用户名: 密码: 验证码:
含非球面头罩的光学系统像差校正技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为实现最优的气动外形结构,设计飞行器光学头罩时往往采用流线型非球面形状替代传统的半球形。含非球面头罩的光学系统(以下简称非球面头罩光学系统)通常利用俯仰-偏航支架来进行扫描成像,在扫描视角不为零时,非球面头罩将体现出严重的非旋转对称特性,给光学系统引入大量像差,且像差的大小随视轴角的改变而发生剧烈变化。由于非球面头罩光学系统的大偏心、大倾斜特性,经典几何像差和波像差理论难以应用于该光学系统的像质分析;传统光学结构形式也难以校正该系统的动态像差,给光学设计提出了巨大难题。
     本文致力于非球面头罩光学系统的像差特性分析与像差校正理论研究。主要创新性成果为:针对目前作为导引头整流罩重点发展方向的椭球形头罩,提出了两种新颖的像差校正理论与方法;并探索了两种空气动力学性能良好,同时引入像差较小的新型非球面头罩外形。主要研究工作和结果如下:
     1.首先对非球面光学头罩的几何特性和三阶像差特性进行分析:建立了非球面光学头罩几何参数与光学设计软件输入参数之间的转化关系式;将泽尼克多项式像差理论和矢量形式的波像差理论相结合,构建非球面头罩光学系统像差评价模型,并根据矢量像差场中心偏移的特性,指出可利用偏心元件来平衡头罩倾斜引起的彗差。在以上理论基础上深入探讨了非球面头罩光学系统的几何外形特征与像差特性间的关联,指出非球面头罩子午和弧矢曲率半径差值较大,以及光束透过非球面头罩后产生的视轴偏差和非对称光瞳特性是引入严重像差的根本原因。
     2.根据非球面头罩光学系统结构和像差特性,选取几种适用于进行非球面头罩像差校正的复杂面形函数,包括透射式Wassermann-Wolf曲面、平面对称表面和高斯径向基函数表面等,分析它们因自身数理模型而表现出的有利于非球面头罩像差校正的光学特性,为以上面形在后文应用于像差校正元件设计建立了理论依据。
     3.为解决非球面头罩光学系统难以建立合理的初始结构的问题,提出一种反射式Wassermann-Wolf方程设计理论。以反射定律和光路计算方法为基础,首次推导了一对适用于指导高度非旋转对称的折反射式系统设计的Wassermann-Wolf方程,利用该方程并结合最小二乘拟合的方法,解算出的两镜像差校正器初始结构能够兼顾各个子扫描视场的像差校正需求。利用平面对称的矢量像差理论,分析了该平面对称反射式系统的像差特性,提出了利用反射镜倾斜来进行残余动态像差补偿的设计方案。最后基于以上理论完成了完整非球面头罩光学系统设计实例,该系统在各子扫描视场成像质量接近衍射极限。
     4.为解决以往非球面头罩光学系统搜索视场偏小的问题,提出一种基于拱形像差校正元件和动态校正器的非球面头罩像差补偿方法。拱形校正板利用平面对称面形设计,以满足子午和弧矢方向不同的像差补偿需求。采用高斯径向基函数表征动态校正器表面面形并证明了其可行性,实现了变形反射镜的表面光学特性的精确仿真。通过设计实例验证以上像差补偿方法的有效性,设计结果表明该方法同时实现了超大扫描视场与良好成像质量。
     5.为从根本上解决现有非球面头罩像差校正手段过于复杂的问题,设计了两种新型非球面头罩,即球-圆锥面和球-圆锥-多项式面头罩。构造了球-圆锥面和球-圆锥-多项式面的数学模型,并证明这两种面形是光滑连续的。之后推导了应用这两种面形的头罩的几何参数设计公式,并通过仿真,证实这两种头罩不但具备良好气动性能,同时在±75°特大扫描视场内仅引入极小像差,从而大大简化了校正系统结构,降低系统重量和成本并增加其可靠性。
As the technique as radar detection and precision anti-missile developmentrapidly, the requirement of aerodynamic performance for the aircraft becomes higherand higher. In order to realize the optimial aerodymanic outer shape, the traditionalhemispheric shape is frequently replaced by the streamline aspheric shape in thedesign of the optical dome on aircraft. The optical system with an aspheric dome(hereinafter referred to as aspheric dome optical system) usually uses the pitch-yawgimbal to scan and image, when the scaning angle is not zero, the aspheric dome willshow serious asymmetrical performance, and induce a mass of aberration for theoptical system, and the amount of the aberration acutely changes as the scaningangle. Due to the serious decenter and tilt performance of the aspheric dome opticalsystem, the classical optical aberration theory and wavefront aberration theorycannot be used in the analysis of this system, and traditional optical structures arefailed to correct the dynamic aberrations of this system, which brings a greatchallenge for the optical design.
