用户名: 密码: 验证码:
硫酸亚铁SCR催化剂脱硝机理及制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的V_2O_5-WO_3/TiO_2脱硝催化剂存在成本较高、钒毒性大、后处理易二次污染等问题。本工作旨在研究铁基脱硝催化剂,以达到在保证高脱硝率的同时降低成本的目的。在综合分析各种脱硝方法的基础上,提出采用FeSO_4制备脱硝催化剂脱除氮氧化物的思路。
     本文通过固定床实验系统,测试了模拟烟气工况下FeSO_4催化剂的活性和耐久性。实验表明,使用浸渍法制备的催化剂中FeSO_4-NaY和FeSO_4-ZSM-5的脱硝效果最好,脱硝率相比纯FeSO_4可提高20~35%。使用最优制备方法所制备的催化剂最佳脱硝温度由440°C降至340°C,有效温度窗口更宽,模拟烟气中的SO_2和H2O对催化剂性能无明显影响。
     本文采用穆斯堡尔谱、XPS、XRD和原位红外等方法研究了FeSO_4催化剂脱硝机理,发现所制备催化剂中主要存在形式为FeSO_4、Fe(OH)SO_4与Fe2O(SO_4)的混合物,其具体比例与担载体和制备条件有关,参加脱硝反应后使得硫酸亚铁和分子筛之间的结合更紧密,但仍然以这三种存在形式为主,同时,Fe离子和载体上的Al产生了键合并存在少量的Fe2O_3,Fe(OH)SO_4的催化效果优于Fe2O(SO_4)。硫酸亚铁及FeSO_4-NaY催化剂仅吸附氨产生了NH4+和NH3的谱峰,推测应该遵循Eley-Rideal机理。FeSO_4-ZSM-5催化剂对氨和NO都产生了较强的吸附作用,且其载体本身也具有催化效果,反应机理可能发生了较大变化。反应气体在硫酸亚铁提供的SO_42-及分子筛提供的羟基处吸附产生了相应负峰,铁离子为氨和氮氧化物的氧化还原反应提供了活性位。
     本文使用浸渍法制备了硫酸亚铁堇青石蜂窝体催化剂模块,并研究了该方法的最佳制备工艺。分子筛具有良好的比表面,提高了FeSO_4本身的脱硝催化性能,扩大了其有效温度窗口。分子筛担载物涂覆在堇青石陶瓷蜂窝体上增加了FeSO_4催化剂的物理硬度,使得其工业化应用成为可能。通过小型燃煤锅炉系统,对不同工况下优化工艺制得的催化剂模块的活性及耐久性进行了测试,表明在NH_3/NO_x=1和SV=10000/h的条件下,催化剂模块在280~380°C温度区间内的脱硝效率均在80%以上,在320°C时达到95%左右的最高值,并能适应一定程度的工况波动,200h长期运行后催化效果没有明显下降,为工业应用奠定了坚实基础。
     经济性分析表明,与现有商用催化剂相比,硫酸亚铁原料的来源广泛、价格低廉且无毒性,在初次安装、设备改造维护、催化剂更换以及乏催化剂后处理等方面均具有明显的优势。本文最后还对做制备催化剂模块的工业化应用做了尝试性实验。
The conventional V_2O_5-WO_3/TiO_2 SCR catalyst is expensive, complicated to use and may cause secondary pollution to environment after employment. The aim of this research is to develope Fe-based catalyst to reduce the cost of NOx emission control without compromising NOx removal efficiency. After comparing the existing research, the idea of using FeSO_4 as the SCR catalyst to remove NOx in flue gas has been proposed.
     The activities and endurances of FeSO_4 under simulated flue gas conditions were first tested in a bench-scale fixed-bed reactor system. The experimental results suggested that FeSO_4-NaY and FeSO_4-ZSM-5 prepared by impregnation method performed well in NOx removal. The NOx removal rates of the prepared catalyst were 20– 35% higher than those of pure FeSO_4, The effective temperature window was largely expanded with the best performance temperature shifted from 440°C to 340°C. SO_2 and H2O in flue gas had no obvious effect on catalyst performance.
