用户名: 密码: 验证码:
东营凹陷北带深层油气充注机理及成藏模式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,济阳坳陷勘探目标逐渐转向勘探难度较大的深层,主要勘探目的层系也由沙三中段及其以上的中浅部地层向沙三下段、沙四段和孔店组等深部地层转移。东营凹陷北带民丰、胜坨和利津等地区深层油气勘探实践证明济阳坳陷深层资源潜力较大。然而,与中浅部地层相比,深层由于埋藏较深,储层物性较差,温度和压力较高,油气成藏条件与中浅层有较大差别,仅仅依靠中浅层所建立的油气成藏理论无法有效地指导深层油气勘探。深层油气充注机理及成藏模式研究是当前亟待解决的问题。本文主要以东营凹陷北带利津、民丰和胜坨地区深层为研究对象,通过对东营凹陷北带29口井144块流体包裹体样品进行分析,从油气充注幕次、成藏期次、成藏时期、天然气成因及古温压场和古流体势场恢复等几个方面来探讨深层油气充注机理及成藏模式。通过研究,取得了以下主要认识:
     1、东营凹陷北带利津、民丰和胜坨地区深层均发育两期油气成藏。其中,利津地区第一期对应充注时间38.4~24.7 Ma,即沙三中期-东营组末期;第二期12.5-0 Ma,即馆陶组中期-现今,以第二期油充注为主;胜坨地区第一期对应充注时间39-31.9 Ma,即沙三中期-东营组沉积时期;第二期13.0~0 Ma,即馆陶中期~现今;民丰地区第一期对应充注时间41-36 Ma,即沙三中期~沙二末期;第二期13.4~0 Ma,即馆陶中期~现今。胜坨和民丰地区第一期油和第二期油均有大量充注,但主要还是以第二期油充注为主。
     2、利津地区压力系数呈现两个旋回性,对应于两期油气充注,即第一期38.4-24.7Ma油气充注以常压-超压系统为特征,第二期12.5-O.OMa油气充注发育较强的异常超压;胜坨地区第一期39-31.9Ma油气充注以常压-超压系统为特征,第二期13-0.OMa油气充注发育中等~较强的异常超压;民丰地区第一期油气充注的41-36Ma期间为常压—超压系统,第二期油气充注的13.4-OMa阶段为超压~常压系统,随着时间演化出现压力下降的趋势。
     3、根据北带大量流体包裹体均一温度测试数据建立的古地温演化曲线表明,现今古地温很可能都不是古地层经历的最高温度,尤其以民丰洼陷最明显,其次为利津和胜坨地区。而流体包裹体古温度测定和古压力模拟精度分析表明,所获得的流体包裹体古温压数据是可靠的。利津最后一期包裹体均一温度约高于今地层温度41℃左右,胜坨约高31℃左右,民丰高45℃左右。出现这种系统“差值”,反映了东营凹陷由于处于裂后热沉降阶段,盆地出现“冷却”的地质过程。
     4、油包裹体内的原油密度总体上随着深度的增加逐渐减小,这可能与地质历史时期来自多套烃源岩生成的不同成熟度原油由深部向浅层多期次运移充注以及深部高温油藏内的原油再度裂解或气侵有关。深层由于地层压力增大及温度升高等因素的影响,油气充注的孔隙度下限减小,因此,深层油气的临界充注条件也变小。该区深层两期古流体势特征表现出不同的特点:第一期高油势区主要分布在胜坨地区坨710井附近并向两边呈递减趋势,民丰洼陷是一个次级的高油势中心;第二期发育利津地区和民丰地区两大与烃源岩相关的高油势中心,围绕这两个高油势中心的周边区域为第二期相对低势的有利油气充注带。
     5、基于以上研究分别总结了三个地区的成藏模式:利津地区第一期洼陷中心形成的中质油沿着超压形成的裂缝及断裂向上运移,第二期油气充注时期进入裂解干气阶段,并认为利津地区主要以晚期干酪根裂解气充注为主;胜坨地区第一期主要以低成熟度油为主,早期生成的油气沿断层、不整合面及连通砂体沿斜坡带向上运移形成古油藏,第二期主要以高成熟度油气充注为主,油气主要沿连通砂体、超压形成的裂缝沿扇根和扇中砂体向上运移。民丰地区第一期以正常原油充注为主,由于流体势能较小,生成的油气未到达构造高部位,第二期原油充注量较大,正常原油充注后,紧接着开始凝析气充注,由于凝析气充注的温度较高,导致早期充注的油开始裂解,裂解气主要沿微裂缝向上运移。
In recent years, exploration targets are gradually turning to the more difficult deep formations of the lower third Member, the fourth Member of Shahejie Formation and Kongdian Formation from the upper middle third Member of Shehejie Formation in Dongying depression. Deep hydrocarbon explorating fruits has suggested that there is high exploration potential in the deep formation of Jiyang depression. However, compared with the shallow formation, deep reservoir quality is poorer, and the temperature and pressure are higher, which show there are great difference for hydrocarbon accumulation condition between them. The model established in the shallow formation can not be directly applied to the deep petroleum exploration. Hydrocarbon charging mechanism and forming model in deep formations become the problem to be solved. In this research, fluid inclusion analyses including fluorescence colors, homogenization temperature and salinity measurements have been exerted on 144 samples from 29 wells in north belt of Dongying depression.This paper studied the hydrocarbon charging mechanism and forming model by researching the timing of hydrocarbon accumulation, the origin of natural gas, the paleo-temperature, paleo-pressure and the paleo-fluid potential. The main conclusions are as follows:
