究首次提出并证实了仓储害虫的寄主定位化学机制模型;研究并建立了一套健康小麦、赤拟谷盗、谷蠹、谷象及分别受这三种害虫为害的小麦等的挥发性物质图谱;建立了一种新的、简便有效的仓储害虫检测方法;通过研究,证实一些代表性挥发性物质对仓储害虫的电生理与行为学影响,探究了仓储害虫的化学通讯及其对寄主的寻找与定位的化学机制;并以小麦为代表深入探究了谷物含水量、储藏温度、及储藏时间对其挥发性物质的影响。
Tribolium castaneum (Herbst), Rhyzopertha dominica (F.) and Sitophilus granarius (L.) are among the top list of serious insect pests of stored grains worldwide. Rapid, reliable and simple methods to detect the quality and change in quality of stored grain are critical for international quarantine inspection, domestic storage and the whole supply chain. Changes to headspace volatile patterns may be an early observable symptom of reduced grain quality and infestation by pests. Understanding the mechanism of chemical communication between the stored grain insects and stored grain, and that of host locating in stored grain pests could provide scientific and practical guidance for timely adjustment of storage conditions and accurate pest management.
     In the present study, headspace solid phase micro-extraction coupled with GC (SPME-GC) and GC-MS techniques were used to evaluate the influence of moisture content, storage temperature and storage length on the patterns of volatile compounds produced by wheat grain. The volatile chemicals from wheat, T. castaneum, R. dominica and S. granarius and wheat infested by each of the above three species were separated and identified. Electroantennogram (EAG) assay and olfactometer studies were carried out to identify and confirm particular behaviourally active volatile compounds, and to understand if and how these volatiles function on chemical communication and host location in stored grain pests. The main results are shown as follows:
     1. An innovative method for the rapid and reliable analysis of the volatiles of stored grain and insects was established. The HS-SPME technique coupled to GC-MS proved a useful tool for diagnosing volatiles in wheat, stored grain pests as well as those from infested wheat. The CAR/PDMS coating fibre was recommended for the extraction of volatiles in grains infested with the tested species R. dominica, T. castaneum and S. granarius.
     2. Volatile chemicals from wheat with two levels of moisture content stored under different temperatures and storage times were tracked. Moisture content, storage time, and temperature together exerted complex impacts on volatile profile of wheat. Moisture content played an important role in the volatile emanating from wheat. Even at low temperature, i.e. 15 oC, the volatile profiles of wheat with standard moisture content could be easily distinguished from that of wheat with higher moisture content. When stored at 25oC, the volatile profiles of wheat with different moisture contents were evidently different no matter the storage time. The higher the moisture content, the more complicated and difficult to precast the condition. The difference went significantly with time.
     3. Volatile chemicals from wheat, insects and those from wheat infested by insects were collected, separated and identified with HS-SPME-GC-MS technology. In total, 15 main volatile components from wheat were identified, including dimethyl sulphide, acetone, methanol, ethanol, 2,3-butanedione, 2-butanol, hexanal, 2-methyl-1-propanol, 1-butanol, 1-penten-3-ol, 3-methyl-1-butanol, 1-pentanol, 3-methyl-2-buten-1-ol, 1-hexanol, and 1-pentadecene; methylbenzoquinone, methylhydroquinone and 4-ethyl-1,3-benzodiol from T. castaneum; (S)-(+)-1-methylbutyl (E)-2-methyl-2-pentenoate (dominicalure1) and (S)-(+)-1-methylbutyl (E)-2,4-dimethyl-2-pentenoate (dominicalure2) from R. dominica. The compound 3-hydroxy-2-butanone was reported in adult grain weevil for the first time.
     4. The influence of particular volatile chemicals functioning in tuning host finding behavior in T. castaneum was investigated. The adults were not attracted by clean flour or clean wheat grain. Wheat flour + T. castaneum adults proved the most attractive for T. castaneum. Wheat grain + R. dominica served a good attractants as well (p = 0.016). Wheat grain + S. granarius functioned as a repellent for adult T. castaneum (p = 0.004). The larvae were more sensitive to potential food and infested flours than adults did.
     5. Methylbenzoquinone triggered the highest antennal response in adult male T. castaneum as 2.63±0.90 mV at 1000μg/10μl, followed by 4-ethyl-1,3-benzodiol, 2.23±0.41 mV, 3-hydroxy-2-butanone 1.95±0.69 mV, methylhydroquinone, 1.19±0.34 mV. Antennae of female adult T. castaneum made no response to 4-ethyl-1,3-benzodiol, but made noticeable and the highest response to methylbenzoquinone as 2.04±0.81 mV at 1000μg/10μl, followed by 3-hydroxy-2-butanone 1.82±0.68 mV, methylhydroquinone, 1.54±0.32 mV. The intensity increased with the concentration.