     M?ssbauer spectrometry, XPS and in-situ infrared spectra analysis had been employed to investigate the catalytic mechanism of FeSO_4. It had been found that FeSO_4, Fe(OH)SO_4 and Fe2O(SO_4) were the major components existing in prepared catalyst, with their portions related to carrier type and preparing condition. FeSO_4 combined tighter with the carrier after de-NOx reaction. Fe2O_3 and the chemical bond between Fe and Al had been found. Fe(OH)SO_4 was better than that of Fe2O(SO_4). NH_3 absorbed on FeSO_4-NaY generated the spectra of NH4+ and NH_3, suggesting the Eley-Rideal mechanism. FeSO_4-ZSM-5 absorbed both NH_3 and NO, and the carrier (ZSM-5) itself demonstrated catalytic effect, indicating a different reaction mechanism. SO_42- from FeSO_4 and the hydroxy from carrier jointly enhanced reaction gas adsorption. Fe provided the active sites for reaction between NH_3 and NO.
     The preparation of FeSO_4 catalyst module had been attempted by optimized impregnation method. FeSO_4 had been first impregnated on molecular sieve, and then coated on cordierite honeycomb. The effective surface and physical strength of the catalyst had been significantly improved and therefore the industrial application had been enabled. The prepared catalyst module had been tested in a small-scale coal-firing boiler system to verify its reactivity and endurance. The results revealed that, under the condition of NH_3/NO_x=1 and SV=10000/h, the NOx removal rate was above 80% for the temperature range of 280 - 380°C, in spite of flue gas fluctuation. The best NOx removal rate of 95% was achieved under 320°C. No obvious performance lost had been found after 200h continuous test. This preliminary test had proved catalyst’s potential for industrial application.
     The techno-economic analysis suggested that, comparing with the existing commercial catalysts, FeSO_4 had distinctive advantage in large resource, low installaltion and operation cost, and little attention in aftertreatment. In the last part of the thesis, the preparation methods for industrial catalyst module was attempted.
引文
Apostolescu N, Geiger B, Hizbullah K, Jan M T, Kureti S, Reichert D, Schott F, Weisweiler W. 2006. Selective catalytic reduction of nitrogen oxides by ammonia on iron oxide catalysts [J]. Appl Catal B: Environ, 62: 104-114.
    Armor J N. 2005. Do you really have a better catalyst [J]. Applied Catalysis A: General, 282(1-2): 1-4.
    Bacsik Z, Mink J, Keresztury G. 2004. FTIR spectroscopy of the atmosphere Part 1: Principles and methods [J]. Applied Spectroscopy Reviews, 39(3): 295-363.
    Baur W H. 1964. The determination of the crystal structure of FeSO47H2O (melanterite) The crystal chemistry of salt hydratesIII [J]. Acta Crystallogr, 17: 1167-1174.
    Bosch H, Janssen F J. 1988. Catalytic reduction of nitrogen oxides: A review on the fundamentals and technology [J]. Catalysis Today, 2: 369.
    Bristoti A, Kunrath J I, Viccaro P J. 1975. M?ssbauer and thermogravimetric analysis of the oxidation pathway in the thermal decomposition of FeSO47H2O [J]. Journal of Inorganic Nuclear Chemistry, 37: 1149-1151.
    Burch R, Breen J P, Meunier F C. 2002. A review of the selective reduction of NOx with hydrocarbons under lean-burn conditions with non-zeolitic oxide and platinum group metal catalysts [J]. Applied Catalysis B: Environmental, 39: 283-303.
    Burch R, Halpin E, Sullivan J A. 1998. A comparison of the selective catalytic reduction of NOx over Al2O_3 and sulphated Al2O_3 using CH3OH and C3H8 as reductants [J]. Applied Catalysis B: Environmental, 17: 115-129.
    Busca G, Lietti L, Ramisa G. 1998a. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review [J]. Applied Catalysis B: Environmental, 18: 1-36.
    Busca G, Lietti L, Ramis G, Berti F. 1998b. Chemical structural and mechanistic aspects on NOx SCR over commercial and model oxide catalysts [J]. Applied Catalysis, 18: 101-116.
    California Environmental Protection Agency. 2004. Standard Operating Procedure No MLD 136 Revision 20 Procedure for Determination of Nitrous Oxide in Automotive Exhaust By Fourier Transform Infrared Spectroscopy [S].
    Chen H Y, Wolfgang, Sachtler M H. 1998. Activity and durability of Fe/ZSM-5 catalysts for clean burn NOx [J]. Catalisis Today, 42:73.
    Cheng L S, Yang R T, Chen N. 1996. Iron oxide and chromia supported on titania-pillared clay for selective catalytic reduction of nitric oxide with ammonia [J]. Journal of Catalysis, 164:70-81.