     1. There were two phases of hydrocarbon charging in this three area, the first phase is between 38.4-24.7Ma, which was occurred from the middle of the third member of Shahejie Formation to the end of Dongying Formation and the second phase is between 12.5~0Ma, which was occurred from the middle of Guantao Formation to the present in Lijin area. The main period of hydrocarbon charging was in the second period in Lijin area. The first phase is between 39-31.9Ma, which was occurred from the middle of the third Member of Shahejie Formation to Dongying Formation and the second phase is from 13.0~0 Ma, which was occurred from the middle of Guantao Formation to the present in Shengtuo area. The first phase is between 41~36Ma, which was occurred from the middle of the third Member of Shahejie Formation to the end of the second Member of Shahejie Formation and the second phase is from 13.4~0 Ma, which was occurred from the middle of Guantao Formation to the present in Minfeng area. There are a large amount of hydrocarbon charging in the first and the second period in Shengtuo and Minfeng area, but the second period is the main charging period.
     2. The evolution of paleo-pressure experienced two phases, corresponding to the two hydrocarbon accumulation. The first phase of 38.4-24.7Ma is characterized of normal- abnormal overpressure system, and the second phase of 12.5~0Ma began to appear strong abnormal overpressure in Lijin area; The first phase of 39-31.9Ma is characterized of normal- abnormal overpressure system, and the second phase of 13~0Ma began to appear medium-strong abnormal overpressure in Shengtuo area. The first phase of 41-36Ma is characterized of normal- abnormal overpressure system, and the second phase of 13.4~.0Ma began to appear abnormal overpressure-normal pressure in Minfeng area. The pressure coefficient decreased through time evolution.
     3. The accuracy of the homogenization temperature of fluid inclusions and PVT modeling have been proved to be reliable. The homogenization temperature of the last phase of hydrocarbon charging is about 41℃higher than present-day formation temperature in Lijin area, about 31℃higher in Shengtuo area and about 45℃higher in Minfeng area, which reflects Dongying depression experienced a automatic cooling geological process in the thermal subsidence phase.
     4. Crude oil densities in hydrocarbon inclusions decreased with burial depth, this is probably caused by hydrocarbon muti-stages migration and charging from deep to shallower formations, and may also related to nature oil cracking and gas inclusion. The deep reservoir quality is not better than that of the shallower formations because of the higher pressure and higher temperature, and critical conditions of oil and gas charging also become smaller in the deep buried formations. The two phases of paleo-fluid potential are different. In the first phase, higher potential area is distributed around Tuo710 well of Shengtuo area, the second higher potential area is Minfeng depression. In the second phase, Linjin and Minfeng area are two high potential areas, the surrounding area with lower potential is the favorable hydrocarbon accumulation belt.
