用户名: 密码: 验证码:
四氮杂卟啉、酞菁、亚酞菁及不对称衍生物的构效关系量子化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卟啉是一类广泛存在于自然界中的化合物。它具有特殊生物活性。卟啉类化合物的最基本的结是卟吩,即四个吡咯单元的氮原子朝向中心并通过四个碳桥连在一起的封闭连续共轭体系。卟吩有十二个可取代位置。这些位置被不同取代基取代后的衍生物称为卟啉。把卟吩的四个中位碳用氮原子取代而得到的化合物被称为四氮杂卟啉,再在稠合四个苯环之后产生的化合物叫做酞菁,亦被称作四氮杂四苯并卟啉。由于四个苯环参加了共轭,所以酞菁的共轭体系比卟啉大。萘菁可以看作一类取代酞菁,是在酞菁的苯环上再稠合四个苯环,这样萘菁环上共有二十四个位置可以被取代,共轭体系比酞菁更大。以上化合物均为平面结。如果减少一个吡咯单元,则可变为亚卟啉、三氮杂亚卟啉、亚酞菁和亚萘菁。这种结则成为锥形共轭结。其共轭性有所降低,且共轭体系有所减小
     1.酞菁类似物的大环内质子转移研究
     由于卟啉和酞菁、以及四氮杂卟啉的优异性质,近年来对它们的化学、生物学和材料学研究比较多.它们的传统应用领域是染料与颜料。近年来,这种四吡咯化合物的应用领域扩展到了激光打印机的感光材料、光能存储材料等领域。由于它们的高度稳定性和广泛的配位能力,它们又被认为拥有染料敏化太阳能电池、化学反应的催化剂、气体探针、非线性光限制材料、光动力学治疗和抗腐蚀剂的潜力。
     卟啉在生命过程中扮演者重要角色,如光合作用中叶绿素的作用、氧气的运输与活化中细胞色素和血红素的作用。在由四个N组建的空穴中,质子的转移在卟啉生命过程中起着至关重要的作用,这种转移被称为N-H互变异。二十世纪末和二十一世纪初,N-H互变异在实验上和理论上都进行了研究。现在普遍认为,N-H互变异是通过分步反应实现的,反应时快速经过邻位中间体。在当今的科研界,卟啉酞菁虽然是热点分子,但是它们的等电子体四氮杂卟啉却没有得到应有的重视。2004年,Huang和Ma等人用DFT方法研究了四氮杂卟啉的环内N-H互变异现象,发现质子可以在室温下很容易的在四个N组建的空穴中跳转。而且,前人的研究中还发现,当有苯环在卟啉/四氮杂卟啉的外围稠合的时候,π共轭体系将会增大,造成该体系的光谱性质发生重大改变。然而,这种π共轭体系的增大方式,对空穴内的质子转移是否有影响,这一点尚不明确。这样研究也有利于加深我们对生物过程的理解、设计更好的生物替代品。
     我们的研究工作集中在不对称四氮杂卟啉和酞菁的大环内N-H互变异的DFT研究上,研究的体系是从四氮杂卟啉H2TAP (A0B0C0D0),通过中间物质酞菁H2Pc (A1B1C1D1)直到萘菁H2Nc (A2B2C2D2)。我们还研究了这三种物质之间的各种不对称化合物。在B3LYP/6-31G (d)水平上,我们对这11种化合物(从A0B0C0D0到A2B2C2D2)的全部可能的反应路径均进行了优化和频率计算,以期找到合适的反应路径。另外,为了确认规律的普适性,我们又对严重不对称的几种化合物(A0B0CmDn, m≤n≤3)进行了同水平的计算。最后,我们系统讨论了环内氢转移的势垒和邻位中间体的稳定性。
     2.亚酞菁类似物的分子轨道与谱学研究
     三氮杂亚卟啉(SubTAP)和亚酞菁(SubPc)是一种锥形的大环共轭体系,由三个吡咯或异吲哚单元相互桥联而形成。三氮杂亚卟啉和亚酞菁分别是四氮杂卟啉(TAP)和酞菁(Pc)的类似物,但是subTAP和subPc的π共轭体系比TAP和Pc的π共轭体系更小。由于四氮杂卟啉和酞菁的特殊的TAP和Pc的π共轭体系已经被进行了很深刻的研究,但是subTAP和subPc并没有被深刻的关注。近几年,亚酞菁在以下几个领域得到了一定程度的研究:非线性光学材料,有机发光二极管,光伏材料,生物分子靶标,多组分D-A体系。这些性质与它们的特殊的分子结、谱学性质和电子结有关。另外,亚酞菁是一种合成不对称酞菁衍生物的一种很好的初始反应物。
     密度泛函理论(DFT)和含时密度泛函理论(TDDFT)被证明为在卟啉、四氮杂卟啉、酞菁和萘菁的能量最低型、电子布居、分子轨道、红外光谱、电子转移和电子吸收谱这几个方面的计算上是合适的。最近,Kobayashi等人在半经验Pariser-Parr-Pople理论基础上,研究了三氮杂亚卟啉、亚酞菁、亚萘菁这三种对称性分子的分子轨道。几年后,对亚酞菁这个分子的对比性理论研究渐渐展开,分别在HF/STO-3G, HF/3-21G, HF/6-31G, B3LYP/STO-3G, B3LYP/3-21G, B3LYP/6-31G, and B3LYP/6-31G(d)这七种计算水平上,对亚酞菁进行了研究。这些研究表明,B3LYP/6-31G(d)对亚酞菁的计算是合适的。同时,亚酞菁的前线轨道也在B3LYP/6-31G(d)进行了讨论。亚酞菁的非线性光学性质在B3LYP/6-31G(d)基础上和ZINDO/S-CIS基础上进行了讨论。其芳香性和亲电性在B3LYP/6-31 G+(d)//B3LYP/6-31 G(d)水平上也进行了研讨。而且,三氮杂亚卟啉的分子轨道也在B3LYP/6-31G(d)和B3LYP/6-31G(d,p)水平上进行了计算,证明这两种方法计算结果基本没有差别。然而,在三氮杂亚卟啉、亚酞菁、亚萘菁的衍生物上,尚无系统的电子布居、分子轨道、红外光谱、电子转移和电子吸收谱的研究,尤其是不对称的亚酞菁衍生物。
     在本章中,我们利用DFT和TDDFT描述了亚三氮杂卟啉、亚酞菁和亚萘菁,尤其是他们之间的不对称过渡结AaBbCc(3(?)a,b,c(?)0).同时,我们重点研究了外围稠合苯环对亚三氮杂卟啉和亚酞菁、亚萘菁衍生物的结和性质的影响。
1. Inner Hydrogen Atom Transfer in Benzo-Fused Low Symmetrical Metal Free Tetraazaporphyrin and Phthalocyanine Analogues:Density Functional Theory Studies
