用户名: 密码: 验证码:
像素级图像融合及其相关技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经过三十多年的发展,多源传感器图像信息融合逐渐成为一门新兴的学科。多源传感器图像信息融合是指通过对两个或者多个传感器获得的关于同一场景的图像信息进行整合处理,以便获得一幅对该场景更精确、更可靠和更全面描述的图像。随着图像融合技术及其理论的进一步发展和完善,可以预见它将更广泛地应用到军事、医学、工业监测、地球遥感等领域。尽管图像融合的研究取得了很大的成就,但是由于图像融合面对很多新情况、新问题,使得图像融合的研究变得越来越重要。目前,国内关于图像融合的研究处于起步阶段,远远落后于国外,因此,有必要对图像融合进行深入的研究。本文对像素级图像融合在理论和技术方面进行了如下的研究:
     (1)图像融合是一个病态的求逆问题,采用模拟退火算法求解能量最小化函数时速度很慢,且无法保证获得最优解,本论文采用图论为图像融合的能量最小化函数建立了相应的图模型,并采用图割理论进行优化求解,极大地提高了图像融合的求解速度,并能获得问题的全局最优解。
     (2)在子空间和多尺度上对图像融合进行了研究。其一,采用二维主成分分析及控向金字塔分解方法,对多光谱和全色图像的融合进行了研究,同时还考虑了边缘的保护,实验表明该算法能够有效地改善图像的空间分辨率及减少光谱失真;其二,综合利用主成分分析、IHS变换及视觉驱动模型对医学PET图像和MRI图像融合进行了研究,该算法综合利用了三者的优点,能够有效地提高融合的空间分辨率,降低光谱失真;其三,基于特殊线性群理论提出了一种新的独立成分分析算法,应用该算法进行图像融合时可以有效地提高融合效果;最后,在最大似然估计理论和拉普拉斯金字塔分解算法上建立了一种新的图像融合算法,该算法有效的结合了估计理论和多尺度分解的优点,实验结果表明该算法能够获得比较好的融合效果。
     (3)针对有噪源图像,为了更有效地提高空间分辨率和视觉效果,以及保护边界信息,提出了一种改进全变差融合算法,结合二阶优化模型,获得了一种新的融合算法。
     (4)由于融合算法中存在很多求解矩阵特征值的问题,而神经网络在求解矩阵特征值时具有并行、快速和易于实现的优点,因此本论文系统研究了运用神经网络来求解矩阵特征值的算法,根据这些算法可以获得:实反对称矩阵全部特征值及其特征向量,特殊正交矩阵所有特征值及其特征向量,一般实矩阵虚部绝对值最大或最小特征值及其特征向量,一般实矩阵模最大或最小特征值及其特征向量,一般实矩阵实部最大和最小特征值及其特征向量,一般实矩阵实部绝对值最大特征值的实部。同时讨论了实反对称矩阵特征值求解的复神经网络算法,提出了求解一般实矩阵全部特征值的统一模型。
With the development of thirty years, the multisource sensors information fusionis gradually becoming a rising discipline. The multisource sensors image informationfusion need to integrate the images information of the same scene captured by two ormore sensors into a single image, which can describe the scene more accurately, reliablyand comprehensively. With the further development and improvement of image fusiontechnologies and its related theories, it can foresee that image fusion will be more widelyapplied to the fields of military, medical, industrial monitoring, remote sensing of theearth, and so on. Although great achievements have been made in the field of imagefusion, it still has many new situations and new issues to face for the image fusion, whichmakes image fusion become more important. At present, the domestic research on theimage fusion is just getting started, but is far behind the foreign counterpart. Therefore,it is necessary to carried out in-depth study on the image fusion. In this dissertation thefollowing works are focused on the researches of theories and technical issues of thepixel-level image fusion:
     (1) The image fusion is an ill-posed inverse problem, and the use of the simulatedannealing algorithm for solving the energy minimization function is very slow, in thesame time, the obtain of the optimal solution for the problem can not be guaranteed,in this dissertation graph theory is applied to construct the corresponding graph modelfor energy minimization function of the image fusion, and the graph cuts theory is usedto optimize the solution, on one hand the speed of solving the image fusion problem isgreatly improved, on the other hand, the global optimal solution can also be obtained.
     (2) Based on the subspace and the multi-scale method, extensive research on imagefusion have been carried out. First, the two-dimensional principal component analysis andsteerable pyramid decomposition is applied to fuse the multi-spectral and panchromaticimages, in addition, the algorithm about the edge protection is also taken into account.The simulation indicated that the proposed methods can effectively improve the spatialresolution and reduce the distortion of the spectral information; Second, the principalcomponent analysis, the IHS transform and visual driving model are comprehensivelyused to study the medicine images fusion of the PET and MRI images. The virtues of the three algorithm are combined and can improve the spatial resolution and reduce thedistortion of the spectral information. Third, a new independent component analysis al-gorithm(ICA) is proposed based on the special linear group theory. This algorithm canimprove the fusion effect greatly. At last, a new fusion method is proposed based onthe maximum likelihood estimation theory and the Laplacian pyramid decomposition al-gorithm, the algorithm effectively combines the virtues of spatial estimation theory andthe multi-scale decomposition, the experimental results show that the algorithm is able toobtain better fusion performance.