     This thesis concentrated on the analysis of aberration characteristics and theresearch of aberration correcting theory for the aspheric dome optical system. Themain innovate productions are: focus on the ellipsoidal dome, which is the maindevelopment direction of the seeker dome, two novel aberration correcting theory and method are proposed. And two novel aspheric dome shapes which have goodaerodyamnic performance and induce less aberration are bringed forward. Thedominating work and results in this paper are as follows:
     1. At first, the geometrical performance and third-order aberration characteristicsfor the aspheric optical dome are analyzed: The transformation between geometricalparameters of an aspheric dome and the input of optical design software isestablished. Zernike polynomials aberration theory and vector wavefront aberrationtheory are combined to establish the aberration evaluation model for the asphericdome optical system. Based on the displacement property of the vector aberrationfield center, the design idea of using a decentered corrector to balance the comainduced by the tilt of the dome is proposed. On the base of above work, the contactof geometrical characteristics and aberration performance for the aspheric domeoptical system is deeply discussed, and the fundamental causes of the production oflarge aberration are pointed out: Firstly, there is a dramatic difference betweentangential and sagittal radius of curvatures of the aspheric dome; secondly, when theray fan pass through the aspheric dome, the line of sight deviation and asymmetricalpupil distribution present themselves.
     2. Based on the structure and aberration characteristics of the aspheric opticaldome, a few complex surfaces, including the dioptric Wassermann-Wolf surfaces, theplane symmetric surface and the Gaussian radial basis function surface, are selected.These surface types are fit for being used in aberration correcting for the asphericdome. The optical characteristics of them which are beneficial to aberrationcorrecting for the aspheric dome are discussed. These optical characteristics are rootin the mathsmatic models of these surfaces. The discussion provides a theoreticfoundation for the application of these surface types in the design of aberrationcorrectors below.
     3. To solve the problem that a reasonable intial structure of the aspheric domeoptical system is difficult to established, a design theory based on reflectiveWassermann-Wolf (W-W) equations is proposed. On the basis of reflection law and light path caculation method, a pair of Wassermann-Wolf (W-W) equations relatingto designs of highly non-rotationally symmetric reflective systems are derived forthe first time. Combined this way with the least square fitting method, we can get anintial structure of a two-mirror aberration corrector concerned theaberration-corrected need of every field-of-regard(FOR) point. Based on theplane-symmetric vector aberration theory, the aberration properties of thisplane-symmetric reflective system is analyzed, and the design scheme of tiltingmirrors to compensate the residual dynamical aberration in different FOR. Finally,the integrated aspheric dome optical system design example is finished, and theimaging quality of this system approaches to the diffraction limit.
     4. To overcome the problem that the searching FORs of existing aspheric domeoptical systems are relatively narrow, an aberration compensating method for theaspheric dome optical system based on the combination of an arch corrector and adynamic corrector is proposed. The arch corrector is designed in plane-symmetricsurfaces to satify different aberration-corrected needs in tangential and sagittaldirections. The surface shape of the dynamic corrector is represented by Gaussianradial basis function, and the feasibility of this represented method is proved. Theaccurate simulation of the optical properities of the deformable mirror is achieved.Through a design example the validity of this aberration compensating method isproved, and the design result indicates that this method reaches the requirements ofsuper wide FOR and high imaging quality at the same time.
     5. To radically solve the problem that the existing correcting methods areexcessively complex, two novel aspheric dome, sphere-cone (SC) andsphere-cone-polynomial (SCP) domes, are designed. The mathematic models of SCand SCP surfaces are established. The smoothness and continuity of these twosurfaces are proved. The equations used to decide geometrical parameters of domeswith these shapes are deduced. Through the simulations, it is proved that these twodomes have not only good aerodynamic performance, but also introduce the minimalamount of aberration in±75°super scanning field. So the correcting system structure is significantly simplified, which reduces the weight and cost and enhances thereliability of the system.
