用户名: 密码: 验证码:
3DOM LaMnO_3,Au/3DOM La_(0.6)Sr_(0.4)MnO_3,Au/meso Co_3O_4和3DOM BiVO_4催化剂可控制备及有机污染物氧化的催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔过渡金属氧化物具有高的比表面积和发达的孔结构使其在电、磁、吸附和催化等物理和化学领域具有很大的应用前景。多孔材料中的介孔可以选择性地容纳客体分子,所具有的高比表面积有利于气体分子吸附。大孔结构则可降低大分子传质阻力和有利于其到达活性位。此外,大孔或介孔载体也有利于活性组分在其表面的分散。众所周知,钙钛矿型氧化物(ABO_3)对挥发性有机物和CO氧化反应显示出优良的催化性能,这与ABO_3的非化学计量氧量、比表面积和氧化还原能力等因素有关。单斜白钨矿晶相的BiVO_4是一种对可见光响应的半导体光催化剂,在可见光照射下显示光催化活性。近年来,金催化成为研究的热点课题之一。金的催化作用与所用载体的性质有关。一般选用惰性载体来负载金属活性组分,金属与载体之间的强相互作用能够影响催化剂的物化性质。以具有氧化还原能力的过渡金属氧化物或复合氧化物作为载体的研究工作很少有文献报道。将纳米金负载到具有高比表面积的过渡金属氧化物或复合氧化物上,可以提高金的负载量和纳米金的分散度,有效地避免反应过程中可能引起的烧结现象。针对如何改善单一和复合金属氧化物的物化性质进而达到提高其催化性能的目的,本文研究了具有介孔孔壁的三维有序大孔(3DOM)LaMnO_3、Au/3DOMLa_(0.6)Sr_(0.4)MnO_3、Au/链条状大孔结构的LaMnO_3、MnO_x/3DOM LaMnO_3、空心球状LaMO_3(M=Mn, Co)、实心球状MOx(M=Mn, Co)、有序介孔Co_3O_4、Au/有序介孔Co_3O_4和3DOM BiVO_4的PMMA或KIT-6硬模板可控制备法,利用多种技术表征其物化性质,揭示了催化作用机制,评价了其对挥发性有机物(苯、甲苯、二甲苯或甲醇)和CO氧化反应的催化性能,以此建立催化剂的物化性质与反应之间的构效关系。主要研究内容和取得的研究结果如下:
     (1)采用表面活性剂辅助的PMMA硬模板法制备了空心球状菱方相LaMO_3(M=Mn, Co)和实心球状立方相MO_x(M=Mn, Co)。结果表明,聚乙二醇和乙二醇的联用有利于形成具有球状复合金属氧化物和过渡金属氧化物。球状催化剂比其纳米粒子催化剂具有更高的比表面积(21-33m~2/g)和表面吸附氧浓度以及更好的低温还原性。对于CO和甲苯氧化反应,球形催化剂的活性优于相应的纳米粒子催化剂的,其中Co_3O_4实心球催化剂对CO氧化反应的活性最好[当空速(SV)为10000mL/(g h)时,其T_(90%)(转化率达90%时的反应温度)为109℃],而LaCoO_3空心球催化剂对甲苯氧化的活性最好(当空速为20000mL/(g h)时,其T_(90%)为237℃)。
     (2)采用表面活性剂辅助的PMMA硬模板法制备了具有介孔孔壁的菱方3DOMLaMnO_3催化剂。结果表明,表面活性剂P123和L-赖氨酸对于形成大孔孔壁上的介孔结构具有重要作用,双模孔结构的催化剂具有较高的比表面积(3239m~2/g)、较高的表面氧浓度和较好的低温还原性。在甲苯浓度为1000ppm、甲苯/O_2摩尔比为1/400和SV为20000mL/(g h)的反应条件下,具有大孔-介孔双模孔结构的LaMnO_3-PP-2或LaMnO_3-PL-2催化剂显示出最高的活性,其T50%为222226℃和T_(90%)为243249℃。与体相LaMnO_3催化剂的表观活化能(97kJ/mol)相比,多孔催化剂具有明显低的表观活化能(5762kJ/mol)。
     (3)采用色氨酸辅助的PMMA硬模板法原位制备了yMnO_x/3DOM LaMnO_3(y=5,8,12,16wt%)催化剂,建立了一步法制备菱方相3DOM LaMnO_3负载的MnO_x纳米粒子催化剂的可控合成工艺。结果表明,yMnO_x/3DOM LaMnO_3催化剂的比表面积为1931m~2/g,MnO_x纳米颗粒(粒径为435nm)高度分散在3DOM LaMnO_3表面。与通过等体积浸渍法获得的12wt%MnO_x/体相LaMnO_3催化剂相比,yMnO_x/3DOM LaMnO_3催化剂具有更高的表面吸附氧浓度和比表面积以及较均匀的MnO_x纳米粒子(粒径为418nm)。在VOC(甲苯或甲醇)浓度为1000ppm、VOC/O_2摩尔比为1/400和SV为20000mL/(g h)的反应条件下,12wt%MnO_x/3DOM LaMnO_3催化剂的活性最佳,其对甲苯和甲醇氧化反应的T_(90%)分别为215℃和137℃。
     (4)采用表面活性剂辅助的PMMA硬模板法制备了链条状大孔结构的菱方相LaMnO_3和菱方相3DOM La_(0.6)Sr_(0.4)_3催化剂,再利用聚乙烯醇保护的鼓泡还原法制备出了xAu/链条状大孔LaMnO_3(x=1.4,3.1,4.9wt%)和xAu/3DOM La_(0.6)Sr_(0.4)_3(x=3.4,6.4,7.9wt%)催化剂。结果表明,金纳米粒子尺寸在25nm范围内,均匀地分布在催化剂的孔道表面上。xAu/链条状大孔LaMnO_3和xAu/3DOM La_(0.6)Sr_(0.4)_3催化剂的比表面积分别为3033m~2/g和3133m~2/g。4.9wt%Au/链条状大孔LaMnO_3和6.4wt%Au/3DOM La_(0.6)Sr_(0.4)_3催化剂上的表面氧物种浓度较高和低温还原性较好,其催化活性也较高。4.9wt%Au/链条状大孔LaMnO_3和6.4wt%Au/3DOM La_(0.6)Sr_(0.4)_3催化剂对CO氧化反应的T_(90%)分别为91℃(当SV为20000mL/(g h)时)和3℃(当SV为10000mL/(g h)时),对甲苯氧化反应的T_(90%)分别为226℃和170℃(当SV为20000mL/(g h)时)。多孔链条状大孔LaMnO_3负载金催化剂对CO和甲苯氧化反应的表观活化能分别为2937kJ/mol和4752kJ/mol,低于在体相LaMnO_3催化剂上的(分别为63kJ/mol和97kJ/mol);多孔3DOM La_(0.6)Sr_(0.4)_3负载金催化剂对CO和甲苯氧化反应的表观活化能分别为3132kJ/mol和4448kJ/mol,低于在体相La_(0.6)Sr_(0.4)_3催化剂上的(分别为57kJ/mol和74kJ/mol)。
     (5)以KIT-6为硬模板通过纳米浇铸法制备了有序介孔立方晶相Co_3O_4(meso-Co_3O_4),并利用聚乙烯醇保护的还原法制得了xAu/meso-Co_3O_4(x=3.7,6.5,9.0wt%)催化剂。meso-Co_3O_4和xAu/meso-Co_3O_4催化剂的比表面积高达9194m~2/g。6.5wt%Au/meso-Co_3O_4催化剂显示出较高的表面氧浓度、较好的低温还原性和较强的Au与meso-Co_3O_4之间的相互作用,因而显示出较好的催化活性和稳定性。在CO浓度为1vol%和SV为60000mL/(g h)或VOC(苯、甲苯或二甲苯)浓度为1000ppm和SV为20000mL/(gh)的反应条件下,6.5wt%Au/meso-Co_3O_4催化剂对CO、苯、甲苯和二甲苯氧化反应的T_(90%)分别为45℃、189℃、138℃和162℃。
     (6)采用抗坏血酸或柠檬酸辅助的PMMA硬模板法制备了单斜相3DOM BiVO_4光催化剂。3DOM BiVO_4光催化剂具有高的比表面积(1824m~2/g)。在所有光催化剂中,比表面积为24m~2/g的BiVO_4-AA-1光催化剂显示出最好的光催化性能。在苯酚初始浓度为0.1mmol/L和H_2O_2添加量为0.6mL条件下反应3小时后,苯酚转化率可达到94%。较低的苯酚初始浓度和适中的H_2O_2用量有助于改善催化剂的光催化性能。
     (7)在所制得的每个系列催化剂中,Co_3O_4实心球、LaCoO_3空心球、具有大孔介孔双模孔结构的LaMnO_3-PP-2和LaMnO_3-PL-2、12wt%MnO_x/3DOMLaMnO_3、4.9wt%Au/链条状大孔LaMnO_3、6.4wt%Au/3DOMLa_(0.6)Sr_(0.4)_3、6.5wt%Au/meso-Co_3O_4和BiVO_4-AA-1催化剂对CO、VOC(苯、甲苯、二甲苯或甲醇)或苯酚氧化反应显示出最好的催化活性。基于表征结果和活性数据,我们认为这些催化剂优良的催化性能与其较高的比表面积、较高的吸附氧物种浓度、较好的低温还原性、金与载体之间的强相互作用、良好的多孔结构或较高氧缺陷密度相关。
Due to the high surface areas, large pore volumes, and high-quality pore structures,porous transition-metal oxides have been widely applied in physics and chemistry,such as electronics, magnetics, adsorption, and catalysis. The mesopores in porousmaterials can accommodate guest molecules selectively and the high surface areas ofmesoporous materials are beneficial for the adsorption of gaseous molecules. Theexistence of a macroporous structure can reduce the transfer resistance of guestmolecules and facilitate them to approach the active sites. In addition, macro-ormesoporous supports can also favor the dispersion of active components on theirsurface. It is well known that perovskite-type oxides (ABO_3) exhibit goodperformance in catalyzing the complete oxidation of volatile organic compounds(VOCs) and carbon monoxide, which is associated with the oxygen nonstoichometricamount, surface area, and redox ability. The monoclinic scheelite-type BiVO_4as avisible-light-responsive semiconductor photocatalyst is active photocatalyticallyunder visible-light illumination. In recent years, catalysis by gold has been one of thehot research topics. Catalysis over a supported gold material is related to the nature ofthe support. Usually, an inert support was used to load gold, and the metal-supportstrong interaction can influence the physicochemical properties of the supported metalcatalysts. The studies on the employment of reducible transition-metal oxides ormixed oxides as the support have been rarely reported. The loading of nano-sized goldon the surface of transition-metal oxides or mixed oxides with high surface areas isexpected to increase the loading and gold dispersion, thus effectively avoiding thepossible sintering phenomena during the reaction processes. In ordered to improve thephysicochemical properties of single transition-metal oxides or mixed oxides andhence to enhance their catalytic performance, we have in the present dissertation madeinvestigations on the controlled preparation of three-dimensionally ordered (3DOM)LaMnO_3,3DOM La_(0.6)Sr_(0.4)_3, chain-like macroporous LaMnO_3, and MnO_x/3DOMLaMnO_3with mesoporous skeletons, hollow spherical LaMO_3(M=Mn, Co), solidspherical MOx(M=Mn, Co),3D ordered mesoporous Co_3O_4, Au/3D orderedmesoporous Co_3O_4, and3DOM BiVO_4via the poly(methyl methacrylate)(PMMA) or3D ordered mesoporous silica (KIT-6) hard-templating routes. The physicochemicalproperties of these materials were characterized by means of a number of analyticaltechniques and the catalytic mechanisms were clarified. The catalytic activities of theas-prepared catalysts were evaluated for the oxidation of VOCs (benzene, toluene,xylene or methanol) and CO, so that the relationships between physicochemicalproperties and catalytic performance of the materials could be established. The maininvestigations and obtained results are as follows:
     1. The hollow spherical rhombohedral LaMO_3(M=Mn and Co) and solid spherical cubic MOx(M=Mn and Co) nanoparticles were prepared using thesurfactant-assisted PMMA-templating strategy. It is shown that the use ofpolyethylene glycol (PEG) and ethylene glycol (EG) was favorable for theformation of hollow and solid spherical mixed oxides and transition-metal oxides.Compared to their nano-sized counterparts, the spherical LaMO_3and MOxcatalysts possessed much higher surface areas (2133m~2/g), higher adsorbedoxygen species concentrations, and better low-temperature reducibility. For theoxidation of CO and toluene, the catalytic activities of the spherical catalystswere higher than those of the nano-sized catalysts, in which the solid sphericalCo3O4catalyst performed the best for CO oxidation (the T_(90%)(the temperaturerequired for achieving90%CO conversion)=109℃at a space velocity (SV)=10,000mL/(g h)), whereas the hollow spherical LaCoO_3catalyst showed thehighest catalytic activity for toluene oxidation (To90%=237C at SV=20,000mL/(g h)).
     2. The rhombohedral3DOM LaMnO_3catalysts with mesoporous skeletons wereprepared via the surfactant-assisted PMMA-templating route. P123or L-lysinemight play a critical role in the generation of mesopores on the macropore wallsof3DOM LaMnO_3. The LaMnO_3catalysts with dual pore structures showedhigher surface areas (3239m~2/g), higher surface oxygen species concentrations,and better low-temperature reducibility. Under the conditions of tolueneconcentration=1,000ppm, toluene/O_2molar ratio=1/400, and SV=20,000mL/(g h), the porous LaMnO_3samples were superior to the bulk counterpart incatalytic performance, with the LaMnO_3-PP-2and LaMnO_3-PL-2samples withmacro-and mesoporous structures performing the best (T50%=222226℃andT_(90%)=243249℃). The apparent activation energies (5762kJ/mol) over theporous catalysts were much lower than that (97kJ/mol) over the bulk counterpart.