     (3) For the noisy source image fusion, in order to improve the spatial resolutionand visual effect, and to protect the edge information, a modified total variation model isproposed, combined with the second-order optimization model, a new fusion algorithm isalso proposed.
     (4) Because there are many matrices eigenvalue solution problems in the image fu-sion, and neural network is parallel, fast, and easy to be realized in the matrices eigenvaluesolution, this dissertation systematically studied the eigenvalue problems by neural net-works, and the followings can be obtained: all of the eigenvalues and the correspondingeigenvectors of real antisymmetric matrices, all of the eigenvalues and the correspondingeigenvectors of special orthogonal matrices, eigenvalues and the corresponding eigen-vectors of imaginary part absolute largest or smallest in the eigenvalues of general realmatrices, eigenvalues and the corresponding eigenvectors of modulus largest or smallestin the eigenvalues of general real matrices, eigenvalues and the corresponding eigenvec-tors of real part largest or smallest in the eigenvalues of general real matrices, and the realpart of eigenvalues with real part absolute largest in the eigenvalues of general real matri-ces. In the same time, a complex neural networks algorithm is also discussed to solve theeigenvalues of real antisymmetric matrices, and a unified model is proposed to obtain alleigenvalues of general real matrices.
引文
[1] A Toet. Hierarchical image fusion[J]. Machine Vision and Applications,1990,3(1):1-11
    [2] D L Hall. Mathematical techniques in multisensor data fusion[M]. Boston: Artech House,1992,40-60
    [3] D L Hall, J Llinas. An introduction to multisensor data fusion[J]. Prodceedings of the IEEE,1997,85(1):6-23
    [4] M A Abidi, R C Gonzalez. Data fusion in robotics and machine intelligence[M]. San Diego:Academic Press Inc,1992,1-30
    [5] M Kokar, K Kim. Review of multisensor data fusion architecture and techniques[C]. Proceed-ings of the International Symposium on Intelligent Control, Chicago,1993,261-266
    [6]何友,王国宏,陆大金.多传感器信息融合及其应用[M].北京:电子工业出版社,2000,20-30
    [7] C Pohl, J L Van Genderen. Multisensor image fusion in remote sensing: concepts, methods andapplications[J]. International Journal of Remote Sensing,1998,19(5):823-854
    [8] L Wald. Some terms of reference in data fusion[J]. IEEE Transaction on Geoscience and Re-mote Sensing,1999,37(3):1194-1193
    [9] A Mahmood, P M Tudor, W Oxford, et al. Applied multi-dimensional fusion[J]. ComputerJournal,2007,50(6):646-659
    [10]敬忠良,肖刚,李振华.图像融合—-理论与应用[M].北京:高等教育出版社,2007,22-50
    [11]毛士艺,赵魏.多传感器图像融合技术综述[J].北京航空航天大学学报,2002,28(5):512-518
    [12] P K Varshney. Multi-sensor data fusion[J]. Electronics and Communication Enginering Journal,1997,9(12):245-253
    [13] J H Park, K K Kim, Y K Yang. Image fusion using multiresolution analysis[J]. Geosciencesand Remote Sensing Symposium,2001,2:709-711
    [14]黄伟.像素级图像融合研究[D].上海:上海交通大学,2008,5-13
    [15] M I Daily, T Farr, C Elachi, et al. Geologic interpretation from composited radar and landsatimagery[J]. Photogrammetric Engineering and Remote Sensing,1979,45(8):1109-1116
    [16] M I Smith, J P Heather. A review of image fusion technology in2005[C]. The InternationalSociety for Optical Engineering, SPIE Press,2005:29-45
    [17] J R Kerr, D.P. Pond, S. Inman. Infrared-optical multisensor for autonomous landing guid-ance[C]. Proc. SPIE2463. Synthetic Vision for Vehicle Guidance and Control, Orlando,1995:24-63
    [18] B Roberts, P Symosek. Image processing for flight crew situation awareness[C]. Proc. SPIE2220. Sensing, Imaging, and Vision for Control and Guidance of Aerospace Vehicles, Orlando,1994:40-54.