    Cichanowicz J. E, Muzio J. 2001. Twenty-five years of SCR evolution: implications for US applications and operation EPRI-DOE-EPA Combined Utility Air Pollution Control Symposium [M]. Chicago: The MEGA Symposium.
    Delahay G, Valade D, GuzmánV A. 2005. Selective catalytic reduction of nitric oxide with ammonia on Fe-ZSM-5 catalysts prepared by different methods [J]. Applied Catalysis B: Environmental, 55: 149-155.
    Delbecq F, Sautet P. 1999. Interplay between Magnetism and Chemisorption: A theoretical study of CO and NO adsorption on a Pd3 Mn Aalloy surface [J]. Chemical Physics Letters, 302: 91–97.
    Devadas M, Kr(o|¨)cher O, Elsener M, Wokaun A, S(o|¨)ger N, Pfeifer M, Demel Y, Mussmann L. 2006. Influence of NO2 on the selective catalytic reduction of NO with ammonia over Fe-ZSM5 [J]. Applied Catalysis B: Environment, 67: 187-196.
    Duffi B L, Curry-Hyde H E, Cant N W. 1994. Isotopic labeling studies of the effects of temperature water and vanadia loading on the selective catalytic reduction of NO with NH_3 over vanadia-titania catalysts [J]. The Journal of Physical Chemistry, 98(29): 7153-7161.
    Feng X B, Hall W K. 1996. On the unusual stability of overexchanged Fe/ZSM-5 [J]. Catalysis Letters, 41: 45-46.
    Feng X B, Hall W K. 1997. FeSO4-ZSM-5: A durable SCR catalyst for NOx removal from combustion steams [J]. J. Catalisis, 166: 368-376.
    Fliatoura K D, Verykios X E, Costa C N. 1999. Selective catalytic reduction of nitric oxide by methane in the presence of oxygen over CaO catalyst [J]. Journal of Catalysis, 183: 323-335.
    Forzatti P. 2001. Present status and perspectives in De-NOx SCR catalysis [J]. Applied Catalysis A: General, 222: 221-236.
    Forzatti P, Nova I, Tronconi E. 2009. Enhanced NH_3 selective catalytic reduction for NOx abatement [J]. Angew. Chemi International Editor, 121: 8516-8518.
    Gallagher P K, Johnson D W, Schrey F. 1970. Thermal decornposition of iron [J]. American Ceramic Society, 53(12): 666-670.
    Hadjiivanov K, Klissurski D, Ramis G, Busca G. 1996. Fourier transform IR study of NOx adsorption on a Cu/ZSM-5 DeNOx catalyst. Appl. Catal. B, 7: 251.
    Hall W K, Feng X B, Dumesic J, Watwe R. 1998. Problems in preparation of Fe-ZSM-5 catalysts [J]. Catalysis Letters, 52: 13.
    Haneda M, Kintaichi Y, Nakamura I. 2003. Effect of surface structure of supported palladium catalysts on the activity for direct decomposition of nitrogen monoxide [J]. Journal of Catalysis, 218: 405-410.
    Haneda M, Kintaichi Y, Hamada H. 2005. Reaction mechanism of NO decomposition over alkali metal-doped cobalt oxide catalysts [J]. Applied Catalysis B: Environmental, 55: 169-175.
    Hans B, Frans J. 1988. Catalytic reduction of nitrogen oxides: a review on the fundamentals and technology [J]. Catalisis Today, 2(4): 369-532.
    Inomata N, Miyamoto A, Murakami Y. 1980. Mechanism of the reaction of NO and NH_3 on vanadium oxide catalyst in the presence of oxygen under the dilute gas condition [J]. Journal of Catalysis, 62(1): 140-148.
    IPCC. 1997.《联合国气候变化框架公约》京都议定书[M].日本京都.
    Iwata T, Moriguchi S, Abe H. 1977. Method of removing nitrogen oxides from an exhaust [P]. USA Patent: 4054640.
    Javed M T, Irfan N, Gibbs B M. 2007. Control of combustion-generated nitrogen oxides by selective non-catalytic reduction [J]. Journal of Environmental Management, 83: 251-289.
    Jin W C, In-Sik N, Sung W H. 2006. Effect of promoters including tungsten and barium on the thermal stability of V2O5/sulfated TiO2 catalyst for NO reduction by NH_3 [J]. Catalysis Today, 111(3-4):242-247.