     3.3DOM-structured rhombohedral LaMnO_3and its supported MnO_xcatalysts(yMnO_x/3DOM LaMnO_3; y=5,8,12, and16wt%) were prepared using anin-situ tryptophan-assisted PMMA-templating strategy, and an one-pot methodfor the controlled preparation of rhombohedral LaMnO_3-supported MnO_xnano-sized catalysts has been established. It is shown that the surface areas ofyMnO_x/3DOM LaMnO_3were1931m~2/g, and the MnO_xnanoparticles (diameter=435nm) were highly dispersed on the surface of3DOM LaMnO_3. Comparedto the12wt%Au/bulk LaMnO_3catalyst derived from the incipient wetnessimpregnation process, the yMnO_x/3DOM LaMnO_3catalysts possessed highersurface areas and adsorbed oxygen species concentrations, low-temperaturereducibility, and more uniform MnO_xnanoparticles (diameter=418nm). Underthe conditions of toluene or methanol concentration=1000ppm, toluene or methanol/O_2molar ratio=1/400, and SV=20,000mL/(g h), the12wt%MnO_x/3DOM LaMnO_3catalyst performed the best (T_(90%)=215and137℃for theoxidation of toluene and methanol, respectively).
     4. Chain-like macroporous rhombohedral LaMnO_3and rhombohedral3DOMLa_(0.6)Sr_(0.4)MnO_3and their supported gold (xAu/chain-like macroporous LaMnO_3(x=1.4,3.1, and4.9wt%) and xAu/3DOM La_(0.6)Sr_(0.4)MnO_3(x=3.4,6.4, and7.9wt%)) catalysts were prepared using the surfactant-assisted PMMA-templatingand gas bubble-assisted polyvinyl alcohol-protected reduction methods,respectively. It is shown that the sizes of gold particles were in the range of25nm, and the gold nanoparticles were uniformly distributed on the pore surface ofthe catalysts. xAu/chain-like macroporous LaMnO_3and xAu/3DOMLa_(0.6)Sr_(0.4)MnO_3catalysts possessed surface areas of3033and3133m~2/g,respectively. The4.9wt%Au/chain-like macroporous LaMnO_3and6.4wt%Au/3DOM La_(0.6)Sr_(0.4)MnO_3catalysts showed higher surface oxygen speciesconcentrations and better low-temperature reducibility, and hence higher catalyticperformance. The T_(90%)values obtained over the4.9wt%Au/chain-likemacroporous LaMnO_3and6.4wt%Au/3DOM La_(0.6)Sr_(0.4)MnO_3catalysts were91℃at SV=20,000mL/(g h) and3℃at SV=10,000mL/(g h) for CO oxidation,and226and170℃at SV=20,000mL/(g h) for toluene oxidation, respectively.The apparent activation energies of xAu/chain-like macroporous LaMnO_3catalysts for CO and toluene oxidation were respectively2937and4752kJ/mol, much lower than those (63and97kJ/mol, respectively) of the bulkLaMnO_3catalyst; the apparent activation energies of xAu/3DOM La_(0.6)Sr_(0.4)MnO_3catalysts for CO and toluene oxidation were respectively3132and4448kJ/mol, much lower than that (57and74kJ/mol, respectively) of the bulkLa_(0.6)Sr_(0.4)MnO_3catalyst.
     5.3D ordered mesoporous cubic Co3O4(meso-Co3O4) and its supported Au(xAu/meso-Co3O4; x=3.7,6.5, and9.0wt%) nanocatalysts were prepared usingthe KIT-6nanocasting and PVA-protected reduction methods, respectively. Thesurface areas of xAu/meso-Co3O4were in the range of9194m~2/g. The6.5wt%Au/meso-Co3O4catalyst exhibited higher surface oxygen species concentration,better low-temperature reducibility, and stronger Au meso-Co3O4interaction, andhence better catalytic activity and stability. Under the conditions of COconcentration=1vol%and SV=60,000mL/(g h) or VOC (benzene, toluene orxylene) concentration=1000ppm and SV=20,000mL/(g h), the T_(90%)valuesover the6.5wt%Au/meso-Co3O4catalyst were45,189,138, and162℃for theoxidation of CO, benzene, toluene, and xylene, respectively.
     6. Monoclinically crystallized3DOM-structured BiVO4photocatalysts with high surface areas (1824m~2/g) were prepared by using the ascorbic acid-or citricacid-assisted PMMA-templating strategy. Among the as-prepared BiVO_4photocatalysts, the one with a surface area of ca.24m~2/g showed the bestvisible-light-driven photocatalytic performance for phenol degradation (phenolconversion=ca.94%at phenol concentration=0.1mmol/L and in the presenceof0.6mL H_2O_2). The lower phenol concentration in aqueous solution and theaddition of an appropriate H_2O_2amount were beneficial for the enhancement inphotocatalytic performance.
     7. Among each series of the as-prepared catalysts, solid spherical Co_3O_4, hollowspherical LaCoO_3, LaMnO_3-PP-2and LaMnO_3-PL-2with macro-andmesoporous structures,12wt%MnOx/3DOM LaMnO_3,4.9wt%Au/chain-likemacroporous LaMnO_3,6.4wt%Au/3DOM La0.6Sr0.4MnO_3,6.5wt%Au/meso-Co_3O_4, and BiVO_4-AA-1catalysts showed the highest performance forthe oxidation of CO, VOC (benzene, toluene, xylene or methanol) or phenol.Based on the characterization results and catalytic activity data, it is concludedthat the excellent catalytic performance of these materials might be associatedwith their higher surface areas, higher adsorbed oxygen species concentrations,better low-temperature reducibility, strong gold-support interaction, better qualityporous structures or higher oxygen deficiency density.
引文
[1] B.K. Min, C.M. Friend. Heterogeneous Gold-Based Catalysis for Green Chemistry:Low-Temperature CO Oxidation and Propene Oxidation. Chem. Rev.2007,107:27092724.
    [2] J.J. Spivey. Complete Catalytic Oxidation of Volatile Organics. Ind. Eng. Chem. Res.1987,26:21652180.
    [3] M.F.M. Zwinkels, S.G. Jaras, P.G. Menon. Catalytic Materials for High-TemperatureCombustion. Catal. Rev. Sci. Eng.1993,35:319358.
    [4] M. Paulis, L.M. Gandía, A. Gil, J. Sambeth, J.A. Odriozola, M. Montes. Influence of theSurface Adsorption-Desorption Processes on the Ignition Curves of Volatile OrganicCompounds (VOCs) Complete Oxidation over Supported Catalysts. Appl. Catal. B.2000,26:3746.
    [5] Y. Ren, Z. Ma, L.P. Qian, S. Dai, H.Y. He, P.G. Bruce. Ordered Crystalline Mesoporous Oxidesas Catalysts for CO Oxidation. Catal. Lett.2009,131:146–154.
    [6] A. Gil, L.M. Gandía, S.A. Korili. Effect of the Temperature of Calcination on the CatalyticPerformance of Manganese-and Samarium-Manganese-Based Oxides in the CompleteOxidation ofAcetone. Appl. Catal. A2004,274:229235.
    [7] J.E. Germain. Catalytic Conversion of Hydrocarbons. Academic Press, NewYork,1967.
    [8] J.R. Anderson, M. Boudart (Eds.). Catalysis Science and Technology. Springer Verlag, NewYork,1982.
    [9] G. Busca, M. Daturi, E. Finocchio. Transition Metal Mixed Oxides as Combustion Catalysts:Preparation, Characterization andActivity Mechanisms. Catal. Today1997,33:239249.
    [10] D.L. Trimm. Catalytic Combustion (review). Appl. Catal.1983,7:249282.
    [11] R.G. Silver, J.E. Sawyer, J.C. Summers (Eds.). Catalytic Control of Air Pollution. AmericanChemical Society, DC,1992.
    [11] T. Garcia, S. Agouram, J.F. Sánchez-Royo, R. Murillo, A.M. Mastral, A. Aranda, I. Vázquez,A. Dejoz, B. Solsona. Deep Oxidation of Volatile Organic Compounds using Ordered CobaltOxides Prepared by a Nanocasting Route. Appl. Catal. A2010,386:1627.
    [12] X.W. Xie, Y. Li, Z.Q. Liu, M. Haruta, W.J. Shen. Low-Temperature Oxidation of COCatalysed by Co3O4Nanorods. Nature2009,458:746749.
    [13] H.L. Yu, K.L. Zhang, C. Rossi. Theoretical Study on Photocatalytic Oxidation of VOCs usingNano-TiO2Photocatalyst. J. Photochem. Photobiol. A2007,188:6573.
    [14] D. Dvoranova, V. Brezova, M. Mazur. Investigations of Metal-Doped Titanium DioxidePhotocatalysts. Appl. Catal. B2002,37:91105.
    [15] K. Yang, Y. Dai, B. Huang. Understanding Photocatalytic Activity of S-and P-Doped TiO2under Visible Light from First-Principles. J. Phys. Chem. C2007,111:1898518994.
    [16] S.G. Yang, X. Quan, X.Y. Li, Y.Z. Liu, S. Chen, G.H. Chen. Preparation, Characterization andPhotoelectrocatalytic Properties of Nanocrystalline Fe2O3/TiO2, ZnO/TiO2, andFe2O3/ZnO/TiO2Composite Electoreds towards Pentachlorophenol Degradation. Phys. Chem.Chem. Phys.2004,6:659664.
    [17] T.H. Noh, D.W. Kim, S.W. Seo, I.S. Cho, D.H. Kim, H.S. Han, K.S. Hong. FacileHydrothermal Synthesis of InVO4Microspheres and Their Visible-Light PhotocatalyticActivities. Mater. Lett.2012,72:98100.
    [18] J.Yin, Z.G. Zou, J.H. Ye. Photophysical and Photocatalytic Properties of New PhotocatalystsMCrO4(M=Sr, Ba). Chem. Phys. Lett.2003,378:2428.
    [19]郭建光,李忠,奚红霞.催化燃烧VOCs的三种过渡金属催化剂的活性比较.华南理工大学学报(自然科学版).2004,32:5659.
    [20] L.F. Liotta, G. Di Carlo, G. Pantaleo, A.M. Venezia, G. Deganello. Co3O4/CeO2CompositeOxides for Methane Emissions Abatement: Relationship between Co3O4-CeO2Interactionand CatalyticActivity. Appl. Catal. B2006,66:217227.
    [21] M.A. Pe a, J.L.G. Fierro. Chemical Structures and Performance of Perovskite Oxides. Chem.Rev.2001,101:1981–2018.
    [22] H.X. Dai, H. He, P.H. Li, L.Z. Gao, C.T. Au. The Relationship of Structural Defect-RedoxProperty-Catalytic Performance of Perovskites and Their Related Compounds for CO andNOxRemoval. Catal. Today2004,90:231–244.
    [23] V. Blasin-Aubé, J. Belkouch, L. Monceaux. General Study of Catalytic Oxidation of VariousVOCs over La0.8Sr0.2MnO3+xPerovskite Catalyst-Influence of Mixture. Appl. Catal. B2003,43:175186.
    [24] S. Irusta, M.P. Pina, M. Menéndez, J. Santamaría. Catalytic Combustion of Volatile OrganicCompounds over La-based Perovskites. J. Catal.1998,179:400412.
    [25] S.H. Liang, T.G. Xu, F. Teng, R.L. Zong, Y.F. Zhu. The High Activity and Stability ofLa0.5Ba0.5MnO3Nanocubes in the Oxidation of CO and CH4. Appl. Catal. B2010,96:267–275.
    [26] V.N. Stathopoulos, V.C. Belessi, A.K. Ladavos. Samarium Based High Surface AreaPerovskite Type Oxide SmFe1–xAlxO3(x=0.00,0.50,0.95). Part II, Catalytic Combustion ofCH4. React. Kinet. Catal. Lett.2001,72:49–55.
    [27] X. Wei, P. Hug, R. Figi, M. Trottmann, A. Weidenkaff, D. Ferri. Catalytic Combustion ofMethane on Nano-Structured Perovskite-Type Oxides Fabricated by Ultrasonic SprayCombustion. Appl. Catal. B2010,94:27–37.
    [28] Y.G. Wang, J.W. Ren, Y.Q. Wang, F.Y. Zhang, X.H. Liu, Y. Guo, G.Z. Lu. NanocastedSynthesis of Mesoporous LaCoO3Perovskite with Extremely High Surface Area andExcellent Activity in Methane Combustion. J. Phys. Chem. C2008,112:15293–15298.
    [30] J.G. Deng, L. Zhang, H.X. Dai, C.T. Au. In Situ Hydrothermally Synthesized MesoporousLaCoO3/SBA-15Catalysts: High Activity for the Complete Oxidation of Toluene and EthylAcetate. Appl. Catal. A2009,352:43–49.
    [31] X. He, D. Antonelli. Recent Advances in Synthesis and Applications of Transition MetalContaining Mesoporous Molecular Sieves. Angew. Chem. Int. Ed.2002,41:214229.
    [32] G.J.D. Soler-Illia, C. Sanchez, B. Lebeau, J. Patarin. Chemical Strategies to Design TexturedMaterials: From Microporous and Mesoporous Oxides to Nanonetworks and HierarchicalStructures. Chem. Rev.2002,102:40934138.