     6. The chemical 3-hydroxy-2-butanol as repellent or alarming pheromone in S. granarius was recorded and confirmed. In behaviour bioassay, S. granarius responded positively to 3-hydroxy-2-butanone at 1 ng/10ul, but turned negatively as the concentration increased by 10μg/10μl, and responded constantly negatively to 1-pentadecene with the concentrations increasing from 1 ng/10μl to 1000μg/10μl.
     7. The antennal response of male grain weevils to 3-hydroxy-2-butanone intensified with the increase of concentration from 5.35±0.82 mv at 1000μg/10μl, 3.66±0.61 mV at 10μg/10μl, 1.92±0.38 mV at 0.1μg/10μl, to 0.95±0.11 mV at 0.001μg/10μl. For female grain weevil, the intensity was recorded as 4.99±0.64 mV, at 1000μg/10μl, 3.36±0.48 mV at 10μg/10μl, 1.88±0.46 mV at 0.1μg/10μl, 0.94±0.26 mV at 0.001μg/10μl.
     For the first time, a hypothesis for the chemical mechanism of host locating in stored grain insects in a relatively closed system of stored grain was proposed and confirmed. The GC chromatogram profiles of volatile from wheat, T. castaneum, R. dominica, S. granarius, and those of wheat infested by T. castaneum, R. dominica, S. granarius each were established. A new simple and efficient method to detect stored grain pest was established. The chemical communication and host locating mechanism in stored grain pests were investigated through EAG and behaviour study. In addition, taking wheat as an example, the effect of moisture content of grain, storage temperature, and storage time on the volatile chemicals of grain were examined.
引文
Abramson D, Hulasare R, York R K, White N D G, Jayas D S. 2005. Mycotoxins, ergosterol, and odour volatiles in durum wheat during granary storage at 16% and 20% moisture content. Journal of Stored Products Research 41, 67–76.
    Abramson D, Sinha R N, Mills J T. 1984. Quality changes in granary-stored wheat at 15 and 19% moisture content. Mycopathologia. 87: 115–120.
    Augusto F, Leite E, Lopes A, Zini C A. 2003. Sampling and sample preparation for analysis of aromas and fragrances. Trends in Analytical Chemistry 22(3): 160-169.
    Banks H J. 1998. Effect of storage conditions on quality change in canola. Stored grain in Australia: Proceedings of the Australian Postharvest Technical Conference, Canberra. 267-271.
    Bashir T, Birkinshaw L A, Hall D R, Hodges R J. 2001. Host odours enhance the responses of adult Rhyzopertha dominica to male-produced aggregation pheromone. Entomologia Experimentalis et Applicata 101: 273-280.
    Bashir T, Birkinshaw L A, Farman D, Hall D R, Hodges R J. 2003. Pheromone release by Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) in the laboratory: daily rhythm, inter-male variation and association with body weight and/or boring activity. Journal of Stored Products Research 39: 159–169.
    Biswas S, Staff C. 2001. Analysis of headspace compounds of distillers grains using SPME in conjunction with GC/MS and TGA. Journal of Cereal Science 33: 223-229.
    Borjesson T, Stollman U, Schnurer J. 1993. Off odours compounds produced by moulds on oatmeal agar: identification and relation to other growth characteristics. Journal of Agricultural and Food Chemistry 41: 2104-2111.
    Boxall R A. 2001. Post-harvest losses to insects—a world overview. International Biodeterioration and Biodegradation 48: 137-152.
    Brosnan T, Sun D W. 2002. Inspection and grading of agricultural and food products by computer vision systems—a review. Computers and Electronics in Agriculture 36: 193-213.
    Bruce T J A, Wadhams L J, Woodcock C M. 2005. Insect host location: a volatile situation. Trends in Plant Science 10(6): 269-274.
    Buckland P C. 1981. The early dispersal of insect pests of stored products as indicated by archaeological records. Journal of Stored Products Research 17(1): 1-12.
    Buttery R G, Ling L C. 1998. Additional studies on flavour components of corn tortilla chips. Journal of Agricultural and Food Chemistry 46: 2764-2769.
    Buttery R G, Ling L C, Bean M M. 1978. Coumarin off-odour in wheat flour. Journal of Agricultural and Food Chemistry 26(1): 179-180.
    Campbell J F, Mullen M A, Dowdy A K. 2002. Monitoring stored-product pests in food processing plants with pheromone trapping, contour mapping, and mark-recapture. Journal of Economic Entomology 95(5): 1089-1101.
    Chambers J. 1990. Overview on stored-product insect pheromones and food attractants. Journal of the Kansas Entomology Society 63: 490-499.
    Chambers J, van Wyk C B, White P R, Gerrard C M, Mori K. 1996. Grain weevil, Sitophilus granarius (L.): antennal and behavioural responses to male-produced volatiles. Journal of Chemical Ecology 22:1639–1654
    Chang S S, Vallese F M, Huang L S, et al. 1977. Apparatus for the isolation of trace volatile constituents from foods. Journal of Agricultural and Food Chemistry 25: 450-455.