引文
[1] D. Knapp. Fundamentals of conformal dome design[J].Proc. SPIE,2002,4832:394-409
    [2] W. Tropf, E. Thomas, K. Frazer. Windows and domes: past, present, and future [J].Proc. SPIE,2003,5078:80-89
    [3] D. Knapp, J. P. Mills, R. Hegg, et al. Conformal optics risk reductiondemonstration [J]. Proc. SPIE,2001,4375:146-153
    [4]张以谟,应用光学[M].北京:机械工业出版社,1987
    [5] P. A. Trotta. Precision conformal optics technology program [J]. Proc. SPIE,2001,4375:96-107
    [6] J. P. Mills. Conformal Optics: Theory and Practice [J]. Proc. SPIE,2001,4442:101-107
    [7] R. R. Shannon. Overview of Conformal Optics [J]. Proc. SPIE,1999,3705:180-188
    [8] D. Knapp. Fundamentals of conformal missile dome design [J]. OSA,2002.
    [9] Patrick H. Marushin, Jose M. Sasian, Tony Y. Lin, et al. Demonstration of aconformal window imaging system: design, fabrication and testing [J].Proc. SPIE,2001,4375:154-159
    [10]李圣怡.保形红外光学元件制造技术[J].航空精密制造技术,2008,24(3):55-57
    [11]B. G. Crowther, D. B. McKenney, J. P. Mills. Aberrations of optical domes [J].Proc. SPIE,1998,3482:48-61
    [12]Richard L. Hartman, Bod D. Cuenther. Gradient index of refraction for missileseekers [P].美国专利,4245890,1979-01-02
    [13]Ronald A. Ferrante, Ridgecrest, Calif. Holographic corrector element [P].美国专利,4384759,1980-06-03
    [14]Frnand R. Loy. Device for correcting distortion [P].美国专利,4840465,1987-11-19
    [15]Kenneth J. Friedenthal, Refraction correction for asisymmetric viewing window
    [P].美国专利,5220159,1991-09-23
    [16]D.R.Wickholm, F. Wayne. Optical imaging system including generally conical,transparent protective dome and optically refractive fixed corrector for reversingconical deformation created by viewing through the dome[P].美国专利,5368254,1993-03-16
    [17]Joseph M. Kunick, Chungte W. Chen, Lacy G. Cook, et al. Dynamic aberrationcorrector for conformal windows [P].美国专利,5526181,1993-12-22
    [18]Michael R. Whalen. Dynamic aberration correction of conformal/aspheric domesand windows for missile and airborne fire control application [P].美国专利,5946143,1998-05-05
    [19]D. Morgan, L. Cook. Conformal window design with static and dynamicaberration correction [P].美国专利,6018424,1996-12-11
    [20]C. Chen. Optical system with two-stage aberration correction[P].美国专利,6091548,1997-10-01
    [21]B. G. Crowher, D. B. Mckenkey, S. W. Sparrold, et al. Sensor system withdynamic optical corrector [P].美国专利,6201230,1998-09-30
    [22]P. K. Manhart, D. Knapp, Scott Eills, et al. Optical system with Zernike-shapedcorrector [P].美国专利,6313951,2000-02-01
    [23]S. Sparrold, James P. Mills, Richard Paiva, et al. Missile seeker having a beamsteering optical arrangement using risley prisms [P].美国专利,6343467,1999-03-03
    [24]R. E. Fischer, L.R. Siegel, R.J. Korniski, et al. New developments in opticalcorrection for non-spherical windows and domes [J]. Proc. SPIE,1992,2286,471-479
    [25]D. Song, J. Chang. Super wide field-of-regard conformal optical imaging systemusing liquid crystal spatial light modulator [J]. Optik,2012.124(16):2455-2458
    [26]P. Funkenbusch, T. Takahash, S. Gracewski, et al. Non-dimensional parameter forconformal grinding, combining machine and process parameters [J]. Proc. SPIE,1999,3782:11-21
    [27]J. T. Mccann. The design, fabrication and application of diamond machined nulllenses for testing generalized aspheric surfaces [J]. SPIE,1991,1531:134-146