    [33] K.R. Barnard, K. Foger, T.W. Turney, R.D. Williams. Lanthanum Cobalt Oxide OxidationCatalysts Derived from Mixed Hydroxide Precursors. J. Catal.1990,125:265275.
    [34] A.K. Sinha, K. Suzuki. Novel Mesoporous Chromium Oxide for VOCs Elimination. Appl.Catal. B2007,70:417422.
    [35] Z.X. Zhao, H.X. Dai, J.G. Deng, Y.C. Du, Y.X. Liu, L. Zhang. Three-Dimensionally OrderedMacroporous La0.6Sr0.4FeO3-δ: High-Efficiency Catalysts for the Oxidative Removal ofToluene. Micropor. Mesopor. Mater.2012,163:131–139.
    [36] O.D. Velev, T.A. Jede, R.F. Lobo, A.M. Lenhoff. Porous Silica via Colloidal Crystallization.Nature1997,389:447–448
    [37] A. Stein. Sphere Templating Methods for Periodic Porous Solids. Micropor. Mesopor. Mater.2001,44:227–239.
    [38] W. St ber, A. Fink, E. Bohn. Controlled Growth of Monodisperse Silica Spheres in theMicron Size Range. J. Colloid. Interf. Sci.1968,26:62–69.
    [39] A. Stein, F. Li, N.R. Denny. Morphological Control in Colloidal Crystal Templating ofInverse Opals, Hierarchical Structures and Shaped Particles. Chem. Mater.2008,20:649–666.
    [40] C.F. Blanford, H.W. Yan, R.C. Schroden, M. Al-Daous, A. Stein. Gems of Chemistry andPhysics: Macroporous Metal Oxides with3D Order. Adv. Mater.2001,13:401–407.
    [41] H.W. Yan, C.F. Blandford, B.T. Holland. Templated Salt Precipitation and ChemicalConversion. Chem. Mater.2000,12:1134–1141.
    [42] M. Sadakane, T. Asanuma, J. Kubo, W. Ueda. Facile Procedure to PrepareThree-Dimensionally Ordered Macroporous (3DOM) Perovskite-type Mixed Metal Oxidesby Colloidal Crystal Templating Method. Chem. Mater.2005,17:35463551.
    [43] J.F. Xu, J. Liu, Z. Zhao, C.M. Xu, J.X. Zheng, A.J. Duan, G.Y. Jiang, Easy Synthesis ofThree-Dimensionally Ordered Macroporous La1-xKxCoO3Catalysts and Their High Activitiesfor the Catalytic Combustion of Soot. J. Catal.2011,282:1–12.
    [44] H.N. Li, L. Zhang, H.X. Dai, H. He. Facile Synthesis and Unique Physicochemical Propertiesof Three-Dimensionally Ordered Macroporous Magnesium Oxide, Gamma-Alumina, andCeria-Zirconia Solid Solutions with Crystalline Mesoporous Walls. Inorg. Chem.2009,48:4421–4434.
    [45] R.Z. Zhang, H.X. Dai, Y.C. Du, L. Zhang, J.G. Deng, Y.S. Xia, Z.X. Zhao, X. Meng, Y.X.Liu. P123-PMMA Dual Templating Generation and Unique Physicochemical Properties ofThree-Dimensionally Ordered Macroporous Iron Oxides with Crystalline Mesoporous Walls.Inorg. Chem.2011,50:25342544.
    [46] J. Yuan, H.X. Dai, L. Zhang, J.G. Deng, Y.X. Liu, H. Zhang, H.Y. Jiang, H. He.PMMA-Templating Preparation and Catalytic Properties of High-Surface-AreaThree-Dimensional Macroporous La2CuO4for Methane Combustion. Catal. Today2011,175:209–215.
    [47] D. Grosso, C. Boissière, B. Smarsly, T. Brezesinski, N. Pinna, P.A. Albouy, H. Amenitsch, M.Antonietti, C. Sanchez. Periodically Ordered Nanoscale Islands and Mesoporous FilmsComposed of Nanocrystalline Multimetallic Oxides. Nat. Mater.2004,3:787–792.
    [48] P.D. Yang, D.Y. Zhao, D.I. Marglese, B.F. Chmelka, G.D. Stuchy. Generalized Syntheses ofLarge-Pore Mesoporous Metal Oxides with Semicrystalline Frameworks. Nature1998,396:152–155.
    [49] R.Z. Hou, P. Ferreira, P.M. Vilarinho. Nanoporous BaTiO3Crystallites. Chem. Mater.2009,21:3536–3541.
    [50] H.F. Yang, D.Y. Zhao. Synthesis of Replica Mesostructures by the Nanocasting Strategy. J.Mater. Chem.2005,15:1217–1231.
    [51] F. Jiao, K.M. Shaju, P.G. Bruce. Synthesis of Nanowire and Mesoporous Low-TemperatureLiCoO2by a Post-Templating Reaction. Angew. Chem. Int. Ed.2005,44:6550–6553.
    [52] Y.Q. Wang, C.M. Yang, W. Schmidt, B. Spliethoff, E. Bill, F. Schuth. Weakly FerromagneticOrder Mesoporous Co3O4Synthesized by Nanocasting from Vinyl-Functionlized Cubic Ia3dMesoporous Silica. Adv. Mater.2005,17:53–56.
    [53] M. Haruta, T. Kobayashi, H. Sano, N. Yamada. Novel Gold Catalysts for the Oxidation ofCarbon-Monoxide at a Temperature Far Below0-Degrees. Chem. Lett.1987,2:405408.
    [54] C.D. Pina, E. Falletta, M. Rossi. Highly Selective Oxidation of Benzyl Alcohol toBenzaldehyde Catalyzed by Bimetallic Gold-Copper Catalysts. J. Catal.2008,260:384386.
    [55] A.M. Venezia, V.L. Parola, G. Deganello. Synergetic Effect of Gold in Au/Pd Catalysts duringHydrodesulfurization Reactions of Model Compounds. J. Catal.2003,215:317325.
    [56] M. Shekhar, J. Wang, W.S. Lee, W.D. Williams, S.M. Kim, E.A. Stach, J.T. Miller, W.N.Delgass, F.H. Ribeiro. Size and Support Effects for the Water-Gas Shift Catalysis over GoldNanoparticles Supported on Model Al2O3and TiO2. J. Am. Chem. Soc.2012,134:47004708.
    [57] S. Scirè, L.F. Liotta. Supported Gold Catalysts for the Total Oxidation of Volatile OrganicCompounds. Appl. Catal. B2012,125:222–246.
    [58] H. Huber, D. Mcintosh, G.A. Ozin. Metal Atom Model for Oxidation of Carbon-Monoxide toCarbon-Dioxide: Gold Atom Carbon Monoxide-Dioxygen Reaction and Gold Atom CarbonDioxide Reaction. Inorg. Chem.1977,16:975–979.
    [59] M. Haruta, N. Yamada, T. Kobayashi, S. Iijima. Gold Catalysts Prepared by Coprecipitationfor Low-Temperature Oxidation of Hydrogen and of Carbon-Monoxide. J. Catal.1989,115:301–309.
    [60] S. Kandoi, A.A. Gokhale, L.C. Grabow, J.A. Dumesic, M. Mavrikakis. Why Au and Cu AreMore Selective than Pt for Preferential Oxidation of CO at Low Temperature. Catal. Lett.2004,93:93–100.
    [61] S. Scirè, S. Minicò, C. Crisafulli, S. Galvagno. Catalytic Combustion of Volatile OrganicCompounds over Group IB Metal Catalysts on Fe2O3. Catal. Commun.2001,2:229–232.
    [62] S. Scirè, S. Minicò, C. Crisafulli, C. Satriano, A. Pistone. Catalytic Combustion of VolatileOrganic Compounds on Gold/Cerium Oxide Catalysts. Appl. Catal. B2003,40:43–49.
    [63] H.J. Wu, L.D. Wang, Z.Y. Shen, J.H. Zhao. Catalytic Oxidation of Toluene and p-Xyleneusing Gold Supported on Co3O4Catalyst Prepared by Colloidal Precipitation Method. J. Mol.Catal. A2011,351:188–195.
    [64] D. Andreeva, R. Nedyalkova, L. Ilieva, M.V. Abrashev. Nanosize Gold-Ceria CatalystsPromoted by Vanadia for Complete Benzene Oxidation. Appl. Catal. A2003,246:29–38.
    [65] Q.Q. Lin, L.D. An, J.Y. Chen, H. Qin, S.X. Qi, X.H. Zou. Effect of LaFeO3Decoration andOzone Treatment on the Thermal Stability of Au/Al2O3for CO Oxidation. Chin. J. Catal.2008,29:506–508.
    [66]李旭. Au/La-Mn-O催化剂的制备及其对CO催化氧化性能的研究.内蒙古师范大学硕士论文,2010.
    [67] D. Zou, S. Ma, R. Guan, M. Park, L. Sun, J.J. Aklonis, R. Salovey. Model Filled Polymers. V.Synthesis of Crosslinked Monodisperse Polymethacrylate Beads. J. Poly. Sci. Part A1992,30:137144.
    [68] S.H. Im, Y.T. Lim, D.L. Suh, O.O. Park. Three-Dimensional Self-Assembly of Colloids at aWater-Air Interface: A Novel Technique for the Fabrication of Photonic Bandgap Crystals.Adv. Mater.2002,14:13671369.
    [69] P. Ciambelli, S. Cimino, S.D. Rossi, M. Faticanti, L. Lisi, G. Minelli, I. Pettiti, P. Porta, G.Russo, M. Turco. AMnO3(A=La, Nd, Sm) and Sm1-xSrxMnO3Perovskites as CombustionCatalysts: Structural, Redox and Catalytic Properties. Appl. Catal. B2000,24:243253.
    [70] H.X. Dai, C.F. Ng, C.T. Au. Perovskite-Type Halo-Oxide La-xSrxFeO-X (X=F, Cl)Catalysts Selective for the Oxidation of Ethane to Ethene, J. Catal.2000,189:5262.
    [71] M. Comotti, W.C. Li, B. Spliethoff, F. Schüth. Support Effect in High Activity Gold Catalystsfor CO Oxidation. J. Am. Chem. Soc.2006,128:917924.
    [72] F. Kleitz, S.H. Choi, R. Ryoo. Cubic Ia3d Large Mesoporous Silica: Synthesis andReplication to Platinum Nanowires, Carbon Nanorods and Carbon Nanotubes. Chem.Commun.2003,21362137.
    [73] X.H. Sun, Y.F. Shi, P. Zhang, C.M. Zheng, X.Y. Zheng, F. Zhang, Y.C. Zhang, N.J. Guan, D.Y.Zhao, G.D. Stucky. Container Effect in Nanocasting Synthesis of Mesoporous Metal Oxides.J.Am. Chem. Soc.2011,133:14542–14545.
    [74] X. Meng, L. Zhang, H.X. Dai, Z.X. Zhao, R.Z. Zhang, Y.X. Liu. Surfactant-AssistedHydrothermal Fabrication and Visible-Light-Driven Photocatalytic Degradation ofMethylene Blue over Multiple Morphological BiVO4Single-Crystallites. Mater. Chem.Phys.2011,125:5965.
    [75] S.W. Kim, M. Kim, W.Y. Lee, T. Hyeon. Fabrication of Hollow Palladium Spheres and TheirSuccessful Application to the Recyclable Heterogeneous Catalyst for Suzuki CouplingReactions. J. Am. Chem. Soc.2002,124:76427643.
    [76] J. Zhang, X. Liu, S. Wu, M. Xu, X. Guo, S. Wang. Au Nanoparticle-Decorated Porous SnO2Hollow Spheres: A New Model for a Chemical Sensor. J. Mater. Chem.2010,20:64536459.
    [77] L.I. Hung, C.K. Tsung, W. Huang, P. Yang. Room-Temperature Formation of Hollow Cu2ONanoparticles. Adv. Mater.2010,22:19101914.
    [78] J. Li, H.C. Zeng. Nanoreactors-Size Tuning, Functionalization, and Reactivation of Au inTiO2Nanoreactors. Angew. Chem. Int. Ed.2005,44:43424345.
    [79] K. Cheng, S. Peng, C. Xu, S. Sun. Porous Hollow Fe3O4Nanoparticles for Targeted Deliveryand Controlled Release of Cisplatin. J. Am. Chem. Soc.2009,131:1063710644.
    [80] X.W. Lou, Y. Wang, C. Yuan, J.Y. Lee, L.A. Archer. Template-Free Synthesis of SnO2HollowNanostructures with High Lithium Storage Capacity. Adv. Mater.2006,18:23252329.
    [81] J. Li, H.C. Zeng. Hollowing Sn-Doped TiO2Nanospheres via Ostwald Ripening. J. Am.Chem. Soc.2007,129:1583915847.
    [82] X.M. Sun, J.F. Liu, Y.D. Li. Use of Carbonaceous Polysaccharide Microspheres as Templatesfor Fabricating Metal Oxide Hollow Spheres. Chem. Eur. J.2006,12:20392047.
    [83] J.U. Park, H.J. Lee, W. Cho, C. Jo, M. Oh. Facile Synthetic Route for Thickness andComposition Tunable Hollow Metal Oxide Spheres from Silica-Templated CoordinationPolymers. Adv. Mater.2011,23:31613164.
    [84] X. Li, C.J. Tang, M. Ai, L. Dong, Z. Xu. Controllable Synthesis of Pure-Phase Rare-EarthOrthoferrites Hollow Spheres with a Porous Shell and Their Catalytic Performance for theCO plus NO Reaction. Chem. Mater.2010,22:48794889.