    Chen Y D, Chao K, Kim M S. 2002. Machine vision technology for agricultural applications. Computer and Electronics in Agriculture 36: 173-191.
    Cork A, Hall D R, Hodges R J, Pickett J A. 1991. Identification of major component of male-produced aggregation pheromone of larger grain borer, Prostephanus truncates (Horn) (Coleoptera: Bostrichidae). Journal of Chemical Ecology 17(4): 789-803.
    Cox P D, Collins L E. 2002. Factors affecting the behaviour of beetle pests in stored grain, with particular reference to the development of lures. Journal of Stored Products Research 38: 95-115.
    Daglish G J. 2005. Survival and reproduction of Tribolium castaneum (Herbst), Rhyzopertha domimica (F.) and Sitophilus oryzae (L.) following periods of starvation. Journal of Stored Products Research 42: 328-338.
    Davis R, Bry R E. 1985. Sitophilus granarius, Sitophilus oryzae, and Sitophilus zeamais. In: Singh P, Moore R F (eds.) Handbook of Insect Rearing. Elsevier, Amsterdam. pp 287–289.
    Dethier V G, Barton B L, Smith C N. 1960. The designation of chemicals in terms of the responses they elicit from insects. Journal of Economic Entomology 53: 134-136.
    Dickens J C. 1989. Green leaf volatiles enhance aggregation pheromone of boll weevil, Anthonomus grandis. Entomologia Experimentalis et Applicata 52: 191-203.
    Dietick E J, Schlinger E I, Van Den Bosch R. 1959. A new method for sampling arthropods using a suction collecting machine and modified Berlese Funnel Separator. Journal of Economic Entomology 52(6): 1085-1090.
    Dowdy A. K, Howard R W, Seitz L M, McGaughey W H. 1993. Response of Rhyzopertha dominica (Coleoptera: Bostrichidae) to its aggregation pheromone and wheat volatiles. Environmental Entomology 22(5): 965-970.
    Dowdy A K, Mullen M A. 1998. Multiple stored-product insect pheromone use in pitfall traps. Journal of Stored Product Research 34(1): 75-80.
    Dowell F E, Throne J E, Baker J E. 1998. Automated non-destructive detection of internal insect infestation of wheat kernels by using near-infrared spectroscopy. Journal of Economic Entomology 91: 899-904.
    Dowell F E, Throne J E, Wang D, Baker J E. 1999. Identifying store-grain insects using near-infrared spectroscopy. Journal of Economic Entomology 92: 165-169.
    Elizabeth B M, Dowell F E, Baker J E, Throne J E. 2002. Detecting single wheat kernels containing live or dead insects using near-infrared reflectance spectroscopy. ASAE Paper No. 023067. Chicago, IL: ASAE.
    Evans P, Persaud K C, McNeish A S, Sneath R W, Hobson N, Magan N. 2000. Evaluation of a radial base function neural network for the determination of wheat quality from electronic nose data. Sensors and Actuator B 69: 348-358.
    FAO 1985. Manual of pest control for food security reserve grain stocks, prepared by the Storage Department of the Tropical Development Research Institute. Rome, Food and Agriculture Organization of the United Nations (FAO Plant Production and Protection Paper; 63). pp. 40-68.
    Fargo W S, Epperly D, Cuperus G W, Clary B C, Noyes R. 1989. Effect of temperature and duration of trapping on four stored grain insect species. Journal of Economic Entomology 82(3): 970–973.
    Faustini D L, Giese W L, Phillips J K, Burkholder W E. 1982. Aggregation pheromone of the male granary weevil, Sitophilus granarius (L.). Journal of Chemical Ecology 8(4): 679-687.
    Faustini D L, Rowe J R, Burkholder W E. 1982. A male-produced aggregation pheromone in Tribolium brevicornis (Leconte) (Coleoptera: Tenebrionidae) and interspecific responses of several Tribolium species. Journal of Stored Products Research 18: 153-158.
    Fesus J. 1972. Detection and estimation of internal pest infestation in seeds by the application of X-ray techniques. OEPP/EPPO Bulletin 3: 65-76.
    Fisher N, Hammerschmidt F, Brunke E. 1995. Analytical investigation of the flavour of cupuacu. In: Rousteff, R. L. and Leachy, M. M. (eds.), Fruit flavours: biogenesis, characterization and authentication. ACS symposium series 596, Washington, DC. Pp:8.
    Fornal J, Jelinski T, Sadowska J, Grundas S, Nawrot J, Niewiada A, Warchalewski J R, Blaszczak W. 2006. Detection of granary weevil Sitophilus granarius (L.) eggs and internal stages in wheat grain using soft X-ray and image analysis. Journal of Stored Products Research 43(2): 142-148.
    Fraenkel G, Blewett M. 1944. The utilisation of metabolic water in insects. Bulletin of Entomological Research 127-129.
    Frankhuizen R. 1992. Handbook of near-infrared analysis. Marcel Dekker Inc, New York.