    [19] A Toet. Fusion of visible and thermal imagery improves situational awareness[C]. in Proc. ofSPIE on Enhanced and Synthetic Vision, Orlando,1997:50-63
    [20] J A Castellanos, J D Tardos. Mobile robot localization and mapbuilding: a multisensor fusionapproach[M]. Holland: Kluwer Academic Publishers,1999,1-3
    [21] D Hill, A Edwardsp, D Hawkes. Fusing medical images[J]. Image Proeessing,1994,6(2):22-2
    [22]郑有志.基于多尺度经验模态分解的图像融合算法研究[D].北京:清华大学,2009,5-20
    [23] M Sonka, V Hlavac, R Boyle. Image Processing, Analysis and Machine Vision[M]. New York:Chapman and Hall Computing,1993:164-176
    [24] L G Brown. A survey of image registration techniques[J]. Computing Surveys,1992,24(4):325-376
    [25] A Gholipour, N Kehtarnavaz, R Briggs, et al. Brain functional localization: a survey of imageregistration techniques[J]. IEEE Transactions on Medical Imaging,2007,26(4):427-451
    [26] S Martin, G Morison, W Nailon, et al. Fast and accurate image registration using Tsallis entropyand simultaneous perturbation stochastic approximation[J]. Electronics Letters,2004,40(10):595-597
    [27] S T Liu, S Q Yang. Performance evaluation and implementation of image registration tech-niques: a survey[J]. Electronics Optics and Control,2007,14(3):73-78
    [28] Y Keller, A Averbuch. Multisensor image registration via implicit similarity[J]. IEEE Transac-tions on Pattern Analysis and Machine Intelligence,2006,28(5):794-801
    [29]覃征,鲍复民,李爱国等.数字图像融合[M].西安:西安大学出版社,2004,40-60
    [30] J A Richards. Thematic mapping from multitemporal image data using the principal componenttransformation[J]. Remote Sensing of Environment,1984,16(1):35-46
    [31] E Lallier, M Farooq. A real time pixel-level based image fusion via adaptive weight averag-ing[C]. Proceedings of the Third International Conference on Information Fusion, Paris,2000:3-13
    [32] W Huang, Z L Jing. Multi-focus image fusion using pulse coupled neural network[J]. PatternRecognition Letters,2007,28(9):1123-1132
    [33] J Nunez, X Otazu, O Fors, et al. Multiresolution-based image fusion with additive waveletdecomposition[J]. IEEE Transactions on Geoscience and Remote Sensing,1999,37(3):1204-1211
    [34] G A Ardeshir, S Nikolov. Image fusion: advances in the state of the art[J]. Information Fusion,2007,8(2):114-118
    [35] Z J Wang, D Ziou, C Armenakis, et al. A comparative analysis of image fusion methods[J].IEEE Transactions on Geoscience and Remote Sensing,2005,43(6):1391-1402
    [36] R Fabrizio, R Giovanni. Fuzzy methods for multisensor data fusion[J]. IEEE Transactions onInstrumentation and Measurement,1994,43(2):288-294
    [37] M Nikolaos, S Tania. Optimal contrast correction for ICA-based fusion of multimodal im-ages[J]. IEEE Sensors Journal,2008,8(12):2016-2026
    [38] W Rong, B Fanliang,J Hua, et al. A feature-level image fusion algorithm based on neural net-works[C].20071st International Conference on Bioinformatics and Biomedical Engineering,Wuhan,2007:821-824
    [39] A H Gunatilaka, B A Baertlein. Feature-level and decision-level fusion of noncoincidently sam-pled sensors for land mine detection[J]. IEEE Transactions on Pattern Analysis and MachineIntelligence,2001,23(6):577-589
    [40] A Kong, D Zhang, M Kamel. Palmprint identification using feature-level fusion[J]. PatternRecognition,2006,39(3):478-487
    [41] A Ross, R Govindarajan. Feature level fusion using hand and face biometrics[J]. BiometricTechnology for Human Identification II,2005,57(79):196-204
    [42] A Kong, D Zhang, Kamel M. Palmprint identification using feature-level fusion[J]. PatternRecognition,2006,39(3):478-487
    [43] R Nishii. A markov random field-based approach to decision-level fusion for remote sensingimage classification[J]. IEEE Transactions on Geoscience and Remote Sensing,2003,41(10):2316-2319
    [44] T Qian, Veldhuis R. Threshold-optimized decision-level fusion and its application to biomet-rics[J]. Pattern Recognition,2009:823-836
    [45] A Dawoud, M S Alam, A Bal, et al. Target tracking in infrared imagery using weighted com-posite reference function-based decision fusion[J]. IEEE Transactions on Image Processing,2006,15(2):404-410
    [46] A Kushki, P Androutsos, N Konstantinos, et al. Retrieval of images from artistic repositoriesusing a decision fusion framework[J]. IEEE Transactions on Image Processing,2004,13(3):277-292
    [47] R Huan, Y Pan. Decision fusion strategies for SAR image target recognition[J]. IET RadarSonar Navig.,2011,5(7):747–755
    [48] W Yi, C Wei, M Shiyi. Multi-sensor decision level image fusion based on fuzzy theory andunsupervised FCM[C]. Proceedings of the SPIE-The International Society for Optical Engi-neering,2006:62000J-62001-62007.