     Density functional theory (DFT) calculations were carried out to study the inner hydrogen atom transfer in low symmetrical metal free tetrapyrrole analogues ranging from tetraazaporphyrin H2TAP (A0B0C0D0) to naphthalocyanine H2Nc (A2B2C2D2) via phthalocyanine H2Pc (A1B1C1D1). All the transition paths of sixteen different compounds (A0B0C0D0-A2B2C2D2 and A0B0CmDn, m≤n≤3) are fully optimized at the B3LYP/6-31G(d) level and vibration analyses have been conducted to verify the optimized structures. It is revealed that the number and position of fused benzene rings onto the TAP skeleton have significant effect on the potential energy barrier of the inner hydrogen atom transfer. Introducing fused benzene rings onto the hydrogen-releasing pyrrole rings can increase the transitivity of inner hydrogen atom and thus lower the transfer barrier of this inner hydrogen atom while fusing benzene rings onto the hydrogen-accepting pyrrole rings will increase the hydrogen transfer barrier to this pyrrole ring. The transient cis-isomer interintermediate with hydrogen atoms joined to the two adjacent pyrrole rings with less fused benzene rings is much stable than the others. It is also found that the benzene rings fused directly onto pyrrole rings have more effect on the inner hydrogen atom transfer than the outer benzene rings fused onto the periphery of isoindole rings. The present work, representing the first effort towards systematically understanding the effect of ring enlargement through asymmetrical peripheral fusion of benzene ring(s) onto the TAP skeleton on the inner hydrogen transfer of tetrapyrrole derivatives, will be helpful in clarifying the N-H tautomerization phenomenon and detecting the cis-porphyrin isomer in bio-systems.
     2. Design, Synthesis, Characterization, and OFET Properties of Amphiphilic Heteroleptic Tris(phthalocyaninato) Europium(Ⅲ) Complexes. The Effect of Crown Ether Hydrophilic Substituents
     Subtriazaporphyrin (SubTAP) and subphthalocyanine (SubPc) are cone-shaped macrocyclic compounds consisting of three pyrrole or isoindole units around a boron atom. As the analogues of tetreazaporphyrin (TAP) and phthalocyanine (Pc) with smallerπ-peripheral conjugated system, SubTAP and SubPc have received considerable attention in recent years due to their potential applications as chromophores in nonlinear optical materials, organic lighting emitting displays (OLEDs), photovoltaic devices, tagged molecule for biochemical system, and multicomponent donor-acceptor systems associated with their distinct structural, optical, and electronic properties. In addition, subphthalocyanines have been employed as good starting material for synthesizing asymmetric substituted phthalocyanine compounds.