    [85] X.L. Tian, J. Li, K. Chen, J. Han, S.L. Pan, Y.J. Wang, X.Y. Fan, F. Li, Z.X. Zhou. NearlyMonodisperse Ferroelectric BaTiO3Hollow Nanoparticles: Size-Related Solid Evacuation inOstwald-Ripening-lnduced Hollowing Process. Cryst. Growth Des.2010,10:39903995.
    [86] Z.G. Lu, Y.G. Tang, L.M. Chen, Y.D. Li. Shape-Controlled Synthesis and Characterization ofBaZrO3Microcrystals. J. Cryst. Growth2004,266:539544.
    [87] J.M. Gu, S.H. Li, M.L. Ju, E.B. Wang. In Situ Carbon Template-Based Strategy to FabricateFerrite Hollow Spheres and Their Magnetic Property. J. Cryst. Growth2011,320:4651.
    [88] Y.N. Kim, J.C. Kim, E.K. Lee, Y.S. Hwang, N.H. Hur, Y.J. Yun, G.S. Park, J.T. Kim.Ferromagnetic Nanospheres of Perovskite Manganite La0.7Ca0.3MnO3Prepared by TemplateReplication in Porous Carbon Framework. J. Appl. Phys.2004,95:70887090.
    [89] X.X. Zhang, T. Zhang, F.B. Gu, Z.H. Wang, G.S. Guo, Synthesis and Catalytic Performanceof LaMnO3Hollow Nanosphere. Environ. Chem.(in Chinese)2011,30:808811.
    [90] J. Park, J. Joo, S.G. Kwon, Y. Jang, T. Hyeon. Synthesis of Monodisperse SphericalNanocrystals. Angew. Chem. Int. Ed.2007,46:46304660.
    [91] F. Li, Y.Q. Qian, A. Stein. Template-Directed Synthesis and Organization of ShapedOxide/Phosphate Nanoparticles. Chem. Mater.2010,22:32263235.
    [92] F. Li, S.A. Delo, A. Stein. Disassembly and Self-reassembly in Periodic Nanostructures: AFace-Centered-to-Simple-Cubic Transformation. Angew. Chem. Int. Ed.2007,46:66666669.
    [93] L.H. Hu, K.Q. Sun, Q. Peng, B.Q. Xu, Y.D. Li. Surface Active Sites on Co3O4Nanobelt andNanocube Model Catalysts for CO Oxidation. Nano Res.2010,3:363368.
    [94] A. Weidenkaff. Preparation and Application of Nanostructured Perovskite Phases. Adv. Eng.Mater.2004,6:709714.
    [95] M.A. Peluso, E. Pronsato, J.E. Sambeth, H.J. Thomas, G. Busca. Catalytic Combustion ofEthanol on Pure and Alumina Supported K-Mn Oxides: An IR and Flow Reactor Study. Appl.Catal. B2008,78:7379.
    [96] J.G. Deng, L. Zhang, H.X. Dai, Y.S. Xia, H.Y. Jiang, H. Zhang, H. He. Ultrasound-AssistedNanocasting Fabrication of Ordered Mesoporous MnO2and Co3O4with High Surface Areasand Polycrystalline Walls. J. Phys. Chem. C2010,114:26942700.
    [97] H. Tüysüz, M. Comotti, F. Schüth. Ordered Mesoporous Co3O4as Highly Active Catalyst forLow Temperature CO Oxidation. Chem. Commun.2008,40224024.
    [98] F. Wang, H.X. Dai, J.G. Deng, G.M. Bai, K.M. Ji, Y.X. Liu. Manganese Oxides with Rod-,Wire-, Tube-, and Flower-Like Morphologies: Highly Effective Catalysts for the Removal ofToluene. Environ. Sci. Technol.2012,46:40344041.
    [99] F.J. Shi, F. Wang, H.X. Dai, J.G. Deng, Y.X. Liu, G.M. Bai, K.M. Ji, C.T. Au. Rod-, Flower-,and Dumbbell-like MnO2: Highly Active Catalysts for the Combustion of Toluene. Appl.Catal. A2012,433434:206213.
    [100] R. Spinicci, M. Faticanti, P. Marini, S. De Rossi, P. Porta. Catalytic Activity of LaMnO3andLaCoO3Perovskites towards VOCs Combustion. J. Mol. Catal. A2003,197:147155.
    [101] L. Hechavarría, N. Mendoza, P. Altuzar, H. Hu. In Situ Formation of PolyethyleneGlycol-Titanium Complexes as Solvent-Free Electrolytes for Electrochromic DeviceApplication. J. Solid. State. Electrochem.2010,14:323330.
    [102] T. Striker, J.A. Ruud. Effect of Fuel Choice on the Aqueous Combustion Synthesis ofLanthanum Ferrite and Lanthanum Manganite. J. Am. Ceram. Soc.2010,93:26222629.
    [103] H.W. Yan, C.F. Blanford, J.C. Lytle, C.B. Carter, W.H. Smyrl, A. Stein. Influence ofProcessing Conditions on Structures of3D Ordered Macroporous Metals Prepared byColloidal Crystal Templating. Chem. Mater.2001,13:43144321.
    [104] W. Zhou, R. Ran, Z.P. Shao, W.Q. Jin, N.P. Xu. Synthesis of Nano-Particle and HighlyPorous Conducting Perovskites from Simple in situ Sol-Gel Derived Carbon TemplatingProcess. Bull. Mater. Sci.2010,33:371376.
    [105] K.V.P.M. Shafi, A. Ulman, X. Yan, N.L. Yang, C. Estournès, H. White, M. Rafailovich.Sonochemical Synthesis of Functionalized Amorphous Iron Oxide Nanoparticles. Langmuir2001,17:50935097.
    [106] Y.T. Wu, X.F. Wang. Preparation and Characterization of Single-Phase Alpha-Fe2O3Nano-Powders by Pechini Sol-Gel Method. Mater. Lett.2011,65:20622065.
    [107] J.S. Li, X.T. Wei, Y.S. Lin, D. Su. Synthesis of Ordered Mesoporous Silica MembranesContaining Iron Oxide Nanocrystallites. J. Membr. Sci.2008,312:186192.
    [108] N. Moussaif, S. Irusta, C. Yagüe, M. Arruebo, J.G. Meier, C. Crespo, M.A. Jimenez, J.Santamaría. Mechanically Reinforced Biodegradable Nanocomposites. A Facile SynthesisBased on PEGylated Silica Nanoparticles. Polymer2010,51:61326139.
    [109] S. Ponce, M.A. Pe a, J.L.G. Fierro. Surface Properties and Catalytic Performance inMethane Combustion of Sr-Substituted Lanthanum Manganites. Appl. Catal. B2000,24:193205.
    [110] C. Bernard, B. Durand, M. Verelst, P. Lecante. Hydrothermal Synthesis of LaMnO3+δ: FTIRand WAXS Investigations of the Evolution from Amorphous to Crystallized Powder. J.Mater. Sci.2004,39:28212826.
    [111] Y.D. Yin, R.M. Rioux, C.K. Erdonmez, S. Hughes, G.A. Somorjai, A.P. Alivisatos.Formation of Hollow Nanocrystals through the Nanoscale Kirkendall Effect. Science2004,30:711714.
    [112] H.J. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, M. Zacharias, U. G sele.Monocrystalline Spinel Nanotube Fabrication Based on the Kirkendall Effect. Nat. Mater.2006,5:627631.
    [113] Y. Chang, J.J. Teo, H.C. Zeng. Formation of Colloidal CuO Nanocrystallites and TheirSpherical Aggregation and Reductive Transformation to Hollow Cu2O Nanospheres.Langmuir2005,21:10741079.
    [114] M. Sadakane, T. Horiuchi, N. Kato, C. Takahashi, W. Ueda. Facile Preparation ofThree-Dimensionally Ordered Macroporous Alumina, Iron Oxide, Chromium Oxide,Manganese Oxide, and Their Mixed-Metal Oxides with High Porosity. Chem. Mater.2007,19:57795785.
    [115] M. Sadakane, C. Takahashi, N. Kato, H. Ogihara, Y. Nodasaka, Y. Doi, Y. Hinatsu, W.Ueda. Three-Dimensionally Ordered Macroporous (3DOM) Materials of Spinel-TypeMixed Iron Oxides. Synthesis, Structural Characterization, and Formation Mechanism ofInverse Opals with a Skeleton Structure. Bull. Chem. Soc. Jpn.2007,80:677685.
    [116] F.F. Tao, C.L. Gao, Z.H. Wen, Q. Wang, J.H. Li, Z. Xu. Cobalt Oxide Hollow Microsphereswith Micro-and Nano-Scale Composite Structure: Fabrication and ElectrochemicalPerformance. J. Solid State Chem.2009,182:10551066.
    [117] T.C. An, J.K. Liu, G.Y. Li, S.Q. Zhang, H.J. Zhao, X.Y. Zeng, G.Y. Sheng, J.M. Fu.Structural and Photocatalytic Degradation Characteristics of Hydrothermally TreatedMesoporous TiO2. Appl. Catal. A2008,350:237243.
    [118] T.K. Tseng, H. Chu, H.H. Hsu. Characterization of Gamma-Alumina-Supported ManganeseOxide as an Incineration Catalyst for Trichloroethylene. Environ. Sci. Technol.2003,37:171176.
    [119] G. Fierro, M. Jacono Lo, M. Inversi, R. Dragone, P. Porta. TPR and XPS Study ofCobalt-Copper Mixed Oxide Catalysts: Evidence of a Strong Co-Cu Interaction. Top. Catal.2000,10:3948.
    [120] A. Machocki, T. Ioannides, B. Stasinska, W. Gac, G. Avgouropoulos, D. Delimaris, W.Grzegorczyk, S. Pasieczna. Manganese-Lanthanum Oxides Modified with Silver for theCatalytic Combustion of Methane. J. Catal.2004,227:282296.
    [121] H. Taguchi, A. Sugita, M. Nagao. Surface Characterization of LaMnO3+δpowder Annealedin Air. J. Solid State Chem.1995,119:164168.
    [122] F. Teng, W. Han, S.H. Liang, B. Gaugeu, R.L. Zong, Y.F. Zhu. Catalytic Behavior ofHydrothermally Synthesized La0.5Sr0.5MnO3Single-Crystal Cubes in the Oxidation of COand CH4. J. Catal.2007,250:111.
    [123] E.R. Stobbe, B.A. de Boer, J.W. Geus. The Reduction and Oxidation Behaviour ofManganese Oxides. Catal. Today1999,47:161167.
    [124] F. Teng, M.D. Chen, G.Q. Li, Y. Teng, T.G. Xu, Y.C. Hang, W.Q. Yao, S. Santhanagopalane,D.D. Meng, Y.F. Zhu. High Combustion Activity of CH4and Catalluminescence Propertiesof CO Oxidation over Porous Co3O4Nanorods. Appl. Catal. B2011,110:133140.
    [125] B.A. Sextori, A.E. Hughes, T.W. Turney. An XPS and TPR Study of the Reduction ofPromoted Cobalt Kieselguhr Fischer-Tropsch Catalysts. J. Catal.1986,97:390406.
    [126] K.D. Chen, S.B. Xie, A.T. Bell, E. Iglesia. Alkali Effects on Molybdenum Oxide Catalystsfor the Oxidative Dehydrogenation of Propane. J. Catal.2000,195:244252.
    [127] S. Cimino, S. Colonna, S. De Rossi, M. Faticanti, L. Lisi, I. Pettiti, P. Portaz. MethaneCombustion and CO Oxidation on Zirconia-Supported La, Mn Oxides and LaMnO3Perovskite. J. Catal.2002,205:309317.
    [128] M. Abdolrahmani, M. Parvari, M. Habibpoor. Effect of Copper Substitution and PreparationMethods on the LaMnO3δStructure and Catalysis of Methane Combustion and COOxidation. Chin. J. Catal.2010,31:394403.
    [129] B.T. Ji, X.L. Jiao, N. Sui, Y.Z. Duan, D.R. Chen. Long Single-Crystalline Alpha-Mn2O3Nanowires: Facile Synthesis and Catalytic Properties. CrystEngComm2010,12:32293234.
    [130] S.C. Kim, W.G. Shim. Catalytic Combustion of VOCs over a Series of Manganese OxideCatalysts. Appl. Catal. B2010,98:180185.
    [131] J.M. Giraudon, A. Elhachimi, G. Leclercq. Catalytic Oxidation of Chlorobenzene overPd/Perovskites. Appl. Catal. B2008,84:251–261.
    [132] H. Najjar, H. Batis. La-Mn Perovskite-Type Oxide Prepared by Combustion Method:Catalytic Activity in Ethanol Oxidation. Appl. Catal. A2010,383:192201.
    [133] J.G. Deng, L. Zhang, H.X. Dai, H. Hong, C.T. Au. Ind. Eng. Chem. Res.2008,47:81758183.
    [134] G.J. Zou, L. Chen, X.L. Wang. A Novel Grind Process to Synthesize Nano-MicronStructured LaMnO3for Catalytic Combustion of Methane. Catal. Lett.2009,127:444–447.
    [135] N. Gunasekaran, S. Saddawi, J.J. Carberry. Effect of Surface Area on the Oxidation ofMethane over Solid Oxide Solution Catalyst La0.8Sr0.2MnO3. J. Catal.1996,159:107–111.
    [136] J.N. Kuhn, U.S. Ozkan. Surface Properties of Sr-and Co-Doped LaFeO3. J. Catal.2008,253:200211.