    Joyner R W, Stockenhuber M. 1997. Unusual structure and stability of ion-oxygen nano-clusters in F-ZSM-5 Catalysts [J]. Catal Letter, 45(12): 15-19.
    Kapteijn F, Singoredjo L, Vandriel M, Andreini A, Moulijn J A, Ramis G, Busca G. 1994.
    Alumina-supported manganese oxide catalysts: II surface characterization and adsorption of ammonia and nitric oxide [J]. Journal of Catalysis, 150: 105-116.
    Kijlstra W S, Brands D S, and Smit H I. 1997. Mechanism of the selective catalytic reduction of NO with NH_3 over MNOx /Al2O3 [J]. Journal of Catalysis, 171: 219.
    Koebel M, Madia G, Elsener M. 2002. Selective catalytic reduction of NO and NO2 at low temperatures [J]. Catal Today, 73: 239-247.
    Komatsu T, Nunokawa M, Moon S, Takahara T, Namba S, Yashima T. 1994. Kinetic-studies of reduction of Nitric-Oxide with ammonia on Cu2+-exchanged zeolites [J]. Journal of Catalisis, 148: 427.
    Larrubia M A, Ramis G, and Busca G. 2001. An FT-IR study of the adsorption and oxidation of N-containing compounds over Fe2O3-TiO2 SCR catalysts [J]. Applied Catalysis B: Environmental, 30: 101–110.
    Lazar K, Kotasthane A N, Fejes P. 1999. Oxygen transfer centers in Fe-FER and Fe-MFI zeolites: redox behavior and Debye temperature derived from in-situ Mossbauer spectra [J]. Catlysis Letter, 57: 171-177.
    Lee H, Rhee H. 1999. Stability of Fe/ZSM-5 de-NOx catalyst: effects of iron loading and remaining Br(o|¨)nsted acid sites [J]. Catalysis Letters, 61: 71-76.
    Li S H, Zheng A M, Su Y C, Zhang H L, Chen L, Yang J, Ye Ch H, Deng F. 2007. Br(o|¨)nsted/Lewis acid synergy in dealuminated HY zeolite: A combined solid-state NMR and theoretical calculation study [J]. American Chemical Society, 129: 11161-11171.
    Li Y J, Armor J N. 1993. Selective catalysis reduction of NOx with methane over metal exchanged zeolites [J]. Applied Catalysis B: Environmental, 2: 239-256.
    Lietti L, Ramis G, Berti F. 1998. Chemical structural and mechanistic aspects on NOx SCR over commercial and model oxide catalysts [J]. Catalysis Today, 42(1-2): 101-116.
    Lisa J L, In-Chul H, Jeffrey A R, Alexis T B. 1999. Investigations of the state of Fe in H-ZSM-5 [J]. Journal of Catalysis, 186:242–253.
    Liu F D, He H, Ding Y, Zhang C B. 2009. Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH_3 [J]. Applied Catalysis B: Environmental, 93: 194-204.
    Liu F D, He H. 2010. Selective catalytic reduction of NO with NH_3 over manganese substituted iron titanate catalyst: reaction mechanism and H2O/SO2 inhibition mechanism study [J]. Catalisis Today, 153:70-76.
    Long R Q, Yang R T. 1999. Catalytic performance of Fe-ZSM-5 catalysts for selective catalytic reduction of nitric oxide by ammonia [J]. Journal of Catalysis, 188: 332-339.
    Long R Q, Yang R T. 2000. FTIR and kinetic studies of the mechanism of Fe3+-exchanged TiO2-pillared clay catalyst for selective catalytic reduction of NO with ammonia [J]. Journal of Catalysis, 190: 22–31.
    Long R Q, Yang R T. 2000. Superior ion-exchanged ZSM-5 catalysts for selective catalytic oxidation of ammonia to nitrogen [J]. Chemical Communications, 17: 1651-1652.
    Long R Q, Yang R T. 2001. Temperature-programmed desorption surface reaction (TPD/TPSR) study of Fe-exchanged ZSM-5 for selective catalytic reduction of nitric oxide by ammonia [J]. Journal of Catalysis, 198: 20-28.
    Lyon R K. 1976. The NH_3-NO-O2 reaction [J]. International Journal of Chemical Kinetics, 8: 315-318.
    Ma A Z, Grünert W. 1999. Selective catalytic reduction of NO by ammonia over Fe-ZSM-5 catalysts [J]. Chemical Communications, 1: 71-72.