     Density functional theory (DFT) and time dependent density functional theory (TDDFT) methods have proved suitable for calculating the energy-minimized structure, electronic distribution, molecular orbitals, infrared (IR) spectrum, electronic transfer, and electronic absorption spectra of a series of porphyrin and phthalocyanine derivatives. This seems also true for the subtriazaporphyrin and subphthalocyanine analogues. Recently, Kobayashi and co-workers investigated the molecular orbitals of symmetrical subtriazaporphyrin (SubTAP, A0B0C0), subphthalocyanine (SubPc, A1B1C1), and subnaphthalocyanine (SubNc, A2B2C2) with the semi-empirical Pariser-Parr-Pople method1. A few years later, comparative calculations on the structure of subphthalocyanine (SubPc, A1B1C1) with different levels including HF/STO-3G, HF/3-21G, HF/6-31G, B3LYP/STO-3G, B3LYP/3-21G, B3LYP/6-31G, and B3LYP/6-31G(d) revealed that B3LYP/6-31G(d) was the most suitable method for calculation of subphthalocyanine systems. The frontier molecular orbitals of subphthalocyanine (SubPc, A1B1C1) were also discussed at the level of B3LYP/6-31G(d). The nonliner optical properties of subphthalocyanine (SubPc, A1B1C1) were calculated at the B3LYP/6-31G(d) level using the ZINDO/S-CIS method. The aromaticity and electrophilicity index of subphthalocyanine (SubPc, A1B1C1) were calculated at the B3LYP/6-31G+(d)//B3LYP/6-31G(d) level. Moreover, the frontier orbitals of subtriazaporphyrin (SubTAP, A0B0C0) were also calculated at the B3LYP/6-31G(d) and B3LYP/6-31G(d,p) levels, revealing the similar results for the molecular orbital calculations. However, it appears that there still exists no theoretical work at the DFT level to systematically study the structure, electronic distribution, molecular orbitals, infrared (IR) spectra, and electronic absorption spectra of a full series of SubTAP and SubPc derivatives especially their benzo-fused low symmetrical analogues.
     In this paper, we describe the structures and properties of fluoroboron-subtriazaporphyrin (SubTAP) and their benzo-fused low symmetric analogues AaBbCc(3≥a,b,c≥0) investigated on the basis of density functional theory (DFT) and time-dependant density functional theory (TDDFT) calculations. The effect of fused-benzene ring(s) on the structures and properties was also revealed.
引文
[1](a) N. Uyeda, T. Kobayashi, E. Suito, Y. Harada, M. Watanabe. Molecular image resolution in electron microscopy. [J] J. Appl. Phys.,1972,43,5181; (b)T. Kobayashi, S. Isoda. Lattice images and molecular images of organic materials. [J] J. Mater. Chem.1993,5,1.
    [2]D. D. Eley, Phthalocyanines as semiconductors [J] Nature,1948,162,819.
    [3](a) Schramm, C. J., Stojakovic, D. R., Hoffman, B. M. Marks, T. J.; New lowdimensional molecular metals:single-crystal electrical conductivity of nickel phthalocyanine iodide [J] Science,1978,200,47; (b) Marks, T. J., Electrically conductive metallomacrocyclic assemblies; [J] Science,1985,227,881.
    [4](a) Bott, B., Jones, T. A.; A highly sensitive NO2 sensor based on electrical conductivity changes in phthalocyanine films; [J] Sensors& Actuators,1984,5,43. (b) Wright, J. D.; Gas adsorption on phthalocyanines and its effects on electrical properties; [J] Prog. Surf. Sci.,1989,31,1.
    [5]Vartanyan, A. T. Poluprovodnikovye Svoistva Organicheskikh Krasitel [J] Zh. Fiz Khim.948,22,169-774.
    [6]Law, K.-Y.; Organic photoconductive materials:recent trends and developments; [J] Chem. Rev.,1993,93,449-486.
    [7]Tang, C.W.; Two-layer organic photovoltaic cell; [J] Appl. Phys. Lett.,1986, 48,183-185.
    [8]Nazeeruddin, M. K., et al, Efficient near IR sensitization of nanocrystalline TiO2 films by ruthenium phthalocyanines [J] Chem. Commun.,1998,719-720.
    [9]Wohrle, D., et al, Microlasers based on organic dyes in nanoporous crystals [J] Molecular Crystals & Liquid Crystals,1993,230,221.
    [10]王朝晖,衷庆华,熊轶嘉,孙亚,孔繁敖.酞菁锌分子激发态的超快内转换和振动弛豫[J]化学物理学报,1998,2,15-18.
    [11]De la Torre, G., Vazquez. P., et al. Phthalocyanines and related compounds [J]J. Mater. Chem.,1998,5,1671-1683.
    [12]Shirk J. S., Lindle J. R., Bartoli F. J. et al. Third-order optical nonlinearities of bis(phthalocyanines) [J] J. Phys. Chem.,1992,96,5847-5852.
    [13]陈仕艳,刘云圻,黄学斌,邱文丰,朱道本.酞菁在分子材料器件方面的研究进展[J]自然科学进展,2004,14,125-132.