    [137] R.Z. Hou, P. Ferreira, P.M. Vilarinho. Nanoporous BaTiO3Crystallites. Chem. Mater.2009,21:35363541.
    [138] X.X. Fan, Y. Wang, X.Y. Chen, L. Gao, W.J. Luo, Y.P. Yuan, Z.S. Li, T. Yu, J.H. Zhu, Z.G.Zou. Facile Method to Synthesize Mesoporous Multimetal Oxides (ATiO3, A=Sr, Ba) withLarge Specific Surface Areas and Crystalline Pore walls. Chem. Mater.2010,22:12761278.
    [139] Y.N. Kim, S.J. Kim, E.K. Lee, E.O. Chi, N.H. Hur, C.S. Hong. Large Magnetoresistance inThree Dimensionally Ordered Macroporous Perovskite Manganites Prepared by a ColloidalTemplating Method. J. Mater. Chem.2004,14:17741777.
    [140] Y.C. Wei, J. Liu, Z. Zhao, Y.S. Chen, C.M. Xu, A.J. Duan, G.Y. Jiang, H. He. HighlyActive Catalysts of Gold Nanoparticles Supported on Three-Dimensionally OrderedMacroporous LaFeO3for Soot Oxidation. Angew. Chem. Int. Ed.2011,50:23262329.
    [141] J.F. Xu, J. Liu, Z. Zhao, J.X. Zheng, G.Z. Zhang, A.J. Duan, G.Y. Jiang.Three-Dimensionally Ordered Macroporous LaCoxFe1-xO3Perovskite-Type Complex OxideCatalysts for Diesel Soot Combustion. Catal. Today2010,153:136142.
    [142] O. Sel, D. Kuang, M. Thommers, B. Smarsly. Principles of Hierarchical Meso-andMacropore Architectures by Liquid Crystalline and Polymer Colloid Templating. Langmuir2006,22:23112322.
    [143] Z.Y. Wang, A. Stein. Morphology Control of Carbon, Silica, and Carbon/SilicaNanocomposites: From3D Ordered Macro-/Mesoporous Monoliths to Shaped MesoporousParticles. Chem. Mater.2008,20:10291040.
    [144] G.Z. Wang, L. Zhang, H.X. Dai, J.G. Deng, C.X. Liu, H. He, C.T. Au. P123-AssistedHydrothermal Synthesis and Characterization of Rectangular Parallelepiped and HexagonalPrism Single-Crystalline MgO with Three-Dimensional Wormholelike Mesopores. Inorg.Chem.2008,47:40154022.
    [145] C.X. Liu, L. Zhang, J.G. Deng, Q. Mu, H.X. Dai, H. He. Surfactant-Aided HydrothermalSynthesis and Carbon Dioxide Adsorption Behavior of Three-Dimensionally MesoporousCalcium Oxide Single-Crystallites with Tri-, Tetra-, and Hexagonal Morphologies. J. Phys.Chem. C2008,112:1924819256.
    [146] J.H. Sm tt, C. Weidenthaler, J.B. Rosenholm, M. Lindén. Hierarchically Porous MetalOxide Monoliths Prepared by the Nanocasting Route. Chem. Mater.2006,18:14431450.
    [147] A.F. Demir rs, B.E. Eser,. Dag. Liquid Crystalline Mesophases of Pluronics (L64, P65,and P123) and Transition Metal Nitrate Salts ([M(H2O)6](NO3)2). Langmuir2005,21:4156–4162.
    [148] M. Sadakane, T. Horiuchi, N. Kato, K. Sasaki, W. Ueda. Preparation ofThree-Dimensionally Ordered Macroporous Perovskite-Type Lanthanum-Iron-OxideLaFeO3with Tunable Pore Diameters: High Porosity and Photonic Property. J. Solid StateChem.2010,183:1365–1371.
    [149] M.C. Orilall, N.M. Abrams, J. Lee, F.J. Disalvo, U. Wiesner. Highly Crystalline InverseOpal Transition Metal Oxides via a Combined Assembly of Soft and Hard Chemistries. J.Am. Chem. Soc.2008,130:8882–8883.
    [150] H.B. Deng, L. Lin, Y. Sun, C.S. Pang, J.P. Zhuang, P.K. Ouyang, Z.J. Li, S.J. Liu.Perovskite-Type Oxide LaMnO3: An Efficient and Recyclable Heterogeneous Catalyst forthe Wet Aerobic Oxidation of Lignin to Aromatic Aldehydes. Catal. Lett.2008,126:106–111.
    [151] X.L. Wang, D. Li, C.X. Shi, B. Li, T.Y. Cui, Z.D. Zhang. Effect of the CalcinationTemperature on the Magnetic and Transport Properties of Rhombohedral LaMnO3+δCompounds. Physica B2010,405:1362–1368.
    [152] Y.J. Zhu, Y.Q. Sun, X.Y. Niu, F.L. Yuan, H.G. Fu. Preparation of La-Mn-O PerovskiteCatalyst by Microwave Irradiation Method and Its Application to Methane Combustion.Catal. Lett.2010,135:152–158.
    [153] B.P. Barbero, J.A. Gamboa, L.E. Cadús. Synthesis and Characterisation of La1-xCaxFeO3Perovskite-Type Oxide Catalysts for Total Oxidation of Volatile Organic Compounds. Appl.Catal. B2006,65:21–30.
    [154] A. Kaddouri, S. Ifrah, P. Gelin. A Study of the Influence of the Synthesis Conditions uponthe Catalytic Properties of LaMnO3.15in Methane Combustion in the Absence and Presenceof H2S. Catal. Lett.2007,119:237244.
    [155] H.X. Dai, A.T. Bell, E. Iglesia. Effects of Molybdena on the Catalytic Properties of VanadiaDomains Supported on Alumina for Oxidative Dehydrogenation of Propane. J. Catal.2004,221:491499.
    [156] S. Mukherjee, M. A. Vannice. Solvent Effects in Liquid-Phase Reactions-I. Activity andSelectivity during Citral Hydrogenation on Pt/SiO2and Evaluation of Mass Transfer Effects.J. Catal.2006,243:108–130.
    [157] L.F. Liotta, M. Ousmane, G. Di Carlo, G. Pantaleo, G. Deganello, A. Boreave, A.Giroir-Fendler. Catalytic Removal of Toluene over Co3O4-CeO2Mixed Oxide Catalysts:Comparison with Pt/Al2O3. Catal. Lett.2009,127:270–276.
    [158] A. Musialik-Piotrowska, H. Landmesser. Noble Metal-Doped Perovskites for the Oxidationof Organic Air Pollutants. Catal. Today2008,137:357–361.
    [159] D. Delimaris, T. Ioannides. VOC Oxidation over MnOx-CeO2Catalysts Prepared by aCombustion Method. Appl. Catal. B2008,84:303–312.
    [160] N. Yi, Y. Cao, Y. Su, W. L. Dai, H.Y. He, K.N. Fan. Nanocrystalline LaCoO3PerovskiteParticles Confined in SBA-15Silica as a New Efficient Catalyst for Hydrocarbon Oxidation.J. Catal.2005,230:249–253.
    [161] J.G. Deng, L. Zhang, H.X. Dai, H. He, C.T Au. Preparation, Characterization, and CatalyticProperties of NdSrCu1xCoxO4δand Sm1.8Ce0.2Cu1xCoxO4+δ(x=0,0.2and0.4) forMethane Combustion. Appl. Catal. B2009,89:87–96.
    [162] T. Nakamura, M. Misono, Y. Yoneda. Reduction-Oxidation and Catalytic Properties ofPervskite-Type Mixed Oxide Catalysts (La1xSrxCoO3). Chem. Lett.1981,10:1589–1592.
    [163] C.T. Wong, A.Z. Abdullah, S. Bhatia. Catalytic Oxidation of Butyl Acetate overSilver-Loaded Zeolites. J. Hazard. Mater.2008,157:480–489.
    [164] M. Alifanti, M. Florea, S. Somacescu, V.I. Parvulescu. Supported Perovskites for TotalOxidation of Toluene. Appl. Catal. B2005,60:33–39.
    [165] S.M. Saqer, D.I. Kondarides, X.E. Verykios. Catalytic Oxidation of Toluene over BinaryMixtures of Copper, Manganese and Cerium Oxides Supported on Gamma-Al2O3. Appl.Catal. B2011,103:275–286.
    [166] M. Florea, M. Alifanti, V.I. Parvulescu, D. Mihaila-Tarabasanu, L. Diamandescu, M. Feder,C. Negrila, L. Frunza. Total Oxidation of Toluene on Ferrite-Type Catalysts. Catal. Today2009,141:361–366.
    [167] T. Masui, H. Imadzu, N. Matsuyama, N. Imanaka. Total Oxidation of Toluene onPt/CeO2-ZrO2-Bi2O3/Gamma-Al2O3Catalysts Prepared in the Presence of PolyvinylPyrrolidone. J. Hazard. Mater.2010,176:1106–1109.
    [168] I. Filella, J. Pe uelas. Daily, Weekly, and Seasonal Time Courses of VOC Concentrations ina Semi-Urban Area near Barcelona. Atmos. Environ.2006,40:7752–7769.
    [169] J.G. Deng, Y. Zhang, H.X. Dai, L. Zhang, H. He, C.T. Au. Effect of HydrothermalTreatment Temperature on the Catalytic Performance of Single-Crystalline La0.5Sr0.5MnO3-δMicrocubes for the Combustion of Toluene. Catal. Today2008,139:82–87.
    [170] J. Blanco, A.L. Petre, M. Yates, M.P. Martin, J.A. Martin, M.A. Martin-Luengo. Tailor-madeHigh Porosity VOC Oxidation Catalysts Prepared by a Single-Step Procedure. Appl. Catal.B2007,73:128–134.
    [171] J. M. Giraudon, A. Elhachimi, F. Wyrwalski, S. Siffert, A. Abouka s, J.F. Lamonier, G.Leclercq. Studies of the Activation Process over Pd Perovskite-Type Oxides Used forCatalytic Oxidation of Toluene. Appl. Catal. B2007,75:157–166.
    [172] L.G. Tejuca, J.L.G. Fierro (Eds.). Properties and Applications of Perovskite-Type Oxides.Marcel Dekker, New York,1993.
    [173] H.Y. Jiang, H.X. Dai, X. Meng, L. Zhang, J.G. Deng, K.M. Ji. Porous Olive-Like BiVO4:Alcoho-Hydrothermal Preparation and Excellent Visible-Light-Driven PhotocatalyticPerformance for the Degradation of Phenol. Appl. Catal. B2011,105:326334.
    [174] Q. Huang, A. Santoro, J.W. Lynn, R.W. Erwin, J.A. Borchers, J.L. Peng, R.L. Greene.Structure and Magnetic Order in Undoped Lanthanum Manganite. Phys. Rev. B1997,55:14987–14999.
    [175] P. Kameli, H. Salamati, M. Hakimi. Structural, Magnetic and Magnetotransport Properties ofLa0.8Sr0.2MnO3/xLaMnO3Composites. J. Alloys Compd.2008,463:18–24.
    [176] W.F. Chen, J.M. Hong, Y.X. Li. Facile Fabrication of Perovskite Single-Crystalline LaMnO3Nanocubes via a Salt-Assisted Solution Combustion Process. J. Alloys Compd.2009,484:846–850.
    [177] Z. Brankovi, K. Duri, A. Radojkovi, S. Bernik, Z. Jagli i, M. Jagodi, K. Vojisavljevic,G. Brankovic. Magnetic Properties of Doped LaMnO3Ceramics Obtained by aPolymerizable Complex Method. J. Sol-Gel Sci. Technol.2010,55:311–316.
    [178] Z.G. Hu, Y.Y. Yang, X.L. Shang, H.L. Pang. Preparation and Characterization of NanometerPerovskite-Type Complex Oxides LaMnO3.15and Their Application in Catalytic Oxidation.Mater. Lett.2005,59:1373–1377.
    [179] J.R. Niu, J.G. Deng, W. Liu, L. Zhang, G.Z. Wang, H.X. Dai, H. He, X.H. Zi. NanosizedPerovskite-Type Oxides La1-xSrxMO3-δ(M=Co, Mn; x=0,0.4) for the Catalytic Removalof Ethylacetate. Catal. Today2007,126:420–429.
    [180] E. Arendt, A. Maione, A. Klisinska, O. Sanz, M. Montes, S. Suarez, J. Blanco, P. Ruiz.Structuration of LaMnO3Perovskite Catalysts on Ceramic and Metallic Monoliths:Physico-Chemical Characterisation and Catalytic Activity in Methane Combustion. Appl.Catal. A2008,339:1–14.
    [181] Z.B. He, S.H. Yu, J.P. Zhu. Amino Acids Controlled Growth of Shuttle-Like ScrolledTellurium Nanotubes and Nanowires with Sharp Tips. Chem. Mater.2005,17:2785–2788.
    [182] G.J. Zhang, Z.R. Shen, M. Liu, C.H. Guo, P.C. Sun, Z.Z. Yuan, B.H. Li, D.T. Ding, T.H.Chen. Synthesis and Characterization of Mesoporous Ceria with HierarchicalNanoarchitecture Controlled by Amino Acids. J. Phys. Chem. B2006,110,25782–25790.
    [183] W. Buchmann, R. Spezia, G. Tournois, T. Cartailler, J. Tortajada. Structures andFragmentations of Cobalt (II)-Cysteine Complexes in the Gas Phase. J. Mass Spectrom.2007,42:517–526.