    [49] E Lallier, M Farooq. A real time pixel-level based image fusion via adaptive weight averag-ing[C]. Proceedings of the Third International Conference on Information Fusion, Paris,2000,2:3-13
    [50] H A Eltoukhy, S A Kavusi. Computationally efficient algorithm for multi-focus image recon-struction[C]. Proceedings of SPIE Electronic Imaging,2003,332-341
    [51] J A Richaids. Thematic mapping from multitemporal image data using the principal componenttransformation[J]. Remote Sensing of Environment,1984,16:36-46
    [52] P S Chavez. Digital merging of Landsat TM and digitised NHAP data for1:24,000scale imagemapping[J]. Photogrammetric Engineering and Remote Sensing,1986,52(10):1637–1646
    [53] R Welch, M Ehlers. Merging multiresolution SPOT HRV and Landsat TM data[J]. Photogram-metric Engineering and Remote Sensing,1987,52(3):301–303
    [54] J C Price. Combining panchromatic and multispectral imagery from dual resolution satelliteinstruments[J]. Remote Sensing of Environment,1987,21(2):119–128
    [55] W Carper, T Lilles, R Kiefer. The use of Intensity–Hue–Saturation transformations for merg-ing SPOT panchromatic and multispectral image data[J]. Photogrammetric Engineering andRemote Sensing,1990,56(4):459–467
    [56] T Teming, S shun, S Hsuen. A new look at IHS-like image fusion methods[J]. Informationfusion,2001,2:177-186
    [57] T M Tu, P S Huang, C L Hung, et al. A fast Intensity–Hue–Saturation fusion technique withspectral adjustment for IKONOS imagery[J]. IEEE Geoscience and Remote Sensing Letters,2004,1(4):309–312
    [58] M Chikr, E Mezouar, N Taleb, K Kpalma, et al. An IHS-based fusion for color distortion re-duction and vegetation enhancement in IKONOS imagery[J]. IEEE Transactions on Geoscienceand Remote Sensing,2011,49(5):1590-1602
    [59] P S Chavez, S C Sides, J A Anderson. Comparison of three different methods to merge mul-tiresolution and multispectral data: Landsat TM and SPOT panchromatic[J]. PhotogrammetricEngineering and Remote Sensing,1991,57(3):295–303
    [60] Y Zhang. Understanding image fusion[J]. Photogrammetric Engineering and Remote Sensing,2004,70(6):657–661
    [61] J M Lafert, F Heitz, P Perez, et al. Hierarchical statistical models for the fusion of multireso-lution image data[C]. Proceedings of the International Conference on Computer Vision, Cam-bridge,1995,908-913.
    [62] R K Sharma, T K Leen, M Pavel. Bayesian sensor image fusion using local linear generativemodels[J]. Optical Engineering,2001,40(7):1364-1376
    [63]刘刚,敬忠良,孙韶媛.基于期望值最大算法的图像融合[J].激光与红外,2005,35(2):130-133
    [64] S Z Li. Markov Random Field Modeling in Image Analysis[M]. New York: Spinger-Verlag,2001,50-90
    [65] M Xu, H Chen, K Pramod. Varshney. An image fusion approach based on markov randomfields[J]. IEEE Geosci Remote,2011,49(12):5116-5127
    [66] M Mignotte. A Multiresolution markovian fusion model for the color visualization of hyper-spectral images[J]. IEEE Transactions on Geoscience and Remote Sensing,2010,48(12):4236-4247
    [67] S Y Chen, Q Guo, H Leung, et al. A maximum likelihood approach to joint image registrationand fusion[J]. IEEE Transactions on Image Processing,2011,20(5):1363-1372
    [68] H Zhang, X N Sun, L Zhao, et al. Image fusion algorithm using RBF neural networks[C].3rdInternational Workshop on Hybrid Artificial Intelligence Systems,2008,417-424
    [69] E P Blasch. Biological information fusion using a PCNN and belief filtering[C]. Proc of Inter-national Joint Conference on Neural Networks,1999,4:2792-2795
    [70] B Xu, Z Chen. A multisensor image fusion algorithm based on PCNN[C]. Proc. of the5thWorld Congress on Intellignt Control and Automation,2004,4:3679-3682
    [71] W Huang, Z L Jing. Multi-focus image fusion using pulse coupled neural network[J]. PatternRecognition Letters,2007,28(9):1123-1132
    [72] S T Li, K Wok, J Tinyau. Fusing images with different focuses using support vector machine[J].IEEE Trans Neural Networks,2004,15(6):1555-1561
    [73]张诚成,胡金春.基于支持向量聚类的多聚焦图像融合算法[J].软件学报,2007,18(10):5-18
    [74] J S Tang. A contrast based image fusion technique in the DCT domain[J]. Digital Signal Pro-cessing,2004,14:218-226