    [14]C. C. Leznoff, A. B. P. Lever. Phthalocynines:properties and applications. [M] Volumes 1-4, New York:VCH,1989.
    [15]H. Ficsher, Die Chemie des pyrrols [M] Vol 2, part 1, Akademic Verlagsegesllschft, Liepzig,1937,158.
    [16]J. Zelaski. Porphyrin [J] Z. Physiol.Chem.1902,37,54-57.
    [17]计亮年,彭小彬,黄锦汪.金属卟啉配合物模拟某些金属酶的研究进展[J]自然科学进展,2002,12,120-129.
    [18]J. S. Sessler, S. J. Weghom. Expended, Contracted,81 isomeric porphyrins [M] Pergamon, Perface,1997.
    [19]李德平,胡静.血卟啉类化合物诊治肿瘤的研究进展及应用[J]中国生化药物杂志,2003,24,162-163.
    [20]杨新国,孙景志,汪茫,陈红征,黄骥.卟啉类光电功能材料研究进展[J]功能材料,2003,34,113-117.
    [21]G. de la Torre, T. Torres, P. Vazquez, F. Agullo-Lopez, Role of Structural Factors in the Nonlinear Optical Properties of Phthalocyanines and Related Compounds [J] Chemical Reviews,2004,104,3723-3750.
    [22]H. Xu, D. K. P. Ng, Construction of Subphthalocyanine-Porphyrin and Subphthalocyanine-Phthalocyanine Heterodyads through Axial Coordination [J] Inorganic Chemistry,2008,47,7921-7927.
    [23]J. Liu, H. Yeung, W. Xu, X. Li, D. K. P. Ng, Highly Efficient Energy Transfer in Subphthalocyanine-BODIPY Conjugates [J] Organic Letters,2008,10, 5421-5424.
    [24]M. E. El-Khouly, S. H. Shim, Y. Araki, O. Ito, K. Kay, Effect of Dual Fullerenes on Lifetimes of Charge-Seperated States of Subphthalocyanine-Triphenylamine-Fullerene Molecular Systems [J] Journal of Physical Chemistry B,2008,112,3910-3917.
    [25]Y. Zhang, P. Yao, X. Cai, H. Xu, X. Zhang, J. Jiang, Density Functional Theory Study of the Inner Hydrogen Atom Transfer in Metal-free Porphyrins: Meso-substitutional Effects [J] Journal of Molecular Graphic and Modelling,2007, 26,319-326.
    [26]N. Kobayashi, T. Ishizaki, K. Ishii, H. Konami, Synthesis, Spectroscopy, and Molecular Orbital Calculations of Subazaporphyrins, Subphthalocyanines, and Conpounds Derived Therefrom by Ring Expansion, [J] Journal of American Chemical Society,1999,121,9096-9110.
    [27]R. S. Iglesias, C. G Claessens, T. Torres, M. A. Herranz, V. R. Ferro, J. M. G. de la Vega, Subphthalocyanine-Fuesd Dimers and Trimers:Synthetic, Electrochemical and Theoretical Studies, [J] Journal of Organic Chemistry,2007,72, 2967-2977.
    [28]R. S. Lglesias, C. G Claessens, M. A. Herranz, T. Torres, Subphthalocyanine-Dehydro[18] Annulenes, [J] Organic Letters,2007,9,5381-5384.
    [1]K.M. Dilip, L.B. Robert, N.T. Thanh, Mechanism and quantum mechanical tunneling effects on inner hydrogen atom transfer in free base porphyrin:A direct ab initio dynamics study [J] J. Am. Chem. Soc.2000,122,897-906.
    [2]T.J. Butenhoff, C.B. Moore, Hydrogen atom tunneling in the thermal tautomerism of porphine imbedded in a n-hexane matrix [J] J. Am. Chem. Soc.1988,110, 8336-8341.
    [3]M. Schlabach, H. Rumpel, H.-H. Limbach, investigation of the tautomerism of 15N-labeled hydroporphyrins by dynamic NMR spectroscopy [J] Angew. Chem. Int. Ed. Engl.1989,28,76-79.
    [4]T.J. Butenhoff, R.S. Chuck, H.-H. Limbach, C.B. Moore, Vibrational photochemistry of porphine imbedded in a hexane-d14 Shpol'skii matrix [J] J. Phys. Chem.1990,94,7847-7851.
    [5]M. Schlabach, H.-H. Limbach, E. Bunnenberg, A.Y.L. Shu, B.R. Tolf, C. Djerassi, NMR study of kinetic HH/HD/DH/DD isotope effects on the tautomerism of acetylporphyrin:evidence for a stepwise double proton transfer [J] J. Am. Chem. Soc. 1993,115,4554-4565.