    [184] F. Rogalewicz, Y. Hoppilliard, G. Ohanessian. Structures and Fragmentations of Zinc (II)Complexes of Amino Acids in the Gas Phase-IV. Solvent Effect on the Structure ofElectrosprayed Ions. Int. J. Mass Spectrom.2003,227:439–451.
    [185] H. Fujii, N. Mizuno, M. Misono. Prononced Catalytic Activity of La1xSrxCoO3HighlyDispersed on ZrO2for Complete Oxidation of Propane. Chem. Lett.1987,11:21472150.
    [186] S. Colonna, S. De Rossi, M. Faticanti, I. Pettiti, P. Porta. XAS Characterization and COOxidation on Zirconia-Supported LaFeO3Perovskite. J. Mol. Catal. A2002,187:269276.
    [187] M. Alifanti, M. Florea, V.I. Parvulescu. Ceria-Based Oxides as Supports for LaCoO3Perovskite; Catalysts for Total Oxidation of VOC. Appl. Catal. B2007,70:400405.
    [188] A. Galenda, M.M. Natile, A. Glisenti. LSCF and Fe2O3/LSCF Powders: Interaction withMethanol. J. Mol. Catal. A2008,282:5261.
    [189] L. Wang, S.Q. Chen, Y. Liu. NiO/LaMnO3Catalysts for Steam Reforming of Ethanol. Acta.Phys.–Chim. Sin.2008,24:849854.
    [190] Y.Z. Fang, Y. Liu, L.H. Zhang. LaFeO3-Supported Nano Co-Cu Catalysts for HigherAlcohol Synthesis from Syngas. Appl. Catal. A2011,397:183–191.
    [191] S.J. Tauster, S.C. Fung, R.L. Garten. Strong Metal-Support Interactions-Group-8Noble-Metals Supported on TiO2. J. Am. Chem. Soc.1978,100:170175.
    [192] F. Wyrwalski, J. F. Lamonier, S. Siffert, A. Abouka s. Additional Effects of CobaltPrecursor and Zirconia Support Modifications for the Design of Efficient VOC OxidationCatalysts. Appl. Catal. B2007,70:393–399.
    [193] Z.K. Zhao, X.L. Lin, R.H. Jin, G.R. Wang, T. Muhammad. MOx(M=Mn, Fe, Ni or Cr)Improved Supported Co3O4Catalysts on Ceria–Zirconia Nanoparticulate for COPreferential Oxidation in H2-Rich Gases. Appl. Catal. B2012,115–116:53–62.
    [194] A.P. Jia, G.S. Hu, L. Meng, Y.L. Xie, J.Q. Lu, M.F. Luo. CO Oxidation overCuO/Ce1-xCuxO2-δand Ce1-xCuxO2-δCatalysts: Synergetic Effects and Kinetic Study. J. Catal.2012,289:199–209.
    [195] P. Esmaeilnejad-Ahranjani, A. Khodadadi, H. Ziaei-Azad, Y. Mortazavi. Effects of ExcessManganese in Lanthanum Manganite Perovskite on Lowering Oxidation Light-offTemperature for Automotive Exhaust Gas Pollutants. Chem. Eng. J.2011,169:282–289.
    [196] Z.Y. Zhong, J.Y. Lin, S.P. Teh, J. Teo, F.M. Dautzenberg. A Rapid and Efficient Method toDeposit Gold Particles on Catalyst Supports and Its Application for CO Oxidation at LowTemperatures. Adv. Funct. Mater.2007,17:1402–1408.
    [197] Y.X. Liu, H.X. Dai, Y.C. Du, J.G. Deng, L. Zhang, Z.X. Zhao. Lysine-AidedPMMA-Templating Preparation and High Performance of Three-Dimensionally OrderedMacroporous LaMnO3with Mesoporous Walls for the Catalytic Combustion of Toluene.Appl. Catal. B2012,119120:2031.
    [198] M.L. Cubeiro, J.L.G. Fierro. Selective Production of Hydrogen by Partial Oxidation ofMethanol over ZnO-Supported Palladium Catalysts. J. Catal.1998,179:150162.
    [199] Y.C. Son, V.D. Makwana, A.R. Howell, S.L. Suib. Efficient, Catalytic, Aerobic Oxidation ofAlcohols with Octahedral Molecular Sieves. Angew. Chem. Int. Ed.2001,40:4280–4283.
    [200] J. T pfer, J.B. Goodenough. LaMnO3+δRevisited. J. Solid State Chem.1997,130:117128.
    [201] J. T pfer, J.B. Goodenough. Transport and Magnetic Properties of the PerovskitesLa1-yMnO3and LaMn1-zO3. Chem. Mater.1997,9:14671474.
    [202] S. Minico, S. Scire, C. Crisafulli, R. Maggiore, S. Galvango. Catalytic Combustion ofVolatile Organic Compounds on Gold/Iron Oxide Catalysts. Appl. Catal. B2000,28:245–251.
    [203] S. Scirè, P. M. Riccobene, C. Crisafulli. Ceria Supported Group IB Metal Catalysts for theCombustion of Volatile Organic Compounds and the Preferential Oxidation of CO. Appl.Catal. B2010,101,109–117.
    [204] L.Y. Jin, R.H. Ma, J.J. Lin, L. Meng, Y.J. Wang, M.F. Luo. Bifunctional Pd/Cr2O3-ZrO2Catalyst for the Oxidation of Volatile Organic Compounds. Ind. Eng. Chem. Res.2011,50:10878–10882.
    [205] Y.S. Xia, H.X. Dai, H.Y. Jiang, L. Zhang, J.G. Deng, Y.X. Liu. Three-DimensionallyOrdered and Wormhole-Like Mesoporous Iron Oxide Catalysts Highly Active for theOxidation ofAcetone and Methanol. J. Hazard. Mater.2011,186:84–91.
    [206] Y.S. Xia, H.X. Dai, H.Y. Jiang, L. Zhang. Three-Dimensional Ordered Mesoporous CobaltOxides: Highly Active Catalysts for the Oxidation of Toluene and Methanol. Catal.Commun.2010,11:1171–1175.
    [207] H.J. Huang, D.Z. Li, Q. Lin, W.J. Zhang, Y. Shao, Y.B. Chen, M. Sun, X.Z. Fu. EfficientDegradation of Benzene over LaVO4/TiO2Nanocrystalline Heterojunction Photocatalystunder Visible Light Irradiation. Environ. Sci. Technol.2009,43:4164–4168.
    [208] J. Lv, T. Kako, Z.S. Li, Z.G. Zou, J.H. Ye. Synthesis and Photocatalytic Activities ofNaNbO3Rods Modified by In2O3Nanoparticles. J. Phys. Chem. C2010,114:6157–6162.
    [209] J. Pasel, B. Emonts, R. Peters, D. Stolten. A Structured Test Reactor for the Evaporation ofMethanol on the Basis of a Catalytic Combustion. Catal. Today2001,69,193–200.
    [210] H. Taguchi, S. Yamasaki, A. Itadani, M. Yosinaga, K. Hirota. CO Oxidation onPerovskite-Type LaCoO3Synthesized Using Ethylene Glycol and Citric Acid. Catal.Commun.2008,9:19131915.
    [211] F. Li, D.P. Josephson, A. Stein. Colloidal Assembly: The Road from Particles to ColloidalMolecules and Crystals. Angew. Chem. Int. Ed.2011,50,360388.
    [212] F. Li, Z.Y. Wang, A. Stein. Shaping Mesoporous Silica Nanoparticles by Disassembly ofHierarchically Porous Structures. Angew. Chem. Int. Ed.2007,46:18851888.
    [213] M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M.J. Genet, B. Delmon.Low-Temperature Oxidation of CO over Gold Supported on TiO2, Alpha-Fe2O3, and Co3O4.J. Catal.1993,144:175192.
    [214] T.A. Ntho, J.A. Anderson, M.S. Scurrell. CO Oxidation over Titanate Nanotube SupportedAu: Deactivation Due to Bicarbonate. J. Catal.2009,261:94100.
    [215] G.J. Hutchings, M.S. Hall, A.F. Carley, P. Landon, B.E. Solsona, C.J. Kiely, A. Herzing, M.Makkee, J.A. Moulijn, A. Overweg, J.C. Fierro-Gonzalez, J. Guzman, B.C. Gates. Role ofGold Cations in the Oxidation of Carbon Monoxide Catalyzed by Iron Oxide-SupportedGold. J. Catal.2006,242:7181.
    [216] S. Carrettin, P. Concepción, A. Corma, J.M. López Nieto, V.F. Puntes. Nanocrystalline CeO2Increases the Activity of an for CO Oxidation by Two Orders of Magnitude. Angew. Chem.Int. Ed.2004,43:25382540.
    [217] X. Zhang, H. Shi, B.Q. Xu. Catalysis by Gold: Isolated Surface Au3+Ions are Active Sitesfor Selective Hydrogenation of1,3-Butadiene over Au/ZrO2Catalysts. Angew. Chem. Int.Ed.2005,44:71327135.
    [218] L.C. Wang, Q. Liu, X.S. Huang, Y.M. Liu, Y. Cao, K.N. Fan. Gold Nanoparticles Supportedon Manganese Oxides for Low-Temperature CO Oxidation. Appl. Catal. B2009,88:204212.
    [219] T. Barakat, J.C. Rooke, E. Genty, R. Cousin, S. Siffert, B.L. Su. Gold Catalysts inEnvironmental Remediation and Water-Gas Shift Technologies. Energy Environ. Sci.2013,6:371391.
    [220] G.M. Veith, A.R. Lupini, S. Rashkeev, S.J. Pennycook, D.R. Mullins, V. Schwartz, C.A.Bridges, N. J. Dudney. Thermal Stability and Catalytic Activity of Gold NanoparticlesSupported on Silica. J. Catal.2009,262:92–101.
    [221] Y.X. Liu, H.X. Dai, Y.C. Du, J.G. Deng, L. Zhang, Z.X. Zhao, C.T. Au. ControlledPreparation and High Catalytic Performance of Three-Dimensionally Ordered MacroporousLaMnO3with Nanovoid Skeletons for the Combustion of Toluene. J. Catal.2012,287:149160.
    [222] J. Strunk, K. K hler, X.Y. Xia, M. Comotti, F. Schüth, T. Reinecke, M. Muhler. Au/ZnO asCatalyst for Methanol Synthesis: The Role of Oxygen Vacancies. Appl. Catal. A2009,359:121128.
    [223] Y.C. Wei, J. Liu, Z. Zhao, A.J. Duan, G.Y. Jiang. The Catalysts of Three-DimensionallyOrdered Macroporous Ce1-xZrxO2-Supported Gold Nanoparticles for Soot Combustion: TheMetal-Support Interaction. J. Catal.2012,287:1329.
    [224] D.A. Bulushev, I. Yuranov, E.I. Suvorova, P.A. Buffat, L.K. Minsker. Highly Dispersed GoldonActivated Carbon Fibers for Low-Temperature CO Oxidation. J. Catal.2004,224:817.
    [225] J.C. Fierro-Gonzalez, B.C. Gates. Evidence of Active Species in CO Oxidation Catalyzed byHighly Dispersed Supported Gold. Catal. Today2007,122:201–210.
    [226] S.T. Daniells, A.R. Overweg, M. Makkee, J.A. Moulijn. The Mechanism ofLow-Temperature CO Oxidation with Au/Fe2O3Catalysts: A Combined Mossbauer, FT-IR,and TAPReactor Study. J. Catal.2005,230:52–65.
    [227] P.B. Weisz, C.D. Prater. Interpretation of Measurements in Experimental Catalysis. Adv.Catal. Relat. Subj.1954,6:143196.
    [228] J. Xu, L. Ouyang, W. Mao, X.J. Yang, X.C. Xu, J.J. Su, T.Z. Zhuang, H. Li, Y.F. Han.Operando and Kinetic Study of Low-Temperature, Lean-Burn Methane Combustion over aPd/gamma-Al2O3Catalyst. ACS Catal.2012,2:261269.
    [229] M.L. Jia, Menggentuya, Z. Bao, Y.N. Shen. The Stability Study of Au/La-Co-O Catalysts forCO Oxidation. Catal. Lett.2010,134:8792.
    [230] M. Valden, X. Lai, D.W. Goodman. Onset of Catalytic Activity of Gold Clusters on Titaniawith theAppearance of Nonmetallic Properties. Science1998,281:16471650.
    [231] F.N. Aguero, A. Scian, B.P. Barbero, L.E. Cadus. Influence of the Support Treatment on theBehavior of MnOx/Al2O3Catalysts used in VOC Combustion. Catal. Lett.2008,128:1–13.
    [232] P. Papaefthimiou, T. Ioannides, X.E. Verykios. VOC Removal: Investigation of EthylacetateOxidation over Supported Pt Catalysts. Catal. Today1999,54:81–92.
    [233] M.A. Centeno, M. Paulis, M. Montes, J.A. Odriozola. Catalytic Combustion of VolatileOrganic Compounds on Au/CeO2/Al2O3and Au/Al2O3Catalysts. Appl. Catal. A2002,234:65–78.
    [234] P. Mars, D.W. van Krevelen. Oxidations Carried Out by Means of Vanadium OxideCatalysts. Chem. Eng. Sci.(Spec. Suppl.)1954,3:41–59.
    [235] K.A. Davis, D.W. Goodman. Propene Adsorption on Clean and Oxygen-Covered Au (111)andAu (100) Surfaces. J. Phys. Chem. B2000,104:8557–8562.
    [236] G.C. Bond, D.T. Thompson. Catalysis by Gold. Catal. Rev. Sci. Eng.1999,41:319–388.