    [75] V D Tsai. Frequency-based fusion of multiresolution images[C]. Proceedings of2003IEEEInternational Geoscience and Remote Sensing Symposium, Taichung,2003,6:3665-3667
    [76] T Ranchin, L Wald. The wavelet transform for the analysis of remotely sensed images[J]. In-ternational Journal of Remote Sensing,1993,14(3):615-619
    [77] M J Choi, R Y Kim, M R Nam, et al. Fusion of multispectral and panchromatic satellite imagesusing the curvelet transform[J]. IEEE Transaction on Geoscience and Remote Sensing Letters,2005,2(1):136-140
    [78]李晖晖,郭雷,刘航.基于第二代Curvelet变换的图像融合研究[J].光学学报,2006,26(5):657-662
    [79] F Nencini, A Garzelli, S Baronti, et al. Remote sensing image fusion using the curvelet trans-form[J]. Information Fusion,2007,8:143-156
    [80] C Z Deng, H Q Cao, C Cao, et al. Multisensor image fusion using fast discrete curvelet trans-form[C]. Proc of SPIE,2007,6790(679004):1-9
    [81] Q G Miao, B S Wang. The contourlet for image fusion[C]. Proc of SPIE,2006,6264(62640Z):1-8
    [82]李光鑫,王珂.基于Contourlet变换的彩色图像融合算法[J].电子学报,2007,35(1):112-117
    [83] Y J Song, K Gao, G Q Ni. A novel infrared image fusion algorithm based on contourlet trans-form[C]. Proc of SPIE,2007,6835(68351P):1-8
    [84] K Liu, L luo, W W Chang, et al. Algorithm of image fusion based on finite Ridgelet transfor-m[C]. Proc of SPIE,2007,6786(67860D):1-7
    [85] J Nunez, X Otazu, O Fors, et al. Multiresolution-based image fusion with additive waveletdecomposition[J]. IEEE Transactions on Geoscience and Remote Sensing,1999,37(3):1204-1211
    [86] R Chao, K Zhang, Y J Li. Pixel-level multiresolution image fusion[J]. Systems Engineeringand Electronics,2004,26(1):137-141
    [87] G Pajares, J M Cruz. A wavelet-based image fusion tutorial[J]. Pattern Recognition,2004,37(9):1855-1872
    [88] K Amolins, Y Zhang, P Dare. Wavelet based image fusion techniques–An introduction, reviewand comparison[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2007,62(4):249-263
    [89] O Rockinger. Image sequence fusion using a shift-invariant wavelet transform[C]. Proceedingsof International Conference on Image Processing,1997,288-291
    [90] P Hill, N Canagarajah, D Bull. Image fusion using complex wavelets[C]. BMVC2002: BritishMachine Vision Conference2002,2002:487-496
    [91] S T Li, B Yang. Multifocus image fusion by combining curvelet and wavelet transform[J].Pattern Recognition Letters, Jul2008,29(9):1295-1301
    [92] X B Qu, J W Yan, G F Xie, et al. A novel image fusion algorithm based on bandelet transfor-m[J]. Chinese Optics Letters,2007,5(10):569-572
    [93] L Tang, Z G Zhao. Multiresolution image fusion based on the wavelet-based contourlet trans-form[C].10th International Conference on Information Fusion,2007,184-189.
    [94] A Toet, J J Ruyven, Valeton J M. Merging thermal and visual images by a contrast pyramid[J].Optical Engineering,1989,28(7):789-792
    [95] A Toet. Multi-scale contrast enhancement with applications to image fusion[J]. Optical Engi-neering,1992,31(5):1026-1031
    [96] H Y Jin, F Liu, L C Jiao. A method of image fusion based on multiscale contrast pyramid anddirectional filter banks[J]. Acta Electronica Sinica,2007,4:1295-1300
    [97] A Toet. Image fusion by a ration of low-pass pyramid[J]. Pattern Recognition Letters,1989,9(4):245-253
    [98] P J Burt. A gradient pyramid basis for selective image fusion[J]. Society for Information Dis-play Digest of Technical Papers,1985,16:467-470
    [99]杨万海,赵曙光,刘贵喜.基于梯度塔形分解的多传感器图像融合[J].光电子激光,2001,12(3):293-296
    [100] Z Liu, K Tsukada, K Hanasaki, et al. Image fusion by using steerable pyramid[J]. PatternRecognition Letters,2001,22:929-939
    [101] S Valdimir, S Costas. Gradient-based multiresolution image fusion[J]. IEEE Transactions onImage Processing,2004,13(2):228-237
    [102] C Nedeljko,B David, C Nishan. Region-based multimodal image fusion using ICA bases[J].IEEE Sensors Journal,2007,7(5):743-751
    [103] P Sorin, O Lavialle, M Donias, et al. A PDE-based approach to three-dimensional seismic datafusion[J]. IEEE Tansactions on Geoscience and Remote Sensing,2008,46(5):1385-1393
    [104] M Kumar, S Dass. A total variation-based algorithm for pixel-level image fusion[J]. IEEE Tans-actions on Image Processing,2009,18(9):2137-2143