    [6]J. Braun, M. Schlabach, B. Wehrle, M. Ko(?)cher, E. Vogel, H.-H. Limbach, NMR study of the tautomerismof porphyrin including the kinetic HH/HD/DD isotope effects in the liquid and the solid state [J] J. Am. Chem. Soc.1994,116,6593-6604.
    [7]V.A. Kuzmitsky, K.N. Solovyov, Quantum-chemical study of nh tautomerism in porphin [J] J. Mol. Struct.1980,65,219-230.
    [8]A. Sarai, Dynamics of proton migration in free base porphines [J] J. Chem. Phys. 1982,76,5554-5563.
    [9]A. Sarai, Comment on IR-spectroscopic study of isotope effects on the NH/ND stretching bands of meso-tetraphenylporphine and vibrational hydrogen tunneling'[J] J. Chem. Phys.1984,80,5341-5343.
    [10]K.M.J. Merz, C.H. Reynolds, Tautomerism in free base porphyrins:the porphyrin potential energy surface [J] J. Chem. Soc. Chem. Commun.1988,90-92.
    [11]Z. Smedarchina, W. Siebrand, F. Zerbetto, Comparison of synchronous and asynchronous hydrogen transfer mechanisms in free-base porphyrins [J] Chem. Phys. 1989,136,285-295.
    [12]J. Baker, P.M. Kozlowski, A.A. Jarzecki, P. Pulay, The inner-hydrogen migration in free base porphyrin [J] Theor. Chem. Ace.1997,97,59-66.
    [13]Z. Smedarchina, M.Z. Zgierski, W. Siebrand, P.M. Kozlowski, Dynamics of tautomerism in porphine:an instanton approach [J] J. Chem. Phys.1998,109, 1014-1024.
    [14]D.K. Maity, R.L. Bell, T.N. Truong, Mechanism and quantum mechanical tunneling effects on inner hydrogen atom transfer in free base porphyrin:a direct ab initio dynamics study [J] J. Am. Chem. Soc.2000,122,897-906.
    [15]Y.X. Zhang, P. Yao, X. Cai, H. Xu, X.X. Zhang, J.Z. Jiang, Density functional theory study of the inner hydrogen atom transferin metal-free porphyrins: Meso-substitutional effects [J] Journal of Molecular Graphics and Modeling 2007,26, 319-326.
    [16]Y.Z. Huang, S.Y. Ma, Mechanism of the inner hydrogen atom transfer in free baseporphyrazine:a direct ab initio dynamics study [J] J. of Molecular Structure (Theochem) 2004,684,217-222.
    [17]N. Kobayashi, T. Ishizaki, K. Ishii, H. Konami, Synthesis, Spectroscopy, and Molecular Orbital Calculations of Subazaporphyrins, Subphthalocyanines, Subnaphthalocyanines, and Compounds Derived Therefrom by Ring Expansion [J] J. Am. Chem. Soc.1999,121,9096-9110.
    [18](a) A. D. Becke, Density-functional thermochemistry. Ⅲ. The role of exact exchange [J] J. Chem. Phys.1993,98,5648-5652. (b) C. Lee, W. Yang, R. G. Parr, Development of the Colle-Salvetti Correlation Energy Formula into a Functional of the Electron Density [J] Phys. Rev. B,1988,37,785.
    [19]C. Peng, P.Y. Ayala, H.B. Schlegel, M.J. Frisch, Using redundant internal coordinates to optimize equilibrium geometries and transition states [J] J. Comp. Chem.1996,77,49-56.
    [20]M.J. Frisch, et al., Gaussian 03, Revision B05, Gaussian, Inc., Wallingford, CT, 2004.
    [21]R.D. Johnson Ⅲ (Ed.), NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101 Release 10, May 2004, http://srdata.nist.gov/cccbdb.
    [1]Kobayashi, N.; Ishizaki, T.; Ishii. K.; Konami, H. Synthesis, Spectroscopy, and Molecular Orbital Calculations of Subazaporphyrins, Subphthalocyanines, Subnaphthalocyanines, and Compounds Derived Therefrom by Ring Expansion [J] J. Am. Chem. Soc.1999,121,9096.
    [2]Kadish, K. M.; Smith, K. M.; Guilard, R. The Porphyrin Handbook, Vols.1-20; Academic Press:San Diego,2000 and 2003.
    [3]Mashiko, T.; Dolphin, D. Comprehensive Coordination Chemistry, Vol.2, Pergamon:Oxford,1987, Chapter 21.01, p.813.
    [4]Smith, K. M. Comprehensive Heterocyclic Chemistry, Vol.4; Pergamon:Oxford, 1984, Chapter 3.07, p.377.
    [5]Claessens, C. G; de la Torre, G.; Torres, T. Nonlinear Optical Properties of Matter: From Molecules to Condensed Phases; Springer:Dordrecht, The Netherlands,2006, Vol. 1,pp 509-535.