    Marban G, Antuna R, Fuertes A B. 2003. Low-temperature SCR of NOx with NH_3 over activated carbon fiber composite-supported metal oxides [J]. Applied Catalysis B: Environment, 41: 323-38.
    Maria D, Wilmington F. 1995. Selective catalytic reduction of nitrogen oxides using an iron impregnated aeolite catalyst [P]. United States: 5451387.
    Mars P V, Krevenlen D W. 1954. Oxidation carried out by means of vanadium oxide catalysts [J]. Chemical Engineering Science, 3(supply): 341.
    Metallgesellschaft A. 1993. Process and apparatus for removing dust sulfur compounds and nitrogen oxides from combustion exhaust gases [P]. United States: 5219543.
    Metallgesellschaft A. 1994. Process for catalytically reducing nitrogen oxides in combustion exhaust gases [P]. United States: 5370850.
    Metallgesellschaft A. 1995. Process for removing pollutants from combustion exhaust gases [P]. United States: 5382418.
    Michael D A, Zhang T J. 1996. Selective catalytic reduction of nitric oxide by hydrocarbons [J]. Applied Catalysis B: Environmental, 10: 203-227.
    Mihaylov M, Hadjiivanov K, Panayotov D. 2004. FTIR mechanistic studies on the selective catalytic reduction of NOx with methane over Ni-containing zeolites: Comparison between NiY and Ni-ZSM-5 [J]. Applied Catalysis B: Environmental, 51: 33-42.
    Moriguchi S, Abe H, Takenaka J. 1978. Method of reducing NOx present in an exhaust to harmless N2 [P]. USA Patent: 4070440-A.
    Moulder J F, Stickle W F, Sobol P E, Bomben K D. 1992. Handbook of X-Ray Photoelectron Spectroscopy [M]. USA: Perkin-Elmer Corporition.
    Ozkan S U, Kumthekar M W, Cai Y P. 1994. Selective catalytic reduction of nitric oxide over vanadia/titania catalysts: Temperature-programmed desorption and isotopically labeled oxygen-exchange studies [J]. Industrial&Engineering of Chemistry Research, 33(12): 2924-2929.
    Parvulescu V I, Grange P, Delmon B. 1998. Catalytic removal of NO [J]. Catalysis Today, 46: 233-316.
    Pelovski Y, Petkova V, Nikolov S. 1996. Study of the mechanism of the thermochemical decomposition of ferrous sulphate monohydrate [J]. Thermochimica Acta, 274: 273-280.
    Pena D A, Uphade B S, Reddy E P, Smirniotis P G. 2004. Identification of surface species on titania-supported manganese chromium and copper oxide low-temperature SCR catalysts [J]. Journal of Physical Chemistry B, 108: 9927-9936.
    Pérez-Ramírez J, Kapteijn F. 2003. Effect of NO on the catalytic removal of N2O over Fe-ZSM-5, Friend or foe [J]. Catalysis Communications, 4 (7) : 333.
    Qi G, Yang R T. 2005a. Ultra-active Fe/ZSM-5 catalyst for selective catalytic reduction of nitric oxide with ammonia [J]. Applied Catalysis B: Environmental, 60: 13-22.
    Qi G, Yang R T. 2005b. Low-temperature SCR of NO with NH_3 over noble metal promoted Fe-ZSM-5 catalysts [J]. Catalysis Letter, 100: 243-246.
    Radek Z, Miroslav M, Dimitris P, Dagmar K, Petr P. 2002. The role of intermediates in the process of red ferric pigment manufacture from FeSO4.7H2O [J]. Hyperfine Interactions, 139(140): 437-445.
    Ramis G, Yi L, Busca G. 1995. Adsorption activation and oxidation of ammonia over SCR catalysts [J]. Journal of Catalysis, 157: 523-535.
    Ramis G, Larrubia M A. 2004. An FT-IR study of the adsorption and oxidation of N-containing compounds over Fe2O3/Al2O3 SCR catalysts [J]. Journal of Molecular Catalysis A: Chemical, 215: 161-167.
    Rigby K, Johnson R, Neufort R. 2000. SCR catalyst design issues and operating experience: coals with high arsenic concentrations and coals from the Powder River Basin[C]. International Joint Power Generation Conference IJPGC2000-15067, July 23–26.