    [28]J. Ruckman, M. Fess, M. Pollicove. Deterministic process for manufacturingconformal (Freeform) optical surfaces [J]. Proc. SPIE,2001,4375:108-113
    [29]E. Fess, J. Ruckman. Deterministic contour grinding of conformal optics [C].Optical fabrication and testing,2000
    [30]A. Shorey, W. Kordonski, M. Tricard. Deterministic, precision finishing of domesand conformal optics [J]. Proc. SPIE,2005,5786:310-318
    [31]Hu Hao, Dai Yifan, Guan Chaoliang, et al. Deterministic manufacturingtechnologies for polycrystalline magnesium fluoride conformal domes [J]. Proc. SPIE,2010,7655,765526:1-6
    [32]C. Willingham, T. Harnett, R Miller, et al. Bulk diamond for IR/RF windows anddomes [J]. SPIE,1997,3060:159-168
    [33]J. S. Goela, J. Askinazi. Fabrication of conformal ZnS domes by chemical vapordeposition [J]. Proc. SPIE.1999,3705:227-236
    [34]J. S. Goela, J. Askinazi, B. Robinson. Mandrel reusability in precision replicationof zns conformal domes [J]. Proc. SPIE.2001,4375:114-127
    [35]T. Mollart. The development of CVD infrared optics from planar windows tomissile domes [J]. SPIE,5078:127-126
    [36]J. S. Goela, R. L. Taylor. CVD replication for optics applications [J]. SPIE,1989,1047:198-210
    [37]C. Wort, C. Pickles, A. Beale, et al. Recent advances in the quality of CVDdiamond optical components [J]. SPIE,1999,3705:276
    [38]T. Mollart, K. Lewis. Coating technology for CVD diamond optics [J]. SPIE,2001,4375:199-205
    [39]贾立德.陡度保形光学镜面的坐标测量[J],光学精密工程,2010,18(9),1981-1988
    [40]贾立德,光学非球面坐标测量关键技术研究[D]:[博士学位论文].国防科学技术大学,2008,57-84
    [41]S. R. Clark, John E. Greivenkamp. Optical reference profilometry [J]. Opticalengineering,2001,40(12),2845-2851
    [42]张学成,徐榕,刘莉.保形光学在导引头中的应用[J].兵工自动化,2010,29(4),30-37
    [43]R. G. Hegg, C. B. Chen, Testing and analyzing conformal windows with nulloptics [J]. SPIE,2001,4375,138-145
    [44]J. M. Sasian. Design of null lens correctors for the testing of astronomical optics[J]. Optical engineering,1988,27(12),1051-1056
    [45]C. Huang. The new null testing method for the special optical window [J]. SPIE,2009,7383,73831H:1-6
    [46]常军,张正慧,何伍斌.共形窗口像差特性与检验方法的研究[J].航空科学基金,2009,5:28-31
    [47]S. DeFisher. M. Bechtold, D. Mohring. An innovative non-contact surfacemeasurement solution for asphere deep parabolic, and ogive radome geometries [J],SPIE,2009,7302,73020S:1-7
    [48]C. Ditchman, D. Diehl, C. Cotton, et al. Advances in freeform optical metrologyusing a multibeam low-coherence optical probe [J]. SPIE,2001,4375:138-145
    [49]D. G. Smith, J. E. Greivenkamp, R. Gappinger, Infrared Shack-Hartmannwavefront sensor for conformal dome metrology [C].2000OSA/OFT,2000
    [50]A. B. Shorey, W. Kordonski, J. Tracy, et al. Developments in the finishing ofdomes and conformal optics[J]. Proc. SPIE,2007,6545,65450Q:1-9
    [51]M. Tricard, P. Dumas, G. Forbes, et al. Recent advances in sub-apertureapproaches to finishing and metrology [J]. SPIE,2006,6149,614903:1-19
    [52]J. Fleig, P. Dumas, P. Murphy, et al. An automated subaperture stitchinginterferometer workstation for spherical and aspherical surfaces [J]. SPIE,2003,5188:296-307
    [53]陈善勇,戴一帆,李圣怡等.高陡度凸二次非球面的无像差点法子孔径拼接测量方法[P].中国专利,200810030819.7,2008-3-14
    [54]曲贺盟,张新,王灵杰等.基于固定校正元件的椭球形窗口光学系统设计[J].光学学报,2011,31(10):1022003:1-8
    [55]孙金霞,刘建卓,孙强等.折/衍混合消热差共形光学系统的设计[J].光学精密工程,2010,18(4):792-797
    [56]姜洋.共形光学系统像差校正研究[D]:[博士学位论文].中国科学院长春光学精密机械与物理研究所,2013
    [57]李岩,李林,黄一帆等.基于反转光楔和泽尼克多项式的共形光学设计[J].光子学报,2008,37(9):1788-1792