    [237] S. Minico, S. Scire, C. Crisafulli, S. Galvagno. Influence of Catalyst Pretreatments onVolatile Organic Compounds Oxidation over Gold/Iron Oxide. Appl. Catal. B2001,34:277–285.
    [238] C.T. Wang, S.H. Ro. Surface Nature of Nanoparticle Gold/Iron Oxide Aerogel Catalysts. J.Non-Cryst. Solids2006,352:35–43.
    [239] R.D. Waters, J.J. Weimer, J.E. Smith. An Investigation of the Activity of CoprecipitatedGold Catalysts for Methane Oxidation. Catal. Lett.1995,30:181–188.
    [240] M.P. Casaletto, A. Longo, A.M. Venezia, A. Martorana, A. Prestianni. Metal-Support andPreparation Influence on the Structural and Electronic Properties of Gold Catalysts. Appl.Catal. A2006,302:309–316.
    [241] J. Guzman, B.C. Gates. Catalysis by Supported Gold: Correlation between Catalytic Activityfor CO Oxidation and Oxidation States of gold. J. Am. Chem. Soc.2004,126:2672–2673.
    [242] Q. Ye, J.S. Zhao, F.F. Huo, J. Wang, S.Y. Cheng, T.F. Kang, H.X. Dai. Nanosized Ag/MnO2Catalysts Highly Active for the Low-Temperature Oxidation of Carbon Monoxide andBenzene. Catal. Today2011,175:603–609.
    [243] V.A. Bondzie, S.C. Parker, C.T. Campbell. The Kinetics of CO Oxidation by AdsorbedOxygen on Well-Defined Gold Particles on TiO2(110). Catal. Lett.1999,63:143–151.
    [244] P. Ciambelli, S. Cimino, S. De Rossi, L. Lisi, G. Minelli, P. Porta, G. Russo. AFeO3(A=La,Nd, Sm) and LaFe1-xMgxO3Perovskites as Methane Combustion and CO OxidationCatalysts: Structural, Redox and Catalytic Properties. Appl. Catal. B2001,29:239–250.
    [245] L.C. Wang, X.S. Huang, Q. Liu, Y.M. Liu, Y. Cao, H.Y. He, K.N. Fan, J.H. Zhuang. GoldNanoparticles Deposited on Manganese (III) Oxide as Novel Efficient Catalyst for LowTemperature CO Oxidation. J. Catal.2008,259:66–74.
    [246] M.M. Schubert, S. Hackenberg, A.C. van Veen, M. Muhler, V. Plzak, R.J. Behm. COOxidation over Supported Gold Catalysts–“Inert” and “Active” Support Materials andTheir Role for the Oxygen Supply during Reaction. J. Catal.2001,197:113–122.
    [247] R.P. Doherty, J. M. Krafft, C. Méthivier, S. Casale, H. Remita, C. Louis, C. Thomas. On thePromoting Effect of Au on CO Oxidation Kinetics of Au-Pt Bimetallic NanoparticlesSupported on SiO2: An Electronic Effect? J. Catal.2012,287:102–113.
    [248] J. Xu, T. White, P. Li, C.H. He, J.G. Yu, W.K. Yuan, Y.F. Han. Biphasic Pd-Au Alloy Catalystfor Low-Temperature CO Oxidation. J. Am. Chem. Soc.2010,132:10398–10406.
    [249] C.Y. Ma, D.H. Wang, W.J. Xue, B.J. Dou, H.L. Wang, Z.P. Hao. Investigation ofFormaldehyde Oxidation over Co3O4-CeO2and Au/Co3O4-CeO2Catalysts at RoomTemperature: Effective Removal and Determination of Reaction Mechanism. Environ. Sci.Technol.2011,45:3628–3634.
    [250] M. Haruta. Size-and Support-Dependency in the Catalysis of Gold. Catal. Today1997,36:153–166.
    [251] D. Andreeva, T. Tabakova, L. Llieva, A. Naydenov, D. Mehanjiev, M.V. Abrashev. NanosizeGold Catalysts Promoted by Vanadium Oxide Supported on Titania and Zirconia forComplete Benzene Oxidation. Appl. Catal. A2001,209:291300.
    [252] J.G. Deng, H.X. Dai, H.Y. Jiang, L. Zhang, G.Z. Wang, H. He, C.T. Au. HydrothermalFabrication and Catalytic Properties of La1xSrxM1yFeyO3(M=Mn, Co) That Are HighlyActive for the Removal of Toluene. Environ. Sci. Technol.2010,44:2618–2623.
    [253] B. Solsona, T. García, S.H. Taylor, G.J. Hutchings, M. Makkee. TAP Reactor Study of theDeep Oxidation of Propane Using Cobalt Oxide and Gold-Containing Cobalt OxideCatalysts. Appl. Catal. A2009,365:222–230.
    [254] H. Wu, L. Wang, J. Zhang, Z. Shen, J. Zhao. Catalytic Oxidation of Benzene, Toluene andp-Xylene over Colloidal Gold Supported on Zinc Oxide Catalyst. Catal. Commun.2011,12:859–865.
    [255] M.M. Han, X.J. Wang, Y.N. Shen, C.H. Tang, G.S. Li, R.L. Smith. Preparation of HighlyActive, Low Au-Loaded, Au/CeO2Nanoparticle Catalysts That Promote CO Oxidation atAmbient Temperatures. J. Phys. Chem. C2010,114:793–798.
    [256] Z. Sarshar, F. Kleitz, S. Kaliaguine. Novel Oxygen Carriers for Chemical LoopingCombustion: La1-xCexBO3(B=Co, Mn) Perovskites Synthesized by Reactive Grinding andNanocasting. Energy Environ. Sci.2011,4:4258–4269.
    [257] R. Rajasree, J.H.B.J. Hoebink, J.C. Schouten. Transient Kinetics of Carbon MonoxideOxidation by Oxygen over Supported Palladium/Ceria/Zirconia Three-Way Catalysts in theAbsence and Presence of Water and Carbon Dioxide. J. Catal.2004,223:36–43.
    [258] M. Daté, M. Okumura, S. Tsubota, M. Haruta. Vital Role of Moisture in the CatalyticActivity of Supported Gold Nanoparticles. Angew. Chem. Int. Ed.2004,43:2129–2132.
    [259] M. Hosseini, S. Siffert, H.L. Tidahy, R. Cousin, J.F. Lamonier, A. Aboukais, A. Vantomme,M. Roussel, B.L. Su. Promotional Effect of Gold Added to Palladium Supported on a NewMesoporous TiO2for Total Oxidation of Volatile Organic Compounds. Catal. Today2007,122:391–396.
    [260] Tana, F.G. Wang, H.J. Li, W.J. Shen. Influence of Au Particle Size on Au/CeO2Catalysts forCO Oxidation. Catal. Today2011,175:541–545.
    [261] K.M. Parida, N. Sahu, A.K. Tripathi, V.S. Kamble. Gold Promoted S,N-Doped TiO2: AnEfficient Catalyst for CO Adsorption and Oxidation. Environ. Sci. Technol.2010,44:4155–4160.
    [262] H.G. Zhu, Z. Ma, J.C. Clark, Z.W. Pan, S.H. Overbury, S. Dai. Low-Temperature COOxidation on Au/Fumed SiO2-Based Catalysts Prepared from Au(en)2Cl3Precursor. Appl.Catal. A2007,326:89–99.
    [263] T.V. Choudhary, S. Banerjee, V.R. Choudhary. Catalysts for Combustion of Methane andLower Alkanes. Appl. Catal. A2002,234:1–23.
    [264] Y.B. Yu, T. Takei, H. Ohashi, H. He, X.L. Zhang, M. Haruta. Pretreatments of Co3O4atModerate Temperature for CO Oxidation at80Degrees C. J. Catal.2009,267:121–128.
    [265] A. Wolf, F. Schüth. A Systematic Study of the Synthesis Conditions for the Preparation ofHighlyActive Gold Catalysts. Appl. Catal. A2002,226:1–13.
    [266] C.Y. Ma, Z. Mu, J.J. Li, Y.G. Jin, J. Cheng, G.Q. Lu, Z.P. Hao, S.Z. Qiao. Mesoporous Co3O4and Au/Co3O4Catalysts for Low-Temperature Oxidation of Trace Ethylene. J. Am. Chem.Soc.2010,132:2608–2613.
    [267] B. Solsona, E. Aylón, R. Murillo, A.M. Mastral, A. Monzonís, S. Agouram, T.E. Davies, S.H.Taylor, T. Garcia. Deep Oxidation of Pollutants using Gold Deposited on a High SurfaceArea Cobalt Oxide Prepared by a Nanocasting Route. J. Hazard. Mater.2011,187:544–552.
    [268] Y.J. Feng, L. Li, S.F. Niu, Y. Qu, Q. Zhang, Y.S. Li, W.R. Zhao, H. Li, J.L. Shi. ControlledSynthesis of Highly Active Mesoporous Co3O4Polycrystals for Low Temperature COOxidation. Appl. Catal. B2012,111–112:461–466.
    [269] S. Rousseau, S. Loridant, P. Delichere, A. Boreave, J.P. Deloume, P. Vernoux.La1-xSrxCo1-yFeyO3Perovskites Prepared by Sol–Gel Method: CharacterizationandRelationships with Catalytic Properties for Total Oxidation of Toluene. Appl. Catal. B2009,88:438–447.
    [270] C.H. Zhang, C. Wang, W.C. Zhan, Y.L. Guo, Y. Guo, G.Z. Lu, A. Baylet, A. Giroir-Fendler.Catalytic Oxidation of Vinyl Chloride Emission over LaMnO3and LaBa0.2Mn0.8O3(B=Co,Ni, Fe) Catalysts. Appl. Catal. B2013,129:509–516.
    [271] Y.W. Chen, H.J. Chen, D.S. Lee. Au/Co3O4-TiO2Catalysts for Preferential Oxidation of COin H2Stream. J. Mol. Catal. A2012,363–364:470–480.
    [272] B. Solsona, T.E. Davies, T. Garcia, I. Vázquez, A. Dejoz, S.H. Taylor. Total Oxidation ofPropane using Nanocrystalline Cobalt Oxide and Supported Cobalt Oxide Catalysts. Appl.Catal. B2008,84:176–184.
    [273] Y.S. Xia, H.X. Dai, H.Y. Jiang, J.G. Deng, H. Hong, C.T. Au. Mesoporous Chromia withOrdered Three-Dimensional Structures for the Complete Oxidation of Toluene and EthylAcetate. Environ. Sci. Technol.2009,43:8355–8360.
    [274] B.C. Liu, Y. Liu, C.Y. Li, W.T. Hua, P. Jing, Q. Wang, J. Zhang. Three-DimensionallyOrdered Macroporous Au/CeO2-Co3O4Catalysts with Nanoporous Walls for EnhancedCatalytic Oxidation of Formaldehyde. Appl. Catal. B2012,127:47–58.
    [275] H.C. Genuino, S. Dharmarathna, E.C. Njagi, M.C. Mei, S.L. Suib. Gas-Phase TotalOxidation of Benzene, Toluene, Ethylbenzene, and Xylenes using Shape-SelectiveManganese Oxide and Copper Manganese Oxide Catalysts. J. Phys. Chem. C2012,116:1206612078.
    [276] V. Idakiev, L. Ilieva, D. Andreeva, J.L. Blin, L. Gigot, B.L. Su. Complete BenzeneOxidation over Gold-Vanadia Catalysts Supportedon Nanostructured Mesoporous Titaniaand Zirconia. Appl. Catal. A2003,243:25–39.
    [277] Z. Abbasi, M. Haghighi, E. Fatehifar, S. Saedy. Synthesis and PhysicochemicalCharacterizations of Nanostructured Pt/Al2O3–CeO2Catalysts for Total Oxidation of VOCs.J. Hazard. Mater.2011,186:1445–1454.
    [278] W.G. Shim, J.W. Lee, S.C. Kim. Analysis of Catalytic Oxidation of Aromatic Hydrocarbonsover Supported Palladium Catalyst with Different Pretreatments based on HeterogeneousAdsorption Properties. Appl. Catal. B2008,84:133–141.
    [279] F. Ying, S.J. Wang, C.T. Au, S.Y. Lai. Highly Active and Stable Mesoporous Au/CeO2Catalysts Prepared from MCM-48Hard-Template. Micropor. Mesopor. Mater.2011,142:308–315.
    [280] L. Li, A.Q. Wang, B.T. Qiao, J. Lin, Y.Q. Huang, X.D. Wang, T. Zhang. Origin of the HighActivity of Au/FeOxfor Low-Temperature CO Oxidation: Direct Evidence for a RedoxMechanism. J. Catal.2013,299:90–100.
    [281] X.Y. Liu, M.H. Liu, Y.C. Luo, C.Y. Mou, S.D. Lin, H.K. Cheng, J.M. Chen, J.F. Lee, T.S.Lin. Strong Metal Support Interactions between Gold Nanoparticles and ZnO Nanorods inCO Oxidation. J. Am. Chem. Soc.2012,134:1025110258.
    [282] B. Chen, C. Bai, R. Cook, J. Wright, C. Wang. Gold/Cobalt Oxide Catalysts for OxidativeDestruction of Dichloromethane. Catal. Today1996,30:15–20.
    [283] Q. Deng, X. Li, Z. Peng, Y. Long, L. Xiang, T.J. Tie. Catalytic Performance and Kinetics ofAu/Gamma-Al2O3Catalysts for Low-Temperature Combustion of Light Alcohols. Trans.Nonferrous Met. Soc. China2010,20:437–442.
    [284] C. Baird. Environmental Chemistry. Freeman, New York,1998.