    Freedman B, Mikolajczak K L, Smith C R, Kwolek W F, Burkholder W E. 1982. Olfactory and aggregation responses of Oryzaephilus surinamensis (L.) to extracts from oats. Journal of Stored Products Research 18:75-82.
    Schulten G. M. 1982. Post-harvest losses in tropical Africa and their prevention. Food and nutrition Bulletin 4 (2): 1–24.
    Germinara G S, De Cristofaro A, Rotundo G. 2008. Behavioural responses of adult Sitophilus granarius to individual cereal volatiles. Journal of Chemical Ecology 34: 523-529.
    Ghaedian A R, Wehling R L. 1997. Discrimination of sound and granary-weevil larva-infested wheat kernels by near-infrared diffuse reflectance spectroscopy. Journal of AOAC International 80: 997-1005.
    Giles P H. 1969. Observations in Kenya on the ?ight activity of stored products insects, particularly Sitophilus zeamais Motsch. Journal of Stored Products Research 4: 317–329.
    Gras P W. 1998. Why wheat quality changes in storage. Stored grain in Australia: Proceedings of the Australian Postharvest Technical Conference, Canberra. 259–262.
    Guth H, Grosch W. 1994. Aromastoffe in Haferextrudaten (Flavour compounds in oat extrudates). Zeitschrift für Getreide, Mehl und Backwaren 48: 50-52. FSTA 95-05-M0053.
    Hagstrum D W, Flinn P W, Subramanyam Bh, Keever D W, Cuperus G W. 1990. Interpretation of trap catch for detection and estimation of stored-product insect populations. Journal of the Kansas Entomological Society 63: 500-505.
    Hagstrum D W, Flinn P W, Shuman D. 1996. Automated monitoring using acoustical sensors for insects in from-stored wheat. Journal of Economic Entomology 89(1): 211-217.
    Hagstrum D W, Reed C, Kenkel P. 1999. Management of stored wheat insect pests in the USA. Integrated Pest Management Review 4: 127-142.
    Harrewijn P, Minks A K, Mollema C. 1995. Evolution of plant volatile production in insect-plant relationships. Chemoecology. 2: 55-73.
    Highland H A. 1984. Insect infestation of packages. Insect Management for Food Storage and Processing (ed. By F J Bauer). American Association of Cereal Chemists, St Paul, MN, USA. pp. 309-320.
    Hodges R J, Hall D R, Golob P, Meik J. 1983. Responses of Prostephanus truncates to components of the aggregation pheromone of Rhyzopertha dominica in the laboratory and field. Entomologia Experimentalis et Applicata 34: 266-272.
    Hougen F W, Quilliam M A, Curran W A. 1971. Headspace vapours from cereal grains. Journal of Agricultural and Food Industry 19: 182-183.
    Howe R W, Oxley T A. 1944. The use of carbon dioxide production as a measure of infestation of grain by insects. Bulletin of Entomological Research 35(1): 11–22.
    Huang F, Subramanyam B. 2005. Management of five stored-product insects in wheat with pirimiphos-methyl and pirimiphos-methyl plus synergized pyrethrins. Pest Management Science 61: 356-362.
    Hurburgh C R. 1983. Grain testing and shrinkage. Proceedings of grain storage and conditioning conference, Iowa State University, Ames Iowa.
    Jelen H, Majcher M, Zawirska-Wojtasiak R, Wiewiorowska M, Wasowicz E. 2003. Determination of geosmin, 2-methylisoborneol, and a musty-earthy odour in wheat grain by SPME-GC-MS, profiling volatiles, and sensory analysis. Journal of Agricultural and Food Chemistry 51: 7079-7085.
    Karunakaran C, Jayas D S, White N D G. 2003. X-ray image analysis to detect infestations caused by insects in grain. Cereal Chemistry 80(5): 553-557.
    Kays S E, Barton F E, Windham W R. 2000. Predicting protein content by near infrared reflectance spectroscopy in diverse cereal food products. Journal of Near Infrared Spectroscopy 8: 35-43.
    Keagy P M and Schatzki T F. 1991. Effect of image resolution on insect detection in wheat radiographs. Cereal Chem. 68:339-343. Haff, R. F., and Slaughter, D. C. 1999. X-ray inspection of wheat for granary weevils. ASAE: St. Joseph, MI. Paper No. 99-3060.
    Kerr N. 1998. On farm quality assurance for the grains industry. Stored grain in Australia: Proceedings of the Australian Postharvest Technical Conference, Canberra. 29-30.
    Keshri G, Magan N. 2000. Detection and differentiation between mycotoxigenic and non-mycotoxigenic strains of two Fusarium spp. Using volatile production profiles and hydrolytic enzymes. Journal of Applied Microbiology 89: 825-833.
    Keshri G, Voysey P, Magan N. 2002. Early detection off spoilage moulds in bread using volatile production patterns and quantitative enzyme assays. Journal of Applied Microbiology 92: 165-172.
    Khan M A. 1983. Effect of humidity on adults of 10 different species of stored product beetles. Zeitschrift für Angewandte Entomologie 95: 217-227.