    [58]李林,刘家国,李卓.共形光学设计研究[J].光学技术,2006,32增刊:509-512
    [59]黄秋,陈亦庆,高志峰.共形光学技术[J].物理学报,2009,35(5):729-735
    [60]黄秋,陈亦庆,高志峰.红外导引头整流罩技术研究[J].应用光学,2009,30(5):840-843
    [61]付薇,陈宝国.基于非球面固定校正镜的共形光学系统设计[J].红外技术,2010,32(7):408-410
    [62]姜振海.超音速共形导引头整流罩热流固耦合[D]:[博士学位论文].中国科学院长春光学精密机械与物理研究所,2012
    [63]孙金霞.椭球整流罩导引头光学系统像差校正设计[D]:[博士学位论文].中国科学院长春光学精密机械与物理研究所,2011
    [64]K. Ellis. The optics of ellipsoidal domes[D]:[博士学位论文] The University ofArizona,1999
    [65]H. Tholl, D. Krogmann, O. Giesenberg. New infrared seeker technology[J]. Proc.SPIE,1998,3436:484-493
    [66]P. McGuire; B. Pazol; R. Gentilman,et al. Large area edge-bonded flat and curvedsapphire window[J]. Proc. SPIE,2001,4375:12-19
    [67]B. S. Fraser, A. Hemingway. High Performance Faceted Domes for Tactical andStrategic Missiles[J]. Proc. SPIE,2286:485-492
    [68]M. I. Jones. Optical analysis of segmented aircraft windows[J]. Proc. SPIE,1991,1498:110-127
    [69]R. K. Tyson. Conversion of Zernike aberration coefficients to seidel andhigher-order power-series aberration coefficients[J].Optics Letters,1982,7(6):262-264
    [70]J. Braat, P. Dirksen, A. Janssen, et al. Extended Nijboer–Zernike approach toaberration and birefringence retrieval in a high-numerical-aperture optical system[J].J.Opt.Soc.Am.A,2005,22(12):2635-2650
    [71]V. N. Mahajan, B. K. C. Lum. Imaging through atmospheric turbulence withannular pupils[J].Applied Optics,1981,20(18):3233-3237
    [72]V. N. Mahajan, G-m Dai.Orthonormal polynomials for hexagonalpupils[J].Optics Letters,2006,31(16):2462-2464
    [73]W. C. Sweatt. Reduction of Zernike wavefront errors using a micromirror array[J].Opt.Eng.,2005,44(9),098001:1-6
    [74] V. N. Mahajan. Strehl Ratio for primary aberrations in terms of their aberrationvariance[J]. J.Opt.Soc.Am.,1983,73(6):860-861
    [75]V. N. Mahajan. Strehl ratio of a gaussian beam[J]. J.Opt.Soc.Am.A,2005,22(9):1824-1833
    [76]L. Lundstrom, P. Unsbo. Transformation of Zernike coefficients: scaled,translated,and rotated wavefronts with circular and elliptical pupils[J]. J.Opt.Soc.Am.A,2007,24(3):569-577
    [77]J. Y. Wang, D. E. Silva. Wave-Front interpretation with Zernike polynomials[J].Applied Optics,1980,19(9):1510-1518
    [78]G. Conforti. Zernike aberration coefficients from seidel and higher-orderpower-series coefficients[J].Optics Letters,1983,8(7):407-408
    [79]G-m Dai. Zernike aberration coefficients transformed to and from fourier seriescoefficients for wavefront representation[J].Optics Letters,2006,31(4):501-503
    [80]V. N. Mahaja. Zernike annular polynomials and optical aberrations of systemswith annular pupils[J]. Applied Optics,1994,33(34):8125-8127
    [81] V. N. Mahajan. Zernike annular polynomials for imaging systems with annularpupils[J]. J.Opt.Soc.Am.A,1981,71(1):75-85
    [82]V. N. Mahajan. Zernike circle polynomials and optical aberrations of systemswith circular pupils[J]. Applied Optics,1994,33(34):8121-8124
    [83]V. N. Mahajan. V. N. Mahajan. Zernike polynomials and optical aberrations[J].Applied Optics,1995,34(34):8060-8062
    [84]J. Alda, G. D. Boreman. Zernike-based matrix model of deformable mirrors:optimization of aperture size[J].Appiled Optics,1993,32(13):2431-2438
    [85]V. N. Mahajan. Zernike-Gauss polynomials and optical aberrations of systemswith Gaussian pupils[J]. Appiled Optics,1995,34(34):8057-8059
    [86]D. Malacara. Optical Shop Test[M]. Third edition. Wiley-Interscience Publication,2007.