     5. Based on the above research, the hydrocarbon reservoir model of the three areas are built: medium oil in the centre of Lijin area migrate upward along fractures formed by overpressure discgarging in the first period. The second period is mainly charging for crack gas, and it is considered that kerogen-cracking gas charging is the primary charging in Lijin area. In the first period, it is mostly charging with lower mature oil in Shengtuo area, early generated oil and gas migrate upward along the fault, unconformity surface and the connected sand bodies, and oil reservoir formed. It is mainly charging for highly mature oil in the second period, the late generated oil and gas migrate upward along the connected sand body, the fractures formed by overpressure. It is mainly charged with normal mature oil in the first period of Minfeng area, oil and gas did not reach in the structural high location due to low fluid potential, there is a large amount of crude oil charging in the second period. It is charged with condensate gas after the normal crude oil charging, temperature is high in the period of condensate gas filling, the crude oil began to crack, the cracking gas migrate upward along microfractures.
引文
[1]马克西莫夫.深层油气藏的形成与分布[M].北京:石油工业出版社,1988
    [2]刘淑萱.深层油气藏储集层与相态预测[M].北京:石油工业出版社,1992
    [3]李小地.中国深部油气藏的形成与分布初探[J].石油勘探与开发,1994,21(1):34-39
    [4]妥进才.深层油气研究现状及进展[J].地球科学进展,2002,17(4):565-570
    [5]Hunt J M. Petroleum Geochemistry and Geology [M]. San Francisco:W H Freeman,1979
    [6]Tissot B P, Welte D H. Petroleum Formation and Occurrence [M]. Berlin, Heidelberg, New York:Springer-Verlag,1984
    [7]Pusey W C. How to evaluate potential gas and oil source rocks[J], World Oil,1973,176: 71-75
    [8]牛嘉玉,王玉满,谯汉生.中国东部老油区深层油气勘探潜力分析[J].中国石油勘探,2004,9(1):33~40
    [9]张冬玉.深层油气藏的流体特征及成藏条件[J].油气地质与采收率,2006,13(5):47~52
    [10]石昕,戴金星,赵文智.深层油气藏勘探前景分析[J].中国石油勘探,2005,10(1):1-10
    [11]王玉满,牛嘉玉,等.渤海湾盆地深层油气资源潜力分析与认识[J].石油勘探与开发,2002,29(2):21~25
    [12]胡见义,牛嘉玉.渤海湾盆地油气聚集理论和勘探实践的再深化[J].石油学报,2001,22(1):1-5
    [13]陈红汉,董伟良,张树林等.流体包裹体在古压力模拟研究中的应用[J].石油与天然气地质,2002,9:207-211
    [14]米敬奎,肖贤明,刘德汉等.鄂尔多斯盆地上古生界储层中包裹体最小捕获压力的PVTsim模拟[J].地球化学,2002,4:402-406
    [15]米敬奎,肖贤明,刘德汉,等.利用储层流体包裹体的PVT特征模拟计算天然气藏形古压力—以鄂尔多斯盆地上古生界深盆气藏为例.中国科学(D辑),2003,33(7):679-685
    [16]李善鹏,邱楠生,尹长河等.利用流体包裹体研究沉积盆地古压力.矿产与地质,2003,17(2):161-165
    [17]刘斌.利用不混溶流体包裹体作为地质温度计和压力计[J].科学通报,1986,(1):15-20
    [18]刘斌.利用流体包裹体及其主矿物共生平衡的热力学方程计算形成温度和压力[J].中国科学(B辑),1987,(3):303~310
    [19]马启富,陈斯忠,张启明等.超压盆地与油气分布[M].北京:地质出版社,2000:1-25
    [20]王兆云,赵文智,何海清.超压与烃类生成相互作用关系及对油气运聚成藏的影响[J].石油勘探与开发,2002,29(4):12-14
    [21]Ortoleva P J. Basin compartmentation:definitions and mechanisms [A]. In:Ortoleva P J (ed.), Pressure Compartments and Seals [C]. AAPG Memoir,1994,61:39-51