    Kim S S, Phyu M R, Kim J M, Lee S H. 2003. Authentication of rice using near infrared reflectance spectroscopy. Cereal Chemistry 80(3): 346-349.
    King J W. 1998. Supercritical fluid technology in the oil processing and conversion industry. 47th Oilseed Conference, World Class Manufacturing: Optimizing Plant Operations for Maximum Profit, March 8-10, 1998, New Orleans, LA. Pp. 7901-7910.
    Koura A, El-Halfawy M A. 1971. Tolerance of certain stored products insects to starvation. Agricultural Research Review. 51:35–36.
    Kronkright D P. 1991. Insect traps in conservation surveys. WAAC Newsletter 13(1): 21-23.
    Lavie B, Ritte U. 1978. The relation between dispersal behaviour and reproductive fitness in the flour beetle Tribolium castaneum. Canadian Journal of Genetics and Cytology 20: 589-595.
    Leunissen M, Davidson V J, Kakuda Y. 1996. Analysis of volatile flavour extraction in chromatographic science. Journal of Agricultural and Food Chemistry 44: 2694-2699.
    Leunissen M, Davidson V. J, Kakuda Y. 1996. Analysis of Volatile Flavor Components in Roasted Peanuts Using Supercritical Fluid Extraction and Gas Chromatography?Mass Spectrometry. Journal of Agricultural and Food Chemistry 44: 2694-2699.
    Levigne R J. 1987. Stored grain insects in underground storage pits in Somalia and their control. Insect Science and its application 12: pp 571–578.
    Levinson H Z, Kanaujia K R. 1981. Phagostimulatory responses of male and female Sitophilus granarius L. to newly harvested and stored wheat grains. Naturwissenschaften 68: 44–45.
    Levinson H Z, Kanaujia K R. 1982. Feeding and oviposition behaviour of the granary weevil (Sitophilus granarius L.) induced by stored wheat, wheat extracts and dummies. Zeitschrift Fur Angewandte Entomologie 93:292–305.
    Levinson H Z, Levinson A. 1998. Control of stored food pests in the ancient Orient and classical antiquity. Journal of Applied Entomology 122: 137-144
    Levinson H Z, Mori K. 1983. Chirality determines pheromone activity for flour beetles. Naturwissenschaften 70: 190-192.
    Litzkow C A, Shuman D, Kruss S, Coffelt J A. 1997. Electronic grain probe insect counter (EGPIC). Patent application no. 390834. date: 8, July, 1997.
    Lorenz, K, Maga J A. 1972. Triticale and wheat flour studies: compositions of fatty acids, carbonyls, and hydrocarbons. Journal of Agricultural and Food Chemistry 20, 769–772.
    Lorini I, Galley D J. 1996. Deltamethrin resistance in Rhyzopertha dominica (F.) (Coleoperta: Bostrichidae), a pest of stored grain in Brazil. Journal of Stored Products Research 35: 37-45.
    Loschiavo S R, Atkinson J M. 1973. An improved trap to detect beetles (Coleoptera) in stored grain. The Canadian Entomologist 99: 1160-1163.
    Lu M Q, O’Brian L, Stuart I M. 2000. Barley malting quality and yield inter-relationships and the effect on yield distribution of selection for malting quality in the early generations. Australian Journal of Agricultural Research 51: 247-258.
    Luo X, Jayas D S, Symons S J. 1999. Identification of damaged kernels in wheat using a colour machine vision system. Journal of Cereal Science 30: 49-59.
    Maeda T, Kim J H, Ubukata Y, Morita N. 2008. Analysis of volatile compounds in polished-graded wheat flours using headspace sorptive extraction. Journal European Food Research and Technology 227: 1233-1241.
    Maga J A. 1978. Cereal volatiles, a review. Journal of Agricultural and Food Chemistry 26, 175–178.
    Magan N, Evans P. 2000. Volatiles as an indicator of fungal activity and differentiation between species, and the potential use of electronic nose technology for early detection of grain spoilage. Journal of Stored Products Research 36, 319–340.
    Maria A B C, Caneppele C, Lazzari F A, Lazzari S M N. 2003. Correlation between the infestation level of Sitophilus zeamais Motschulsky, 1855 (Coleoptera, Curculionidae) and the quality factors of stored corn, Zea mays L. (Poaceae). Revista Brasileira de Entomologia 47(4): 625-630.
    Martinez W H. 1997. Wheat quality in the twenty-first century: the need and importance. In Steele, J. L., Chung, O. K. (eds.), Proceedings International Wheat Quality Conference. Grain Industry Alliance, Manhattan, KS, USA. Pp: 19-25.
    Mayhew T J, Phillips T W. 1994. Pheromone biology of lesser grain borer, Rhyzopertha dominica (Coleoptera: Bostrichidae). In Highley, E., Wright, E. J., Bankds, H. J., Champ, B. R., (Eds), Stored Product Protection. Proceedings of the Sixth International Working Conference on Stored-Product Protection, 17-23 April 1994, Canberra, Australia, CAB International, Wallingford, UK, pp. 541-544.