    [285] V. Brezova, A. Stasko. Spin Trap Study of Hydroxyl Radicals Formed in the PhotocatalyticSystem TiO2-Water-p-Cresol-Oxygen. J. Catal.1994,147:156–162.
    [286] O. Legrini, E. Oliveros, A.M. Braun. Photochemical Process for Water Treatment. Chem.Rev.1993,93:671698.
    [287] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann. Environmental Applications ofSemiconductor Photocatalysis. Chem. Rev.1995,95:6997.
    [288] A. Zaleska, E. Grabowska, J.W. Sobczak, M. Gazda, J. Hupka. Photocatalytic Activity ofBoron-Modified TiO2under Visible Light: The Effect of Boron Content, CalcinationTemperature and TiO2Matrix. Appl. Catal. B2009,89:469–475.
    [289] Z.J. Zhang, W.Z. Wang, W.Z. Yin, M. Shang, L. Wang, S.M. Sun. Inducing Photocatalysisby Visible Light Beyond the Absorption Edge: Effect of Upconversion Agent on thePhotocatalyticActivity of Bi2WO6. Appl. Catal. B2010,101:68–73.
    [290] W.Z. Yin, W.Z. Wang, S.M. Sun. Enhanced Photocatalytic Activity of Bi2WO6Doped withUpconversion LuminescenceAgent. Catal. Commun.2010,11:647–650.
    [291] S. Tokunaga, H. Kato, A. Kudo. Selective Preparation of Monoclinic and Tetragonal BiVO4with Scheelite Structure and Their Photocatalytic Properties. Chem. Mater.2001,13:46244628.
    [292] L.X. Yang, Y. Liang, H. Chen, Y.F. Meng, W. Jiang. Controlled Synthesis of Mn3O4andMnCO3in a Solvothermal System. Mater. Res. Bull.2009,44:1753–1759.
    [293] W. Liu, Y.Q. Yu, L.X. Cao, G. Su, X.Y. Liu, L. Zhang, Y.G. Wang. Synthesis of MonoclinicStructured BiVO4Spindly Microtubes in Deep Eutectic Solvent and Their Application forDye Degradation. J. Hazard. Mater.2010,181:1102–1108.
    [294] J.Q. Yu, Y. Zhang, A. Kudo. Synthesis and Photocatalytic Performances of BiVO4byAmmonia Co-Precipitation Process. J. Solid State Chem.2009,182:223–228.
    [295] Y. Zhao, Y. Xie, X. Zhu, S. Yan, S.X. Wang. Surfactant-Free Synthesis of HyperbranchedMonoclinic Bismuth Vanadate and Its Applications in Photocatalysis, Gas Sensing, andLithium-Ion Batteries. Chem. Eur. J.2008,14:1601–1606.
    [296] D.N. Ke, T.Y. Peng, L. Ma, P. Cai, K. Dai. Effects of Hydrothermal Temperature on theMicrostructures of BiVO4and Its Photocatalytic O2Evolution Activity under Visible Light.Inorg. Chem.2009,48:4685–4691.
    [297] L. Zhang, D.R. Chen, X.L. Jiao. Monoclinic Structured BiVO4Nanosheets: HydrothermalPreparation, Formation Mechanism, and Coloristic and Photocatalytic Properties. J. Phys.Chem. B2006,110:2668–2673.
    [298] F.X. Wang, M.W. Shao, L. Cheng, J. Hua, X.W. Wei. The Synthesis of Monoclinic BismuthVanadate Nanoribbons and Studies of Photoconductive, Photoresponse, and PhotocatalyticProperties. Mater. Res. Bull.2009,44:1687–1691.
    [299] M.C. Neves, T. Trindade. Chemical Bath Deposition of BiVO4. Thin Solid Films.2002,406:93–97.
    [300] K. Sayama, A. Nomura, Z.G. Zou, R. Abe, Y. Abe, H. Arakawa. PhotoelectrochemicalDecomposition of Water on Nanocrystalline BiVO4Film Electrodes under Visible Light.Chem. Commun.2003,2908–2909.
    [301] L. Zhou, W.Z. Wang, S.W. Liu, L.S. Zhang, H.L. Xu, W. Zhu. A Sonochemical Route toVisible-Light-Driven High-Activity BiVO4Photocatalyst. J. Mol. Catal. A2006,252:120–124.
    [302] S.S. Dunkle, R.J. Helmich, K.S. Suslick. BiVO4as a Visible-Light Photocatalyst Preparedby Ultrasonic Spray Pyrolysis. J. Phys. Chem. C2009,113:11980–11983.
    [303] S.M. Sun, W.Z. Wang, L. Zhou, H.L. Xu. Efficient Methylene Blue Removal overHydrothermally Synthesized Starlike BiVO4. Ind. Eng. Chem. Res.2009,48:1735–1739.
    [304] Y. Shen, M. Huang, Y. Huang, J. Lin, J. Wu. The Synthesis of Bismuth Vanadate Powdersand Their Photocatalyst Properties under Visible Light Irradiation. J. Alloys Compd.2010,496:287–292.
    [305] G.S. Li, D.Q. Zhang, J.C. Yu. Ordered Mesoporous BiVO4through Nanocasting: A SuperiorVisible Light-Driven Photocatalyst. Chem. Mater.2008,20:3983–3992.
    [306] Y. Zhou, K. Vuille, A. Heel, B. Probst, R. Kontic, G.R. Patzke. An Inorganic HydrothermalRoute to PhotocatalyticallyActive Bismuth Vanadate. Appl. Catal. A2010,375:140–148.
    [307] J.C. Yu, X.C. Wang, X.Z. Fu. Pore-Wall Chemistry and Photocatalytic Activity ofMesoporous Titania Molecular Sieve Films. Chem. Mater.2004,16:1523–1530.
    [308] S.I. Naya, M. Tanaka, K. Kimura, H. Tada. Visible-Light-Driven Copper AcetylacetonateDecomposition by BiVO4. Langmuir2011,27:10334–10339.
    [309] B.P. Xie, H.X. Zhang, P.X. Cai, R.L. Qiu, Y. Xiong. Simultaneous Photocatalytic Reductionof Cr (VI) and Oxidation of Phenol over Monoclinic BiVO4under Visible Light Irradiation.Chemosphere2006,63:956–963.
    [310] N.C. Castillo, L. Ding, A. Heel, T. Graule, C. Pulgarin. On the Photocatalytic Degradation ofPhenol and Dichloroacetate by BiVO4: The Need of a Sacrificial Electron Acceptor. J.Photochem. Photobiol. A2010,216:221–227.
    [311] Z.J. Zhang, W.Z. Wang, M. Shang, W.Z. Yin. Photocatalytic Degradation of Rhodamine Band Phenol by Solution Combustion Synthesized BiVO4Photocatalyst. Catal. Commun.2010,11:982–986.
    [312] R.C. Schroden, A. Stein. In3D Ordered Macroporous Material, Colloids and ColloidAssemblies. Wiley-VCH Verlag GmbH and Co. KGaA: Weinheim, Germany,2004.
    [313] C.F. Blanford, C.B. Carter, A. Stein. In Situ High-Temperature Electron Microscopy of3DOM Cobalt, Iron oxide, and Nickel. J. Mater. Sci.2008,43:35393552.
    [314] M. Sadakane, C. Takahashi, N. Kato, T. Asanuma, H. Ogihara, W. Ueda.Three-Dimensionally Ordered Macroporous Mixed Iron Oxide; Preparation and StructuralCharacterization of Inverse Opals with Skeleton Structure. Chem. Lett.2006,35:480481.
    [315] H.Y. Jiang, H.X. Dai, X. Meng, L. Zhang, J.G. Deng, K.M. Ji. Morphology-DependentPhotocatalytic Performance of Monoclinic BiVO4for Methyl Orange Degradation underVisible-Light Irradiation. Chin. J. Catal.2011,32:939949.
    [316] J.Q. Yu, A. Kudo. Effects of Structural Variation on the Photocatalytic Performance ofHydrothermally Synthesized BiVO4. Adv. Funct. Mater.2006,16:21632169.
    [317] J.Q. Yu, A. Kudo. Hydrothermal Synthesis and Photocatalytic Property of2-DimensionalBismuth Molybdate Nanoplates. Chem. Lett.2005,34:850851.
    [318] R.L. Frost, D.A. Henry, M.L. Weier, W. Martens. Raman Spectroscopy of ThreePolymorphs of BiVO4: Clinobisvanite, Dreyerite and Pucherite, with Comparisons to VO3-4Bearing Minerals: Namibite, Pottsite and Schumacherite, J. Raman Spectrosc.2006,37:722732.
    [319] M. Goti, S. Musi, M. Ivanda, M. oufek, S. Popovi. Synthesis and Characterisation ofBismuth (III) Vanadate, J. Mol. Struct.2005,744:535540.
    [320] S. Poulston, N.J. Price, C. Weeks, M.D. Allen, P. Parlett, M. Steinberg, M. Bowker. SurfaceRedox Characteristics of Mixed Oxide Catalysts used for Selective Oxidation. J. Catal.1998,178:658–667.
    [321] W. Liu, S.Y. Lai, H.X. Dai, S.J. Wang, H.Z. Sun, C.T. Au. Oxidative Dehydrogenation ofn-Butane over Mesoporous VOx/SBA-15Catalysts. Catal. Lett.2007,113:147154.
    [322] M.E. Harlin, V.M. Niemi, A.O.I. Krause. Alumina-Supported Vanadium Oxide in theDehydrogenation of Butanes. J. Catal.2000,195:67–78.
    [323] W. Supruna, E.M. Sadovskaya, C. Rüdinger, H.J. Eberle, M. Lutecki, H. Papp. Effect ofWater on Oxidative Scission of1-Butene to Acetic Acid over V2O5-TiO2Catalyst. TransientIsotopic and Kinetic Study. Appl. Catal. A2011,391:125–136.
    [324] A. Saha, D.P. Eyman. Surface Optimization and Redox Behavior of Vanadium OxidesSupported on γ-Al2O3. Ind. Eng. Chem. Res.2011,50:9027–9033.
    [325] G. Colón, M.C. Hidalgo, G. Munuera, I. Ferino, M.G. Cutrufello, J.A. Navío. Structural andSurface Approach to the Enhanced Photocatalytic Activity of Sulfated TiO2Photocatalyst.Appl. Catal. B2006,63:45–59.
    [326] G.U. Kulkarni, C.N.R. Rao, M.W. Roberts. Nature of the Oxygen Species at Ni (110) and Ni(100) Surfaces Revealed by Exposure to Oxygen and Oxygen-Ammonia Mixtures-Evidencefor the Surface Reactivity of O–Type Species. J. Phys. Chem.1995,99:33103316.
    [327] L. Zhou, W.Z. Wang, L.S. Zhang, H.L. Xu, W. Zhu. Single-Crystalline BiVO4Microtubeswith Square Cross-Sections: Microstructure, Growth Mechanism, and PhotocatalyticProperty. J. Phys. Chem. C2007,111:13659–13664.
    [328] M. Shang, W.Z. Wang, S.M. Sun, J. Ren, L. Zhou, L. Zhang. Efficient Visible Light-InducedPhotocatalytic Degradation of Contaminant by Spindle-Like PANI/BiVO4. J. Phys. Chem. C2009,113:20228–20233.
    [329] C.H. Chiou, C.Y. Wu, R.S. Juang. Influence of Operating Parameters on PhotocatalyticDegradation of Phenol in UV/TiO2Process. Chem. Eng. J.2008,139:322–329.
    [330] S. Senthilkumaar, K. Porkodi, R. Vidyalakshmi. Photodegradation of a Textile DyeCatalyzed by Sol-Gel Derived Nanocrystalline TiO2via Ultrasonic Irradiation. J. Photochem.Photobiol. A2005,170:225–232.
    [331] R.W. Matthews. Photocatalytic Oxidation and Adsorption of Methylene-Bule on Thin-Filmsof Near-Ultraviolet-Illuminated TiO2. J. Chem. Soc. Faraday Trans.1989,85:1291–1302.
    [332] Q. Xiao, J. Zhang, C. Xiao, X.K. Tan. Photocatalytic Degradation of Methylene Blue overCo3O4/Bi2WO6Composite under Visible Light Irradiation. Catal. Commun.2008,9:1247–1253.
    [333] R. Maciel, G.L. Sant'Anna, M. Dezotti. Phenol Removal from High Salinity Effluents usingFenton's Reagent and Photo-Fenton Reactions. Chemosphere2004,57:711–719.
    [334] D.L. Liao, B.Q. Liao. Shape, Size and Photocatalytic Activity Control of TiO2Nanoparticleswith Surfactants. J. Photochem. Photobiol. A2007,187:363369.
    [335] J.S. Valente, F. Tzompantzi, J. Prince, J.G.H. Cortez, R. Gomez. Adsorption andPhotocatalytic Degradation of Phenol and2,4-Dichlorophenoxiacetic Acid by Mg-Zn-AlLayered Double Hydroxides. Appl. Catal. B2009,90:330–338.
    [336] Z.J. Zhang, W.Z. Wang, E.P. Gao, M. Shang, J.H. Xu. Enhanced Photocatalytic Activity ofBi2WO6with Oxygen Vacancies by Zirconium Doping. J. Hazard. Mater.2011,196:255–262.
    [337] M. Sun, D.Z. Li, W.J. Zhang, Z.X. Chen, H.J. Huang, W.J. Li, Y.H. He, X.Z. Fu.Photocatalyst Cd2Sb2O6.8with High Photocatalytic Activity toward Benzene and Dyes. J.Phys. Chem. C2009,113:14916–14921.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700