    [22]Price de Caritat, Julian C. baker. Overpressure release cross-formational pore water flow and diagenesis. The 7th International Symposium on Water-Rock interaction,1992,2: 1161-1164
    [23]Roberts S J, Nunn J A. Episodic fluid expulsion from geopressured sediments [J]. Marine and Petroleum Geology,1995,12(2):195-204
    [24]Hubbert M K. Entrapment of Petroleum under Hydrodynamic Conditions. AAPG Bulletin, 1953,37(8):1954~2026
    [25]England W A. The movement and entrapment of petroleum fluids in the subsurface[J]. Journal of the Geological Society, London,1987, Vol.4
    [26]陈荣书。石油及天然气地质学[M].武汉:中国地质大学出版社,1993:149-157
    [27]王震亮,罗晓容,陈荷立.沉积盆地地下古水动力场恢复-原理与方法[J].西北大学学报(自然科学版),1997,27(2):155-159
    [28]冯伟光.民丰洼陷裂解气成藏模式研究[J].石油地质与工程,2008,22(4):33-35
    [29]李孝军,李文涛.济阳坳陷裂解气成藏分析及勘探方向[J].油气地质与采收率,2005,12(1):42-45
    [30]戴金星.戴金星天然气地质和地球化学论文集(卷二)[M].北京:石油工业出版社,2000,53-67
    [31]李素梅,庞雄奇.东营凹陷北部陡坡带岩性油气藏形成与分布[J].石油与天然气地质,2004,25(4):416-421
    [32]Pepper A S, Dodd T A.. Simple kinetic models of petroleum formation. Part Ⅱ:oil-gas cracking[J]. Marine and Petroleum Geology,1995,12:321-340
    [33]潘元林,李思田.大型陆相断陷盆地层序地层与隐蔽油气藏研究-以济阳坳陷为例[M].北京:石油工业出版社,2004,57~81.
    [34]孙龙德.东营凹陷北部斜坡带沙三—四段砂砾岩体与油气聚集[J].沉积学报,2003,21(2):278-282
    [35]于敦源.东营凹陷北带沙四段砂砾岩体沉积相模式及含油性[J].复式油气田,1995,6(4):42-48
    [36]孔凡仙.东营凹陷北部陡坡带砂砾岩体的勘探[J].石油地球物理勘探,2000,35(5):669-676
    [37]断陷盆地早期充填层系成藏要素与油气富集[R].中石化胜利油田分公司,2009
    [38]隋凤贵,李训海.东营凹陷北带下第三系砂砾岩体沉积特征与油气聚集[J].复式油气田,1996,(3):45-50
    [39]吴崇筠,薛淑浩,等.中国含油气盆地沉积学.北京:石油工业出版社,1989
    [40]李家强,刘军锷.东营凹陷北部陡坡带太古界潜山内幕油气成藏特征[J].中国石油大学胜利学院学报,2008,22(1):1-3
    [41]杨显成,隋风贵,李文涛,等.东营凹陷深层裂解气成藏主控因素分析[J].新疆石油地 质,2007,28(5):563-565.
    [42]戴金星,裴锡古,戚厚发.中国天然气地质学(卷一)[M].北京:石油工业出版社,1992
    [43]赵文智,王兆云,张水昌,等.有机质“接力成气”模式的提出及其勘探中的意义[J].石油勘探与开发,2005,32(2):1-7
    [44]徐永昌.天然气成因理论及应用[M].北京:科学出版社,1994
    [45]Munz I A. Petroleum inclusions in sedimentary basins:systematics, analytical methods and application[J]. Lithos,2001,55(1-4):195-212.
    [46]Goldstein R H. Fluid inclusions in sedimentary diagenetic systems[J]. Lithos,2001,55: 159-193.
    [47]Burruss R C. Practical Aspects of Fluorescence Microscopy of Petroleum Fluid Inclusions [J]. SEPM Short Course,1991,25(1):1-7.
    [48]Burruss R C. Hydrocarbon fluid inclusions in studies of sedimentary diagenesis [A]. Hollister L S and Crawford M L eds. Fluid inclusions:applications to petrology [C]. Mineralogical Association of Canada Short Course Notes,1981:138-156.
    [49]Tissot B P and Welte D H. Petroleum formation and occurrence (Second revised and enlarged edition)[M]. New York, Springer-Verlag Berlin Heidelberg,1984,699.
    [50]Waples D W. The kinetics of in-reservoir oil destruction and gas formation:constraints from experimental and empirical data, and from thermodynamics [J]. Organic Geochemistry, 2000,31(6):553-575.