    Schwidder M, Heikens S, Toni A D, Geisler S, Berndt M, Bruckner A, Grunert W. 2008. The role of NO2 in the selective catalytic reduction of nitrogen oxides over Fe-ZSM-5 catalysts: Active sites for the conversion of NO and of NO/NO2 mixtures [J]. Journal of Catalysis, 259: 96-103.
    Seiyama T, Arakawa T, Matsuda T, akita Y, Yamazoe N. 1977. Catalytic activity of transition metal ion exchanged Y zeolites in the reduction of nitric oxide with ammonia [J]. Journal of Catalysis, 48: 1-7.
    Skeff N K, Garg V K. 1975. Inorg Nucl Chem, 37: 2287-2290.
    Smoot L D. 1993. Fundamentals of coal combustion for clean and efficient use [M]. Amsterdam: Elsevier.
    Sun Q, Gao Z, Chen H. 2001. Reduction of NOx with ammonia over Fe/MFI: reaction mechanism based on isotopic labeling [J]. Journal of Catalysis, 201(1): 88-99.
    Swamy M S R, Prasad T P. 1981. Thermal analysis of iron (П) sulphate heptahydrate in air. V: thermal decomposition of hydroxy and oxysulphates [J]. Thermal Analysis, 20: 107-114.
    Thermo-Nicolet Corporation. 1995. Omnic software user’s manual [M].
    Vannice M A. 1994. Catalytic reduction of NO by CH4 over Li-promoted MgO [J]. Journal of Catalysis, 146: 568-578.
    Vannice M A. 1998. The adsorption and reaction of NO CH4 and O2 on La2O3 and Sr-promoted La2O3 [J]. Applied Catalysis B: Environmental, 17: 183-193.
    Wang X, Chen H Y, Sachtler W M H. 2001. Mechanism of the selective reduction of NOx over Co/MFI: comparison with Fe/MFI [J]. Journal of Catalysis, 197(2): 281-291.
    Willey R J, Lai H, Peri J B. 1991. Mechanistic model of the selective catalytic reduction of nitric oxide with ammonia [J]. Journal of Catalysis, 130 (2) : 319-331.
    Xu G W. 1999. Innovative combined desulphuriazation/denitration process using a powder-particle fluidized bed: process safety and environmental protection [J]. Transactions of the Instisution of Chemical Engineers part B, 77:77-87.
    Xu X C, Chen C H, Qi H Y. 2000. Development of coal combustion pollution control for SO2 and NOx in China [J]. Fuel Proc Technol, 62: 153-160.
    Xuan X P, Yue C T, Li Sh Y, Yao Q. 2003. Selective catalytic reduction of NO by ammonia with fly ash catalyst [J]. Fuel, 82: 575-579.
    Yamazaki K, Takahashi N, Shinjoh H. 2004. The Performance of NOx storage-reduction catalyst containing Fe-compound after thermal aging [J]. Applied Catalysis B: Environmental, 53: 1-12.
    Yang R T. 2002. Reaction mechanism of selective catalytic reduction of NO with NH_3 over Fe-ZSM-5 Catalyst[J]. Journal of Catalysis, 207:224.
    Zboril R, Grambal F, KrausováD, Ma(o|¨)láM. 1997. M(o|¨)ssbauer study of thermal conversion of FeSO4·7H2O [J]. Czechoslovak Journal of Physics, 47(5): 565-569.
    Zboril R, Ma(o|¨)láM, Grambal F, KrausováD. 2001. Mechanism of solid-state oxidation of FeSO4·H2O: model of simultaneous reactions [J]. Czechoslovak Journal of Physics, 51(7): 719-726.
    北京市环境保护总局. 2002.锅炉污染物综合排放标准(DB11/139-2002) [S].北京:中国标准出版社.
    北京市环境保护总局. 2007.锅炉大气污染物排放标准(DB11/139-2007) [S].北京:中国标准出版社.
    岑可法. 2006.中国能源与环境可持续发展的若干问题[J].中国废钢铁, 2: 4-13.
    陈进生. 2008.火电厂烟气脱硝技术-选择性催化还原法[M].北京.中国电力出版社.
    陈玲霞,金保升,李锋,朱崇兵,刘涛. 2008.添加硫酸根对燃煤电厂V2O5基脱硝催化剂性能的影响[J].环境科学学报, 28(2): 294-298.
    程鼎,朱世云,王军芳,蔡伟民. 2008.催化剂及其制备对催化湿式氧化反应的影响[J].环境科学与技术, 31(1): 24-27.
    戴志成.硅化合物的生产与应用[M].成都:成都科大出版社.