    McWilliam M, Mackey A C. 1969. Wheat flavour components. Journal of Food Science 34(6): 493-496.
    Molteberg E L, Magnus E M, Bjorge J M, Nilsson A. 1996. Sensory and chemical studies of lipid oxidation in raw and heat-treated oat flours. Cereal Chemistry 73: 579-587.
    Mukherjee P S, Nandi B. 1993. Insect–fungus associations influencing seed deterioration in storage. Journal of Mycopathology Research. 31: 87–92.
    Mullen M A. 1992. Development of a pheromone trap for monitoring Tribolium castaneum. Journal of Stored Products Research 28: 245–249.
    Mullen M A, Dowdy A K. 2001. A pheromone-baited trap for monitoring the Indian meal moth, Plodia interpunctella (Hubner) (Lepidoptera: Pyralidae). Journal of Stored Products Research 37: 231-235. Neethirajan S, Karunakaran C, Jayas D S, White N D G. 2007. Detection techniques for store-product insects in grain. Food Control 18: 157-162.
    Nguyen D T, Hodges R J, Belmain S R. 2008. Do walking Rhyzopertha dominica (F.) locate cereal hosts by chance? Journal of Stored Products Research 44: 90-99.
    Okabe M. 1979. Texture measurement of cooked rice and its relationship to the eating quality. Journal of Texture Studies 10:131–152.
    Olsson J, B?rjesson T, Lundstedt T, Schnürer J. 2000. Volatiles for mycological quality grading of barley grains: determinations using gas chromatography–mass spectrometry and electronic nose. International Journal of Food Microbiology 59: 167-178.
    Olsson J, Borjesson T, Lundstedl T, Schnurer J. 2002. Detection and quantification of ochratoxin A and deoxynivalenol in barley grains by GC-MS and electronic nose. International Journal of Food Microbiology 72: 203-214.
    Paliway J, Visen N S, Jayas D S, White N D G. 2003. Cereal grain and dockage identification using machine vision. Biosystems Engineering 85: 51-57.
    Paolesse R, Alimelli A, Martinelli E., et al., 2006. Detection of fungal contamination of cereal grain samples by an electronic nose. Sensors and Actuators B. 119: 425-430.
    Park S H, Arthur F A, Bean A S, Schober T J. 2008. Impact of differing population levels of Rhyzopertha dominica (F.) on milling and physicochemical properties of sorghum kernel and flour. Journal of Stored Products Research 44: 322-327.
    Pavia D L, Gary M L, George S K, Randall G E. 2006. Introduction to Organic Laboratory Techniques (4th Ed.). Thomson Brooks/Cole pp. 797–817.
    Pearson T C, Brabec D L, Schwartz C R. 2003. Automated detection of internal insect infestations in whole wheat kernels using a PERTEN SKCS 4100. Applied Engineering in Agriculture 19(6): 727-733.
    Perez-Mendoza J, Throne J E, Dowell F E, Baker J E. 2003. Detection of insect fragments in wheat flour by near-infrared spectroscopy. Journal of Stored Products Research 39: 305-312.
    Perez-Mendoza J, Flinn P W, Campbell J F, Hagstrum D W, Throne J E. 2004. Detection of stored-grain insect infestation in wheat transported in railroad hopper-cars. Journal of Economic Entomology 97(4): 1474-1483.
    Phillips T W. 1997. Semiochemicals of Stored-product Insects: Research and Application. Journal of Stored Product Research 33 (1): 17-30.
    Phillips T W, Jiang X L, Burkholder W E, Phillips J K, Tran-Quoc H. 1993. Behavioural responses to food volatiles by ecologically different stored-product Coleoptera, Sitophilus oryzae (Curculionidae) and Tribolium castaneum (Tenebrionidae). Journal of Chemical Ecology 19: 723-734.
    Pillonel L, Bosset J O, Tabacchi R. 2002. Rapid preconcentration and enrichment techniques for the analysis of food volatile. A Review. Lebensmittel-Wissenschaft und-Technologie 35: 1–14.
    Pinniger D B. 1990. Food-baited traps; past, present and future. Journal of the Kansas Entomological Society 63(4): 533–538.
    Potter C. 1935. The biology and distribution of Rhizopertha dominica (Fab.). Transactions of the Royal Entomological Society of London 83: 449-482.
    Presicce D S, Forleo A, Taurino A M. et al. 2006. Response evaluation of an E-nose towards contaminated wheat by Furasium poae fungi. Sensors and Actuators B: Chemical 118: 433-438.
    Ragunathan N, Krock K A, Klawun C, et al. 1999. Gas chromatography with spectroscopic detectors. Journal of Chromatography A. 856 : 349-397.
    Rajendran S. 2002. Postharvest pest losses. Encyclopaedia of Pest Management. Ed. David Pimentel. CRC Press. 654
    Reddy G V P, Guerrero A. 2004. Interactions of insect pheromone and plant semiochemicals. Trends in Plant Science 9 (5): 253-261.