    [6]del Rey, B.; Keller, U.; Torres, T.; Rojo, G; Agullo-Lopez, F.; Nonell, S.; Marti, C.; Brasselet, S.; Ledoux, I.; Zyss, J.; Synthesis and Nonlinear Optical, Photophysical, and Electrochemical Properties of Subphthalocyanines [J] J. Am. Chem. Soc.1998, 120,12808.
    [7]Torre, G.; Torres, T.; Vazquez, P.; Agullo-Lopez, T.; Role of Structural Factors in the Nonlinear Optical Properties of Phthalocyanines and Related Compounds. [J] Chem. Rev.2004,104,3723.
    [8]Claessens, C. G.; Gonzalez-Rodriguez, D.; Torres, T.; Martin, G.; Agullo-Lopez, F.; Ledoux, I.; Zyss, J.; Ferro, V. R.; de la Vega, G. J. M.; Structural Modulation of the Dipolar-Octupolar Contributions to the NLO Response in Subphthalocyanines [J] J. Phys. Chem. B 2005,109,3800.
    [9]Diaz, D. D.; Bolink, H. J.; Cappelli, L.; Claessens, C. G; Coronado, E.; Torres, T.; Polystyrene sulfonic acid catalyzed greener synthesis of hydrazones in aqueous medium using microwaves [J] Tetrahedron Letter 2007,48,4657.
    [10]Mutolo, K. L.; Mayo, E. I.; Rand, B. P.; Forrest, S. R.; Thompson, M. E.; Enhanced Open-Circuit Voltage in Subphthalocyanine/C60 Organic Photovoltaic Cells [J] J. Am. Chem. Soc.2006,128,8108.
    [11]Adachi, K.; Watarai, H.; Binding Behavior of Subphthalocyanine-Tagged Testosterone with Human Serum Albumin at the n-Hexane/Water Interface. [J] Anal. Chem.,2006,78,6840.
    [12]Xu, H.; Ng, D. K. P.; Construction of Subphthalocyanine-Porphyrin and Subphthalocyanine-Phthalocyanine Heterodyads through Axial Coordination [J] Inorg. Chem.2008,47,7921.
    [13]Liu, J.; Yeung, H.; Xu, W.; Li, X.; Ng, D. K. P.; Highly Efficient Energy Transfer in Subphthalocyanine-BODIPY Conjugates. [J] Organic Letter 200%,10,5421.
    [14]El-Khouly, M. E.; Shim, S. H.; Araki Y; Ito, O.; Kay, K.; Effect of Dual Fullerenes on Lifetimes of Charge-Separated States of Subphthalocyanine-Triphenylamine-Fullerene Molecular Systems. [J] J. Phys. Chem. B 2008,112,3910.
    [15]Gonzalez,-R. D.; Torres, T.; Guldi, D. M.; Rivera, J.; Echegoyen, L.; Energy Transfer Processes in Novel Subphthalocyanine-Fullerene Ensembles. [J] Organic Letter,2002,4,335.
    [16]Ziessel, R.; Ulrich, G; Elliott, K. J.; Harriman, A.; Solid-state gas sensors from functional difluoroboradiazaindacene dyes. [J] Chem. Eur. J.2009,15,4980.
    [17]Kobayashi, N.; Kondo, R., Nakajima, S.; Osa, T.; New route to unsymmetrical phthalocyanine analogs by the use of structurally distorted subphthalocyanines. [J] J. Am. Chem. Soc.1990,112,9640.
    [18]Zhang, X.; Zhang, Y; Jiang, J.; Isotope effect in the infrared spectra of free-base phthalocyanine and its N,N-dideuterio-derivative:density functional calculations. [J] Vib. Spectrosc.2003,33,153.
    [19]Zhang, X.; Zhang, Y; Jiang, J.; Towards clarifying the N-M vibrational nature of metallo-phthalocyanines:Infrared spectrum of phthalocyanine magnesium complex: density functional calculations. [J] Spectrochim. Acta Part A.2004,60,2195.
    [20]Zhang, Y; Cai, X.; Qi, D.; Yao, P.; Bian, Y; Jiang, J.; Methyloxy Substituted Heteroleptic Bis(phthalocyaninato) Yttrium Complexes:Density Functional Calculations. [J] ChemPhysChem.2008,9,781.
    [21]Zhang, Y.; Cai, X.; Zhou Y.; Zhang, X.; Xu, H.; Liu, Z.; Li, X.; Jiang, J.; Structures and Spectroscopic Properties of Bis(phthalocyaninato) Yttrium and Lanthanum Complexes:Theoretical Study Based on Density Functional Theory Calculations. [J] J. Phys. Chem. A 2007, 111,392.
    [22]Cai, X.; Zhang, Y; Qi D.; Jiang, J.; Density functional theory on organic semiconductor for filed effect teansistors:symmetrical and unsummertrical porphyrzzine derivatores with annulated 1,2,3-thiadiazole & 1,4-diamyloxybenzene moieties. [J] Sci China Ser: B-Chem.2009,52,6,840.