    [87]R. V. Shack, Thompson K P. Influence of alignment errors of a telescope systemon its aberration field. Proc. SPIE,1980.251:146-153
    [88]K. P. Thompson. Aberration fields in tilted and decentered optical systems [D]:
    [博士学位论文]. Tucson: University of Arizona,1980
    [89]K. P. Thompson. A graphic approach to the analysis of perturbed opticalsystems[J]. Proc. SPIE,1980.237:127-134
    [90]K. P. Thompson. Description of the third-order optical aberrations of near-circularpupil optical systems without symmetry[J]. J.Opt.Soc.Am.A.,2005,22(7):1389-1401
    [91]K. P. Thompson. Multinodal fifth-order optical aberrations of optical systemswithout rotational symmetry: spherical aberration [J]. J.Opt.Soc.Am.A,2009,26(5):1090-1100
    [92]J. R. Rogers. Aberrations of unobsured reflective optical systems[D]:[博士学位论文]. Tucson: University of Arizona,1983
    [93]T. S. Turner. Vector aberration theory on a spreadsheet—analysis of tilted anddecentered systems[J]. Proc. SPIE.1992,1752:184-195
    [94]C. Zhao, J. H. Burge. Conditions for correction of linear and quadraticfield-dependent aberrations in plane-symmetric optical systems[J]. J.Opt.Soc.Am.A,2002,19(12):2467-2472
    [95]P. Ott. Imaging with tilted surfaces: an efficient matrix method for the generalizedscheimpflug condition and its application to rotationally symmetric triangulation[J].J.Opt.Soc.Am.A,2005,22(6):1077-1085
    [96]J. M. Sasian. Imagery of the bilateral symmetrical optical system [D]:[博士学位论文]. The University of Arizona,1988.
    [97]J. M. Sasian. Design of a Schwarzschild flat-field, anastigmatic, unobstructed,wide-field telescope[J].Opt. Eng.,1990,9(1):1-5
    [98]L. B. Moore, Anastacia M. Hvisc, Jose Sasian. Aberration fields of a combinationof plane symmetric systems[J].Optical Express,2008,6(20):15655-15670
    [99]R. I. Joseph, M. E. Thomas. Ray path deviation in a non-hemispherical dome[J].Proc.SPIE,2001,4375:160-170
    [100]玻恩,沃尔夫.光学原理[M].杨葭孙译.北京:科学出版社,1978.259~266
    [101] D. J. Knapp. Conformal optical design [D]:[博士学位论文].The Universityof Arizona,2002
    [102] E. Abbe. Beitrage zur theorie des Mikroskops und der mikroskopischenWahmehmung[J]. Archiv fuer mikroskopische Anatomie,1873,9:413-468
    [103]姜洋,孙强,谷立山等.折/衍混合自由曲面式头戴显示器光学系统设计,光学精密工程,2011,19(3):508-514
    [104] Cheng De-Wen, Wang Yong-Tian,HUA Hong et al.. Design of an opticalsee-through head-mounted display with a low f-number and large field of view usinga freeform prism [J]. Applied Optics,2009,48(14):2655-2668
    [105] O. Cakmakci, I. Kaya, G. E. Fasshauer, et al. Application of radial basisfunctions to represent optical freeform surfaces[J].2010, SPIE-OSA,7652,76520A:1-8
    [106] O. Cakmakci, B. Moore, H. Foroosh, et al. Optimal local shape descriptionfor rotationally non-symmetric optical surface design and analysis[J]. Optics Express,2008,16(3),1583-1589