    Reuss R. 2003. Using real-time quality measurement to maintain and increase value across the grain supply chain. Proceedings of the Australian Postharvest Technical Conference, Canberra, 25-27 June 2003. CSIRO Stored Grain Research Laboratory, Canberra. 49-54.
    Ridgeway C, Chambers J. 1996. Detection of grain weevils inside single wheat kernels by a very near infrared two-wavelength model. Journal of Near Infrared Spectroscopy 7: 213-221.
    Ridgeway C, Chambers J, Portero-Larragueta E, Prosser O. 1999. Detection of mite infestation in wheat by electronic nose with transient flow sampling. Journal of the Science of Food and Agriculture 79: 2067-2074.
    Ridgeway C, Davies E R, Chambers J, Mason D R, Bateman M. 2002. Rapid machine vision method for the detection of insects and other particulate bio-contaminants of bulk grain in transit. Biosystems Engineering 83:21-30.
    Ridgway C, Chambers J. 1996. Detection of external and internal insect infestation in wheat by near-infrared reflectance spectroscopy. Journal of the Science of Food and Agriculture 71: 251-264.
    Ridgway C, Chambers J. 1998. Detection of insects inside wheat kernels by NIR imaging. Journal of Near Infrared Spectroscopy 6:115-129.
    Ridgway C, Chambers J. 1999. Detection of grain weevils inside single wheat kernels by a very near infrared two-wavelength model. Journal of Near Infrared Spectroscopy 7: 213-221.
    Roberts D D, Pollien P, Milo C. 2000. Solid-phase micro extraction method development for headspace analysis of volatile flavour compounds. Journal of Agricultural and Food Chemistry 48: 2430-2437.
    Rocha S, Coutinho P, Barros A, et al, 2000. Aroma Potential of Two Bairrada White Grape Varieties: Maria Gomes and Bical. Journal of Agricultural and Food Chemistry 48: 4802-4807.
    Schatzki T F, Wilson E K, Kitto G B, Behrens P and Heller I. 1993. Determination of hidden Sitophilus granarius (Coleoptera: Curculionidae) in wheat by myosin ELISA. Journal of Economic Entomology. 86:1584-1589.
    Seitz L M, Ram M S. 2004. Metabolites of lesser grain borer in grains. Journal of Agricultural and Food Industry 52: 898-908.
    Seitz L M, Ram M S, Rengarajan R. 1999. Volatiles obtained from whole and ground grain samples by supercritical carbon dioxide and direct helium purge methods: observations on 2,3-butanediols and halogenated anisoles. Journal of Agricultural and Food Chemistry 47: 1051-1061.
    Seitz L M, Sauer D B. 1996. Volatile compounds and doors in grain sorghum infested with common storage insects. Cereal Chemistry 73(6): 744-750.
    Shuman D, Weaver D K, Larson R G. 2005. Performance of an analytical, dual infrared-beam, stored-product insect monitoring system. Journal of Economic Entomology 98(5): 1723-1732.
    Sides A, Robards K, Helliwell S. 2000. Developments in extraction techniques and their application to analysis of volatiles in foods. Trends in Analytical Chemistry 19(5): 322-329.
    Siegmund B, Leitner E, Mayer I, et al., 1997. 5,6-Dihydro-2,4,6-trimethyl-4H-1,3,5-dithiazine– an aroma-active compound formed in course of the Likens–Nickerson extraction. Food Research Technology 205: 73.
    Sinha R N, Wallace H A H. 1966. Ecology of insect-induced product arthropoda. Evolution 22: 785-798.
    Sinha R N. 1973. Interrelations of physical, chemical and biological variables in the deterioration of stored grains. In: R. N. Sinha & W. E. Muir (eds), Grain Storage Part of a System. AVI, Westport, CI: 15–47.
    Solomon M E. 1965. Archaeological records of storage pests: Sitophilus granarius from an Egyptian Pyramid Tomb. Journal of Stored Products Research 1: 105-107.
    Stubbs M R, Chambers J, Schofield S B, Wilkins J P G. 1985. Attraction to Oryzaephilus surinamensis (L.) of volatile materials isolated from vacuum distillate of heat-treated carobs. Journal of Chemical Ecology 11(5): 565-581.
    Subramanyam B H, Harein P K, Cutkomp L K. 1989. Field tests with probe traps for sampling adult insects infesting farm-stored grain. Journal of Agricultural Entomology 6(1): 9–21.
    Sun D W. 2000. Inspecting pizza topping percentage and distribution by a computer vision method. Journal of Food Engineering 44: 245-249. Surtees G. 1963. Laboratory studies on dispersion behaviour of adult beetles in grain. I. The grain weevil,
    Sitophilus granarius (L.) (Coleoptera, Curculionidae). Bulletin of Entomological Research 54: 147–159.