    [51]Bodnar R J. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions[J]. SCITIFIC COMMENT.1993,57:683-684
    [52]陈红汉,李纯泉,张希明,等.运用流体包裹体确定塔河油田油气成藏期次及主成藏期[J].地学前缘,2003,10(1):190.
    [53]邱楠生,金之钧,胡文喧.东营凹陷油气充注历史的流体包裹体分析[J].石油大学学报(自然科学版),2000,24(4):95-97
    [54]马茂艳,姚多喜.利用流体包裹体研究油气成藏期次-以塔里木盆地英南2井为例[J].安徽理工大学学报(自然科学版),2004,24(4):1-5
    [55]孙玉梅,席小应,黄正吉.流体包裹体分析技术在渤中25-1油田油气充注史研究中的应用[J].中国海上油气(地质),2002,16(4):238-244
    [56]王飞宇,金之钧,吕修祥,等.含油气盆地成藏期次分析理论和新方法[J].地球科学进展,2002,17(5):754-762
    [57]张金亮.利用流体包裹体研究油藏注入史[J].西安石油学院学报,1998,13(4):1-4
    [58]Middleton D, Parnell J, Carey P et al. Reconstruction of Fluid Migration History Northwest Ireland Using Fluid Inclusion Studies [J]. Journal of Geochemical Exploration,2000,69-70: 673-677
    [59]Kelly J, Parnell J, Chen H H. Application of Fluid Inclusion to Studies of Fractured Sandstone Reservoirs [J]. Joumal of Geochemical exploration,2000,69-70:705-709
    [60]Munz I A. Petroleum inclusions in sedimentary basins:systematics, analytical methods and applications [J]. Lithos,2001,55:195-212
    [61]Hubbert M K. Entrapment of Petroleum under Hydrodynamic Conditions [J]. AAPG Bulletin,1953,37(8):1954-2026
    [62]刘斌.利用流体包裹体及其主矿物共生平衡的热力学方程计算形成温度和压力[J].中国科学(B辑),1987,(3):303-310
    [63]Burruss R C. Pratical aspects of fluoresence microscopy of petroleum fluid inclusions [J]. SEPM Short Course,1991,25(1):1-7
    [64]Goldstein R H, Reynolds T J. Systematics of Fluid Inclusions in Diagenetic Minerals: SEPM Short Course 31 [M]. Tulsa, Oklahoma, USA:SEPM,1994
    [65]Bodnar R J. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions[J]. SCITIFIC COMMENT.1993,57:683-684
    [66]罗霞,王斌,李剑,等.济阳坳陷深层天然气成因判识[J].2008,9:13-16
    [67]Aali J, Rahimpour-Bonab H, Kamali M.R. Geochemistry and origin of the world's largest gas field from Persian Gulf, Iran. Journal of Petroleum Science and Engineering,2006, 50(3-4):161-175.
    [68]Sharaf L M. Source rock evaluation and geochemistry of condensates and natural gases, offshore Nile delta, Egypt. Journal of Petroleum Geology,2003,26(2):189-209.
    [69]Prinzhofer A A, Huc A Y. Genetic and post-genetic molecular and isotopic fractionations in natural gases. Chemical Geology,1995,126(3-4):281-290.
    [70]Sackett W M. Carbon isotope composition of natural methane occurrences. AAPG Bulletin, 1968,52(5):853-857.
    [71]Takach N E, Barker C, Kemp, M K. Stability of natural gas in the deep subsurface; thermodynamic calculation of equilibrium compositions. AAPG Bulletin,1987,71(3): 322-333.
    [72]Parnell, J., Monson, B. and Geng, A.,1996. Maturity and petrography of bitumens in the Carboniferous of Ireland. International Journal of Coal Geology,29(1-3):23-38.
    [73]Goodarzi, F., Eckstrand, O.R., Snowdon, L. et al.,1992. Thermal metamorphism of bitumen in Archean rocks by ultramafic volcanic flows. International Journal of Coal Geology, 20(1-2):165-178.
    [74]王永诗,油气成藏“相-势”耦合作用探讨-以渤海湾盆地济阳坳陷为例[J].石油实验地质,2007,29(5):472-476
    [75]许晓明,刘震,谢启超,等.渤海湾盆地济阳坳陷异常高压特征分析[J].石油实验地质,2006,28(4):345-349,358.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700