    [23]Zhang, Y; Yao, P.; Cai X.; Xu, H.; Zhang, X.; Jiang, J.; Density functional theory study of the inner hydrogen atom transfer in metal-free porphyrins: meso-substituentional effects. [J] J. Mol. Graph. Mod.2007,26,319.
    [24]Zhang, X.; Zhang, Y; Jiang, J.; Geometry and electronic structure of metal free porphyrazine, phthalocyanine and naphthalocyanine as well as their magnesium complexes. [J] J. Mol. Struct. (THEOCHEM) 2004,673,103.
    [25]Yamauchi, S.; Takahashi, A.; Iwasaki, Y; Unno, M.; Ohba, Y; Higuchi, J.; Blank, A.; Levanon, H.; The Lowest Photoexcited Triplet State of Subphthalocyanine in Solid and Fluid Enviroments. Time-Resolved Electron Paramagnetic Resonance Studies. [J] J. Phys. Chem. A 2003,107,1478.
    [26]Ferro, V. R., de la Vegab, G, GonzaAlez,-J. R. H.; Poved, L. A.; A theoretical study of subphthalocyanine and its nitro-and tertbutyl-derivatives. [J] J. Mol. Struct. (THEOCHEM) 2001,537,223.
    [27]Gong, X.; Xiao, H.; Gao, P.; Tian, H.; There is an O-HC hydrogen bond in the cation of cis o-cresol. [J] J. Mol. Struct. (THEOCHEM) 2002,587,189.
    [28]Zhang, Y; Kan, Y; Su, Z.; Zhao, L.; Theoretical study on stability and nonlinear optical properties of novel subphthalocyanine dimer and trimer. [J] J. Mol. Sti-uct. (THEOCHEM) 2005,725,127.
    [29]Parr, R. G. V.; Szentpaly L. V.; Liu S.; Electrophilicity Index. [J] J. Am. Chem. Soc.1999,121,1922.
    [30]Schleyer, P. V. R.; Jiao, H.; What is aromaticity? [J] Pure & Appl. Chem.1996, 68,209.
    [31]Pople, J. A.; Untch, K.; J. Induced Paramagnetic Ring Currents. [J] J. Am. Chem. Soc.1966,88,4811.
    [32]Athanassies, C. T.; Constantinos, A. T., Hydrometal Analogues of Aromatic Hydrocarbons:A New Class of Cyclic Hydrocoppers(I). [J] J. Am. Chem. Soc,2003, 125,1136.
    [33]Yang, Y; Su, Z.; Structure, Stability, and Aromaticity of M-SubPc (M=B, Al, and Ga):Computational study. [J] Inter. J. Quant. Chem.,2005,103,54.
    [34]Iglesias, R. S.; Claessens, C. G; Rahman, G. M. A.; Herranz, M. A.; Guldib, D. M.; Torresa, T.; Subphthalocyanine fused dimers-C60 dyads:synthesis, characterization, and theoretical study. [J] Tetrahedron 2007,63,12396.
    [35]Iglesias, R. S.; Claessens, C. G; Torres, T.; Herranz, M. A.; Ferro. V. R.; de la Vega, J. M. G.; Synthesis and Theoretical Studies of Fused Subphthalocyanine Dimers. [J] J. Org. Chem.2007,72,2967.
    [36]Becke, A. D.; Density-functional thermochemistry. Ⅲ. The role of exact exchange. [J] J. Chem. Phys.1993,98,5648.
    [33]Lee, C; Yang, W. R.; Parr, G; Development of the colle-salvetti correlation-energy formula into a functional of the electron density [J] Phys. Rev. 1988,537,785.
    [38]Peng,C; Ayala, P. Y; Schlegel, H. B.; Frisch, M. J.; Using redundant internal coordinates to optimize geometries and transition states. [J] J. Comp. Chem.1996, 77,49.
    [39]http://srdata.nist.gov/cccbdb
    [40]Carpenter; J. E.; Weinhold, F.; Analysis of the geometry of the hydroxymethyl radical by the "different hybrids for different spins" natural bond orbital procedure. [J] J. Mol. Struct. (THEOCHEM) 1988,169,41.
    [41]Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K.N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.;Mennucci, B.; Cossi, M.; Scalmani, G; Rega, N.; Petersson, G A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y; Kitao, O.; Nakai, H.; Klene, M.; Li,X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adarno, C.;Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev,0.; Austin, A. J.;Cammi, R.; Pomelli, C; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.;Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G; Dapprich,S.; Daniels, A. D.; Strain, M. C; Farkas,0.; Malick, D. K.; Rabuck, A.D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G; Liashenko, A.;Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham,M. A.; Peng, C. Y; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.;Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C; Pople, J. A. Gaussian03, Revision B.05; Gaussian, Inc.:Pittsburgh, PA,2003.