    Suzuki T, Sugawara R. 1979. Isolation of an aggregation pheromone from the flour beetles, Tribolium castaneum and T. confusum (Coleoptera: Tenebrionidae). Applied Entomology and Zoology 14(2): 228-230.
    Tanaka Y, Takeshi O. 2004. Extraction of phospholipids from salmon roe with supercritical carbon dioxide and an entrainer. Journal of Oleo Science (Japan Oil Chemists Society) 53(9): 417-424.
    Timmermans A J M. 1998. Computer vision system for on-line sorting of pot plants based on learning techniques. Acta Horticulturae 421: 91-98.
    Trematerra P, Fontana F, Mancini M, Sciarretta A. 1999. Influence of intact and damaged cereal kernels on the behaviour of rice weevil, Sitophilus oryzae (L.) (Coleoptera: Curculionidae). Journal of Stored Products Research 35: 265-276.
    Trematerra P, Sciarreta A, Tamasi E. 2000. Behaviour responses of Oryzaephilus surinamensis, Tribolium castaneum and Tribolium confusum to naturally and artificially damaged durum wheat kernels. Entomologia Experimentalis et Applicata 94: 195-200.
    Trematerra P. 2007. Pheromone use in integrated pest management of stored products. In Pimentel, D. (eds.). Encyclopaedia of pest management, volume II. CRC press. Pp. 507-510.
    Tuma D, Sinha R N, Muir W E, Abramson D. 1990. Odour volatiles associated with mite-infested bin-stored wheat. Journal of Chemical Ecology 16(3): 713-724.
    Vela-Coiffier E L, Fargo W S, Bonjour E L, Cuperus G W, Warde W D. 1997. Immigration of insects into on-farm stored wheat and relationships among trapping methods. Journal of Stored Products Research 33, 157–166.
    Ventana S, Ruiz J. 2006. On-site analysis of volatile nitrosamines in food model systems by solid-phase micro extraction coupled to a direct extraction device. Talanta 70: 1017-1023.
    Villaverde M L, Juarez M P, Mijailovsky S. 2007. Detection of Tribolium castaneum (Herbst) volatile defensive secretions by solid phase micro extraction-capillary gas chromatography (SPME-CGC). Journal of Stored Products Research 43: 540545.
    Wehling R L, Wetzel D L, Peterson J R. 1984. Stored wheat insect infestation related to uric acid as determined by liquid chromatography. Journal of Association of Official Analytical Chemists 67(3):644-647.
    Wesley I J, Larroque O, Osborne B G, Azudin N, Allen H, Skerritt J H. 2001. Measurement of gliadin and glutenin content of flour by NIR spectroscopy. Journal of Cereal Science 34: 125-133.
    White N D G, Arbogast R T, Fields P G, et al., 1990. The development and use of pitfall and probe traps for capturing insects in stored grain. Journal of the Kansas Entomological Society. 63(4): 506–525.
    Widjaja R, Craske J D, Wootton M. 1996. Changes in volatiles components of paddy, brown and white fragrant rice during storage. Journal of the Science of Food and Agriculture 71: 218-224.
    Widjaja R, Craske J D, Wootton M. 1996. Comparative studies on volatile components of non-fragrant and fragrant rices. Journal of the Science of Food and Agriculture 70: 151-161.
    Wilkin D R. 1990. Detection of Insects in Bulk Grain. Journal of the Kansas Entomological Society 63(4): 554-558.
    Williams H J, Silverstein R M, Bukholder W E, Khorramshahi A. 1981. Dominicalure1 and 2: Components of aggregation pheromone from male lesser grain borer Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae). Journal of Economic Entomology 74: 759-780.
    Woodbury N. 2008. Infanticide Avoidance by the Granary Weevil, Sitophilus granarius (L.) (Coleoptera Curculionidae) The Role of Harbourage Markers, Oviposition Markers, and Egg-Plugs. Journal of Insect Behaviour. 21: 55-62.
    Wrigley C W. 1999. Potential methodologies and strategies for the rapid assessment of feed-grain quality. Australian Journal of Agricultural Research 50: 789-805.
    Zhan H J, Li J W, Si X Z, Li Y P. 2003. Review of the study on wheat freshness index. Cereal and Feed Industry 4: 8-9 (in Chinese).
    Zhang H M, Wang J. 2007. Detection of age and insect damage incurred by wheat, with an electronic nose. Journal of Stored Products Research 43: 489-495.
    Zhou M X, Robards K, Glennie-Holmes M, Helliwell S. 1999. Analysis of volatile compounds and their contribution to flavour in cereals. Journal of Agricultural and Food Chemistry 47(10): 3941-3953.
    Ziegler J A. 1976. Evolution of the migration response: emigration by Tribolium and the influence of age. Evolution 30(3): 579-592.
    Zhuge P P, Luo S L, Wang M Q, Zhang G. 2010. Electrophysiological responses of batocera horsfieldi (hope) adults to plant volatiles. Journal of Applied Entomology 134: 600-607.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700