    [107] O. Cakmakci, S. Vo, H. Foroosh, et al. Application of radial basis functions toshape description in a dual-element off-axis magnifier[J]. Optics Letter,2008,33(11):1237-1239
    [108] J. R. Rogers. A comparison of anamorphic, keystone, and Zernike surfacetypes for aberration correction[J]. SPIE-OSA,2010,7652,76520B:1-8
    [109] I. Kaya, O. Cakmakci, K. P. Thompson, et al. The assessment of a stableradial basis function method to describe optical free-form surfaces[C]. OpticalFabrication and Testing,2010, OTuD2:1-3
    [110]王超,张新,曲贺盟等.新型折反射式椭球形整流罩光学系统的设计[J].光学学报,2012,32(8),0822002:1-7
    [111]耿亚光,张明谦.红外成像导引头双视场光学系统小型化技术[J].红外与激光工程,2007,36(6):887-890
    [112]曲贺盟,张新,王灵杰.基于固定校正元件的椭球形窗口光学系统设计[J].光学学报,2011,31(10),1022003:1-6
    [113] Song Dalin, Chang Jun, Wang Qingfeng et al.. Conformal optical systemdesign with a single fixed conic corrector [J].Chin. Phys. B,2011,20(7):074201:1-5
    [114] M. R. Whalen. Correcting variable third order astigmatism introduced byconformal aspheric surfaces [J].SPIE,1998,3482:62-73
    [115]李东熙,卢振武,孙强等.基于Wassermann-Wolf方程的共形光学系统设计研究[J].物理学报,2007,56(10):5766-5771
    [116]李东熙,卢振武,孙强等.利用Wassermann-Wolf原理设计共形光学系统[J].光子学报,2008,37(4):776-779
    [117]王平,张葆,程志峰等.变焦距镜头凸轮结构优化设计[J].光学精密工程,2010,18(4):893-898
    [118]刘峰,徐熙平,孙向阳等.折/衍射混合红外目标搜索/跟踪光学系统设计[J].光学学报,2010,30(7):2084-2088
    [119] Li Yan, Li Lin, Huang Yifan et al.. Conformal optical design withcombination of static and dynamic aberration corrections[J]. Chin. Phys. B,2009,18(2):565-570
    [120]常军,刘莉萍,程德文等.含特殊整流罩的红外光学系统设计[J].红外与毫米波学报,2009,28(3):204-240
    [121]王超,张新,王灵杰等.大扫描视场红外椭球形整流罩光学系统设计方法[J].红外与毫米波学报,2013,32(3):235-240
    [122]周仁忠,阎吉祥.自适应光学理论[M].北京:北京理工大学出版社,1996.310-322
    [123]周仁忠.自适应光学[M].北京:国防工业出版社,1996.160-193
    [124] Wang Chao,Zhang Xin,Qu Hemeng, et al. Research of a sphere-conewindow with good aberration characteristic [J]. Optik,2014,125(3).
    [125] Wang Chao,Zhang Xin,Qu Hemeng, et al. Sphere-cone-polynomial specialwindow with good aberration characteristic[J]. Chin. Phys. B,2013,22(7),074212:1-4
    [126] K. Clark. Missile seeker optical system[P].美国专利,4291848,1981-9-29
    [127] C. Chen, D. J. Hart, S. C. Fry. Optical system having a generalized torusoptical corrector[P].美国专利,5914821,1999-6-22
    [128]同济大学数学系.高等数学[M].下册,北京:高等教育出版社,第六版,2007.215
    [129]赵洪章,岳春国,李进贤.基于Fluent的导弹气动特性计算[J].弹箭与制导学报,2006,27(2),203~205
    [130]于勇,张俊明,姜连田. Flunet入门与进阶教程[M].北京:北京理工大学出版社,2008.86-107
    [131]魏群,艾兴乔,姜湖海.超音速光学导引头整流罩的形状优化[J].光学精密工程,2010,18(2),384-389.
    [132]刘琳,张兴德,贺谊亮.基于蒙特卡洛模拟法的红外光学系统公差分析[J].激光与红外,2010,40(5),496-499
    [133] S. A. Lerner, J. M. Sasian, J. E. Greivenkamp, et al. Interferometricmetrology of conformal domes[J].Proc. SPIE,1999,3705:221-226
    [134]姜会林.光学系统经济公差探讨[J].光学学报,1987,7(12),1127-1132
    [135]黎发志,郑立功,闫锋等.自由曲面的CGH光学检测方法与实验[J].红外与激光工程,2012,41(4),1052-1056

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700