    [105] A Mark, B Davenport, C Hegde, et al. Joint manifolds for data fusion[J]. IEEE Tansactions onImage Processing,2010,19(10):2580-2594
    [106] N Yu, T S Qiu, F Bi, A Q Wang. Image features extraction and fusion based on joint sparserepresentation[J]. IEEE Journal of Selected Topics in Signal Processing,2011,5(5):1074-1082
    [107] T Wan, Z C Qin. An application of compressive sensing for image fusion[J]. InternationalJournal of Computer Mathematics,2011,4:1-16
    [108] N Venkata, T D Kite, W S Geisler, et al. Image quality assessment based on a degradationmodel[J]. IEEE Transactions on Image Processing,2000,9(4):636-650
    [109] H Chen, P K Varshney. A human perception inspired quality metric for image fusion based onregional information[J]. Information Fusion,2007,8(2):193-207
    [110] T D Dixon, E F Canga, S G Nikolov, et al. Selection of image fusion quality measures: objec-tive, subjective, and metric assessment[J]. Journal of the Optical Society of America A (Optics,Image Science and Vision),2007,24(12):125-135
    [111] A M Eskicioglu, P S Fisher. Image quality measures and their performance[J]. IEEE Transac-tions on Communication,1995,43:2959-2965
    [112] M Hossny, S Nahavandi, D Creighton. Comments on’Information measure for performance ofimage fusion’[J]. Electronics letters,2008,44(18):221-222
    [113] N Cvejic, A Loza, D Bull. A similarity metric for assessment of image fusion algorithms[J].International journal of signal processing,2005,2(3):178-182
    [114] Z L Li, Y Shi. A note on two-dimensional linear discriminant analysis[J]. Patt. Recogn. Lett.,2008,29:2122–2128
    [115] S H Lee, S Choi. Two-dimensional canonical correlation analysis[J]. IEEE Sig. Process. Lett.,2007,14:735–738
    [116]刘国英,马国锐,王雷光等.基于Markov随机场的小波域图像建模及分割[M].北京:科学出版社,2010,15-20
    [117]彭洁.基于马尔可夫随机场的DT-MRI图像分割算法研究[D].广州:南方医科大学,2009,20-30
    [118]李彬.基于模糊随机模型的磁共振脑部图像分割算法研究[D].广州:第一军医大学,2007,15-25
    [119]李子木.基于自适应阈值和马尔可夫随机场医学图像分割算法研究[D].沈阳:东北大学,2008,14-24
    [120]郝聚涛.血管造影图像统计分割研究[D].上海:上海交通大学,2007,16-22
    [121] R S Blum. On multisensor image fusion performance limits from an estimation theory perspec-tive[J]. Information Fusion,2006,7(3):250-263
    [122] Y Boykov, O Veksler, R Zabih. Efficient approximate energy minimization via graph cuts[J].IEEE Tpami,2001,20(12):1222-1239
    [123] V Kolmogorov, R Zabih. What Energy Functions can be Minimized via Graph Cuts?[J]. IEEETpami,2004,26(2):147-159
    [124] Y Boykov, V Kolmogorov. An experimental comparison of min-cut/max-flow algorithms forenergy minimization in vision[J]. IEEE Tpami,2004,26(9):1124-1137
    [125] S Geman, D Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration ofimages[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1984,6:721-741
    [126] K R Sharma, K T Leen, M Pavel. Bayesian sensor image fusion using local linear generativemodels[J]. Optical Engineering,2001,40(7):1364-1376
    [127] H Hotelling. Analysis of a complex of statistical variable into principal components[J]. J. Educ.Psych.,1933,24:417-441
    [128] N John, M Stephens. Interpreting principal compo-nent analyses of spatial population geneticvariation[J]. Nature Genetics,2008,40:646-649
    [129] J Yang, J Y Yang. From image vector to matrix: a straightforward image projection tech-nique―IMPCA vs. PCA[J]. Pattern Recognition,2002,35(9):1997-1999
    [130] K Liu. Algebraic feature extraction for image recognition based on an optimal discriminantcriterion[J]. Pattern Recognition,1993,26(6):903-911
    [131] W T Freeman, E H Adelson. The design and use of steerable filters[J]. IEEE Trans. PatternAnal. Mach. Intell.,1991,13(9):891-906
    [132] E P Simoncelli, W T Freeman, Adelson E.H, et al. Shifitable multiscale transforms[J]. IEEETrans. Infrom. Theory,1991,13(9):587-607
    [133] Z Liu, K Tsukada, K Hanasaki, et al. Image fusion by using steerable pyramid[J]. PatternRecognition Letters,2001,22(9):929-939
    [134] G Liu, Z L Jing, S Y Sun, et al. Image tusion based on expectation maximlzatlon algorithm andsteerable pyramid[J]. Chinese Optics Letters,2004,2(7):386-389
    [135] S Mark, A S Nand. Feature extraction and image processing[M]. Holland: Elsevier Ltd.,2008,1-30
    [136] S T Li, B Yang. Image Fusion: Algorithms and Applications. Holland: Elsevier Ltd.,2008,50-65