    [42]Zhang, Y; Zhang, X.; Liu, Z.; Bian, Y; Jiang, J.; Structures and Properties of 1,8,15,22-Tetrasubstituted Phthalocyaninato-Lead Complexes:The Substitutional Effect Study Based on Density Functional Theory Calculations [J] J. Phys. Chem. A 2005,109,6363.
    [43]Zhu, P.; Pan, N.; Li, R.; Dou, J.; Zhang, Y; Chen D.; Wang, D.; Ng, D. K. P.; Jiang, J.; Electron-Donating Alkoxy-Group-Driven Synthesis of Heteroleptic Tris(phthalocyaninato) Lanthanide(iii) Triple-Deckers with Symmetrical Molecular Structure. [J] Chem. Eur. J.2005,77,1425.
    [44]Zhang, Y; Cai, X.; Yao, P.; Xu, H.; Bian, Y; Jiang, J.; Location of the Hole and Acid Proton in Neutral Nonprotonated and Protonated Mixed (Phtlialocyaninato)(porphyrinato) Yttrium Double-Decker Complexes:Density Functional Theory Calculations [J] Chem. Eur. J.2007,13,9503.
    [45]Bian, Y; Jiang, J.; Tao, Y; Choi, M. T. M.; Li, R.; Ng, A. C. H.; Zhu, P.; Pan, N.; Sun, X.; Arnold, D. P.; Zhou, Z.; Li, H.; Mak, T. C. W; Ng, D. K. P.; Tuning the Valence of the Cerium Center in (Na)phthalocyaninato and Porphyrinato Cerium Double-Deckers by Changing the Nature of the Tetrapyrrole Ligands. [J] J. Am. Chem. Soc.2003,125,12257.
    [46]Kobayashi, N.; Miwa, H.; Nemykin, V. N.; Adjacent versus Opposite Type Di-Aromatic Ring-Fused Phthalocyanine Derivatives:Synthesis, Spectroscopy, Electrochemistry, and Molecular Orbital Calculations. [J] J. Am. Chem. Soc.2002, 124,8007.
    [47]Parusel, A. B.; Grimme, J. S.; DFT/MRCI calculations on the excited states of porphyrin, hydroporphyrins, tetrazaporphyrins and metalloporphyrins. [J] J. Porphyrin & Phthalocyanines 2001,5,225.
    [48]Qi, D.; Zhang, Y.; Cai, X.; Jiang, J.; Bai, M.; Inner hydrogen atom transfer in benzo-fused low symmetrical metal-free tetraazaporphyrin and phthalocyanine analogues:Density functional theory studies. [J] J. Mol. Graph. Mod.2009,27,693.
    [49]Liao, M.; Watts, J. D.; Huang, M.; FeⅡ in Different Macrocycles:Electronic Structures and Properties. [J] J. Phys. Chem. A 2005,109,7988.
    [50]Zhang, Y; Cai, X.; Bian, Y; Li, X.; Jiang, J.; Heteroatom Substitution of Oligothienoacenes:From Good p-Type Semiconductors to Good Ambipolar Semiconductors for Organic Field-Effect Transistors. [J] J. Phys. Chem. C 2008,112, 5148.
    [51]Zhang, X.; Zhang, Y; Jiang, J.; Geometry and electronic structure of free base porphyrazine, phthalocyanine and naphthalocyanine as well as their magnesium complexe. [J] J. Mol. Struct. (THEOCHEM) 2004,673,103.
    [52]Salzner, U.; Lagowski, J. B.; Pickup, P. G; Poirier, R. A.; Comparison of geometries and electronic structures of polyacetylene, polyborole, polycyclopentadiene, polypyrrole, polyfuran, polysilole, polyphosphole, polythiophene, polyselenophene and polytellurophene. [J] Synth. Met.1998,96,111.
    [53]Hutchison, G. R.; Zhao, Y; Delley, B.; Freeman, A. J.; Ratner, M. A.; Marks, T. J.; Electronic structure of conducting polymers:Limitations of oligomer extrapolation approximations and effects of heteroatoms. [J] Phys. Rev. B 2003,68,035204.
    [54]Jiang, J.; Bao, M.; Rintoul, L.; Arnold, D. P.; Vibrational spectroscopy of phthalocyanine and naphthalocyanine in sandwich-type (na)phthalocyaninato and porphyrinato rare earth complexes. [J] Coord. Chem. Rev,2006,250,424.
    [55]Kobayshi, N.; Nakajima, S.; Ogata, H.; Fukuda, T.; Synthesis, Spectroscopy, and Electrochemistry of Tetra-tert-butylated Tetraazaporphyrins, Phthalocyanines, Naphthalocyanines, and Anthracocyanines, together with Molecular Orbital Calculations. [J] Chem. Eur. J.2004,10,6294.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700