    丁艳敏,李彩亭,曾光明,路培,李群,程明杨,樊小鹏. 2009. Mn/Fe-Mn改性HZSM-5在NH_3-SCR中的催化性能[J].环境科学学报, 29(12): 2572-2577.
    方华,韩静,李守信. 2010.选择性催化还原法烟气脱硝催化剂市场分析[J].中国环保产业, 4: 18.
    高滋, 1999.沸石催化与分离技术[M].北京:中国石化出版社.
    葛大陆,张超英,罗宗泽. 2002.我国锅炉2000年起始执行的环境标准-新颁《锅炉大气污染物排放标准》修订要点及达标分析[J].环境科学研究, 13(4): 30-33.
    国家环境保护部. 2009a.《火电厂大气污染物排放标准(征求意见稿)[S].北京.
    国家环境保护部. 2009b.《火电厂氮氧化物防治技术政策(征求意见稿)》[S].北京.
    国家环境保护部. 2009c.《火电厂烟气脱硝工程技术规范选择性催化还原法(征求意见稿)》[S]. 北京.
    国家环境保护部. 2010.《2009年中国环境状况公报》[M].北京.
    韩维屏等. 2003.催化化学导论[M].北京:科学出版社.
    侯波. 2004.中温干法烟气脱硫过程实验研究[博士学位论文].北京:清华大学热能系. 互动百科. 2010. tupian.hudong.com [OL].
    黄继辉,童华,童志权,张俊丰,黄妍. 2008. H2O和SO2对Mn-Fe/MPS催化剂用于NH_3低温还原NO的影响[J].过程工程学报, 8(3): 517-522.
    蒋宜捷. 2004.激光衍射散射式测粒法的实验技术及其优化研究[J].上海氯碱化工, 6: 13-16.
    金杏妹. 2004.工业应用催化剂[M].上海:华东理工大学出版社.
    亢红霞,郭泉辉,李建伟,李英霞. 2008. Fe-ZSM-5分子筛上NO和N2O吸附行为及NO助N2O催化分解机理的研究[J].河南大学学报(自然科学版), 38(3): 261-265.
    柯锐. 2006.非钒基固定源脱硝催化剂研究[博士后研究报告].北京:清华大学环境科学与工程系.
    雷俊勇. 2007. Fe-Ca基吸收剂脱硫脱硝实验研究[博士学位论文].北京:清华大学热能系.
    李士. 1998.穆斯堡尔谱学[M].湖南:湖南教育出版社.
    李天津,禚玉群,陈昌和,徐旭常. 2008.含水条件下多组分污染气体的FTIR同时在线测量[J].
    清华大学学报(自然科学版), 48 (11): 1791-1795.
    李勇. 2003.后石电厂600MW机组烟气脱硝系统及工艺特点[C].第四届全国火力发电技术学术年会,海南三亚: 1126-1130.
    李哲,申林涛,黄伟,谢克昌. 2007.新型NOx催化还原催化剂Fe-Mo/ZSM-5的制备与性能研究[C].第五届全国环境催化与环境材料学术会议.山东:烟台.
    李作骏. 1990.多相催化反应动力学基础[M].北京:北京大学出版社.
    廖立兵. 2008. X射线衍射方法与应用[M].北京:地质出版社.
    刘汉东,刘佳. 2005.高效催化型烟气脱硫、脱氮方法及装置[P].中国: CN1712115A.
    刘希尧. 1990.工业催化剂分析测试表征[M].北京:烃加工工业出版社.
    刘学军. 2006. SCR脱硝技术在广州恒运热电厂300MW机组上的应用[J].中国电力, 39(3): 86-89.
    刘越,江博琼,吴忠标. 2008.以MNOx/TiO2作为催化剂的低温SCR反应过程中还原剂NH3的作用[J].环境科学学报, 28(4): 671-675.
    马非非,徐亚民. 2008.扫描电镜的原理及其在纤维物证鉴定方面的应用[J].中国纤检, 5: 30-31.
    清华大学核能与新能源技术研究院《中国能源展望》编写组. 2004.中国能源展望2004[M].北京:清华大学出版社.
    山中龙雄. 1988.催化剂的有效实际应用[M].北京:化学工业出版社.
    沈君权,沈弘涛. 2008.蜂窝陶瓷在高温空气燃烧技术中的应用[J].陶瓷, 12: 42-47.