    [137] S Daneshvar, H Ghassemian. MRI and PET image fusion by combining IHS and retina-inspiredmodels[J]. Information Fusion,2010,11:114-123
    [138] S F Nemec, M A Donat, S Mehrain, et al. CT-MR image data fusion for computer assistednavigated neurosurgery of temporal bone tumors[J]. European Journal of Radiology,2007,62:192-198
    [139] V D Calhoun, T Adali. Feature–based fusion of medical imaging data[J]. IEEE Trans. oninformation technology in biomedicine,2009,13(5):711-713
    [140] L Yang, B L Guo, W Ni. Multimodality medical image fusion based on multiscale geometricanalysis of contourlet transform[J]. Neurocomputing,2008,72:203-205
    [141] C Wen, L Bicheng, Z Yong. A remote sensing image fusion method based on PCA transformand wavelet packet transform[J]. IEEE Conference on Neural Networks&Signal Processing,2000:976-980
    [142] H Zheng, D Q Zheng, Y X Hu, et al. Study on the optimal parameters of image fusion based onwavelet transform[J]. Journal of Computational Information Systems,2010,6(1):131-137
    [143] H Kolb. How the retina works[J]. Journal of American Scientist,2003,91:23-35
    [144] S Shah, M D Levin. Visual information processing in primate cone pathways a model[J]. IEEETransactions on Systems, Man and Cybernetics, Part B,1996,26(2):259–274
    [145] S Li, J T Wang. Combination of images with diverse focuses using the spatial frequency[J].Information Fusion,2001,2:169-176
    [146] A M Eskicioglu, P S Fisher. Image quality measures and their performance[J]. IEEE Transac-tions on Communication,1995,43:2959-2965
    [147] N Cvejic, A Loza, D Bull. A similarity metric for assessment of image fusion algorithms[J].International journal of signal processing,2005,2(3):178-182
    [148] L Lei, T Q Wang, B Yang, et al. Image retrieval based on Shannon entropy and the AGAR[J].Journal of Computational Information Systems,2009,5(6):1847-1853
    [149] N R Ganesh, D K Kumar. Estimation of independent and dependent components of non-invasive EMG using fast ICA: validation in recognising complex gestures[J]. Compute MethodBiomec,2011,14(2):1105-1116
    [150] A Cichocki. Adaptive blind signal and image processing[M]. New York: John Wiley,2002,60-80
    [151] S Amari. Natural gradient works efficiently in learning[J]. Neural Compute,1998,10(2):251-276
    [152] J F Cardoso, B Laheld. Equivariant adaptive source separation[J]. IEEE Transactions on SignalProcessing,1996,44(12):3017-3030
    [153] H Manton. Optimisation algorithms exploiting unitary constraints[J]. IEEE Transations SignalProcessing,2002,50(3):635-650
    [154] P A Absil, R Mahony, R Sepulchre, et al. Riemannian geometry of Grassmann manifolds witha view on algorithmic computation[J]. Acta Applying Mathematic,2004,80(2):199-220
    [155] S Fiori. Learning independent components on the orthogonal group of matrices by retraction-s[J]. Neural Processing Letters,2007,25(3):187-198
    [156] Y Nishimori. Learning algorithms utilizing quasi-geodesic flows on the Stiefel manifold[J].Neurocomputing,2005,67:106-135
    [157] M D Plumbley. Geometrical methods for non-negative ICA: manifolds, Lie groups, toral sub-algebras[J]. Neurocomputing,200567:161-197
    [158] S Fiori. Quasi-geodesic neural learning algorithms over the orthogonal group: a tutorial[J]. JMach Learn Res,2005,6:743-781
    [159] Z Wang. Fixed-point algorithms for constrained ICA and their applications in fMRI data anal-ysis[J]. Magn Reson Imaging,2011,29(9):1288-1303
    [160] D V Maarten, D L Lieven, V H Sabine. Spatially constrained ICA algorithm with an applicationin EEG processing[J]. Signal Processing,2011,91(8):1963-1972
    [161] M V M Hulle. Sequential fixed-point ICA based on mutual information minimization[J]. NeuralComputation,2008,20(5):1344-1365
    [162] Y Matsuda, K Yamaguchi. Linear multilayer ICA using adaptive PCA[J]. Neural Process Letter,30(2):133-144
    [163] N Thang, P J Chandra, E Sabu. gpICA:A novel nonlinear ICA algorithm using geometric lin-earization[J]. Eurasip Journal on Advances in Eurasio J Adv Sig Pr,2007, Si:31951
    [164] A Tuelay, H L Li, N Mike. Complex ICA using nonlinear functions[J]. IEEE Transations onSignal Processing,2008,56(9):4536-4544