    孙秀良,黄崇品,陈标华. 2009.β分子筛中Bronsted酸分布及酸性强度的量子化学ONIOM理论计算研究[J].化学学报, 27(22): 2549-2553.
    王桂茹. 2007.催化剂和催化作用[M].大连:大连理工大学出版社. 王家诚. 2003.煤炭清洁利用和结构调整-中国煤炭可持续发展的必然选择[J].煤炭经济研究, 4: 6-12.
    王淑勤. 2009.纳米助燃添加剂脱硫脱硝的实验研究[博士学位论文].河北:华北电力大学.
    王学栋. 2009.燃煤锅炉氮氧化物排放特性研究及烟气脱硝催化剂的研制[博士学位论文].山东:山东大学.
    吴丹,王式功,尚可政. 2006.中国酸雨研究综述[J].干旱气象, 24(2): 70-77.
    吴瑾光. 1994.近代傅立叶变换红外光谱技术及应用(上卷)[M].北京:科学技术文献出版社.
    吴忠标. 2006.环境催化原理及应用[M].北京:化学工业出版社.
    邢娜,王新平,于青,郭新闻. 2007.分子筛对NO和NO2的吸附性能[J].催化学报, 28(3): 205.
    徐如人,庞文琴,于吉红,霍启升,陈接胜. 2004.分子筛与多孔材料化学[M].北京:科学出版社.
    徐伟. 2008.中温条件下廉价催化剂脱硝的实验研究[博士学位论文].北京:清华大学热能工程系.
    徐旭常,陈昌和,毛健雄,杨瑞昌. 1990.燃烧理论与燃烧设备[M].北京:机械工业出版社.
    许佩瑶,康玺. 2007.燃煤锅炉烟气中NOx脱除机理研究进展[J].环境科学与技术, 30(7): 109-115.
    闫志勇. 2006. Ti、Al基SCR催化剂及其脱硝性能研究[博士学位论文].浙江:浙江大学.
    杨卫娟,周俊虎,刘建忠,岑可法. 2005.选择催化还原SCR脱硝技术在电站锅炉的应用[J].热力发电, 9: 10-14.
    杨晓红. 2008. X射线能谱仪谱峰重叠问题的探讨[J].中央民族大学学报(自然科学版), 4: 73-76.
    杨志忠. 2000.热重分析技术在烟气脱硫中的应用.东方电气评论, 3: 174-177.
    俞珠峰,杜铭华,吕文斌,等. 2004.洁净煤技术发展及应用[M].北京:化学工业出版社.
    云端. 2009. V-W/Ti催化剂制备技术对其脱硝性能影响的研究[硕士学位论文].北京:清华大学,
    张继光. 2006.催化剂制备过程技术[M].北京:中国石化出版社.
    张平,王乐夫,李雪辉,徐建昌. 2002.高温漫反射红外光谱及探针分子识别分子筛中的羟基[J].分析化学研究简报, 30 (9): 1096-1098.
    张强. 2007.燃煤电站SCR烟气脱硝技术及工程应用[M].北京:化学工业出版社.
    张伟达. 1993.氧化铁气敏材料及传感器[J].现代技术陶瓷, 56(2): 11-15.
    赵璧英. 1991.金属的化学吸附和催化作用导论[M].北京:北京大学出版社.
    赵国华,李楹,胡惠康. 2004.分子筛纳米孔道中客体粒子的电化学行为[J].功能材料, 35:2800-2803.
    中国大唐集团科技工程有限公司. 2009.燃煤电站SCR烟气脱销工程技术[M].北京:中国电力工业出版社.
    中国能源发展战略与政策研究报告课题组. 2004.中国能源发展战略与政策研究报告(上)[J]. 经济研究参考, 83: 4-53.
    中华人民共和国国家统计局. 2007.中国统计年鉴2007年[M].北京:中国统计出版社.
    钟金鸣,郭丽霞,葛春亮. 2009.电厂烟气脱除NOx效率对SCR装置投资及运行费用的影响[J]. 电力技术经济, 2(4): 25-28.
    钟秦. 2000.选择性非催化还原法脱除NOx的实验研究[J].南京理工大学学报, 24: 68-71.
    钟秦. 2002.燃煤烟气脱硫脱硝技术及工程实例[M].北京:化学工业出版社.
    朱炳辰. 2007.化学反应工程[M].北京:化学工业出版社.
    朱珍平. 2000.活性炭担载金属氧化物催化剂上NO的低温还原[博士学位论文].山西:煤化学研究所.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700