    [165] N Michael, A Tuelay. Complex ICA by negentropy maximization[J]. IEEE Transations on Neu-ral Network,2008,19(4):596-609
    [166] H L Li, A Tuelay. Algorithms for complex ML ICA and their stability analysis using wirtingercalculus[J]. IEEE Transations on Signal Processing,2010,58(12):6156-6167
    [167] F S Wang, H W Li, R Li. Unified parametric and nonparametric ICA algorithms for hybridsource signals and stability analysis[J]. Int J Innov Computing Information,2008,4(4):933-942
    [168] A rcangeli, F Piazza. Stability analysis of natural gradient learning rules in overdeterminedICA[J]. Signal Processing,2007,88(3):761-766
    [169] E Jani, S Kenji. An ICA approach to semi-blind identification of strictly proper systems basedon interactor polynomial matrix[J]. Int J Innov Computing Information,2007,17(8):752-768
    [170] P Tichavsky, A Yeredor. Fast approximate joint diagonalization incorporating weight matri-ces[J]. IEEE Transations on Signal Processing,2009,57(3):878-891
    [171] F W Warner. Foundations of differentiable manifolds and Lie groups[M]. New York: Springer,1983,20-60
    [172] N D Buono, L Lopez. A survey on methods for computing matrix exponentials in numericalschemes for ODEs[J]. Lecture Notes on Computing Science,2003,2658:111-120
    [173] C Moler, C V Loan. Nineteen dubious ways to compute the exponential of a matrix, twenty-fiveyears later[J]. SIAM Review,2003,45(1):3-49
    [174] B Afsari, P S Krishnaprasad. Some gradient based joint diagonalization methods for ICA[C].Proc.5th International Conf., ICA2004, Granada, Spain,2004:437-444
    [175] R K Sharma, T K Leen, M Pavel. Probabilistic image sensor fusion. in Advances in NeuralInformation Processing Systems[M]. Cambridge, MA: MIT Press,1999,10-30
    [176] I L Rudin, S Osher, E Fatemi. Nonlinear total variation based noise removal algorithms[J].Physica D,1992,60:259-268
    [177] M Lysaker, A Lundervold, X C Tai. Noise removal using fourth-order partial differential e-quation with applications to medical magnetic resonance images in space and time[J]. IEEETransactions on Image Processing,2003,12(12):1579–1590
    [178] M Lysaker, S Osher, X C Tai. Noise removal using smoothed normals and surface fitting[J].IEEE Transactions on Image Processing,2004,13(10):1345–1357
    [179] M Lysaker, X C Tai. Iterative image restoration combining total variation minimization and asecond-order functional[J]. International Journal of Computer Vision,2006,66(1):5–18
    [180] C Chatterjee, V P Roychowdhury, M D Zoltowski, et al. Self-organizing and adaptive algo-rithms for generalized eigendecomposition[J]. IEEE Transactions on Neural Networks,1997,8:1518-1530
    [181] J Karhunen, J Joutsensalo. Representation and separation of signals using nonlinear PCA typelearning[J]. Neural Networks,1994,7:113-128
    [182] Y G Liu, Z S You, L P Cao. A simple functional neural network for computing the largest andsmallest eigenvalues and corresponding eigenvectors of a real symmetric matrix[J]. Neurocom-puting,2005,67:369-383
    [183] Y G Liu, Z S You, L P Cao. A functional neural network for computing the largest moduluseigenvalues and their corresponding eigenvectors of an anti-symmetric matrix[J]. Neurocom-puting,2005,67:384-397
    [184] Y G Liu, Z S You, L P Cao. A concise functional neural network computing the largest mod-ulus eigenvalues and their corresponding eigenvectors of a real skew matrix[J]. TheoreticalComputer Science,2006,367:273-285
    [185] Y Tang, J P Li. Another neural network based approach for computing eigenvalues and eigen-vectors of real skew-symmetric matrices[J]. Computers&Mathematics with Applications,2010,60:1385-1392
    [186] F L Luo, Y D Li. Real-time neural computation of the eigenvector corresponding to the largesteigenvalue of positive matrix[J]. Neurocomputing,1995,7(2):145-157
    [187] F L Luo, R Unbehauen, Y D Li. A principal component analysis algorithm with invariantnorm[J]. Neurocomputing,1995,8(2):213-221
    [188] E Oja, J Karhunen. On stochastic approximation of the eigenvectors and eigenvalues of theexpectation of a random matrix[J]. Journal of Mathematical Alnalysis and Applications,1985,106:69-84
    [189] E Oja. Neural networks, principal components, and subspaces[J]. International Journal of Neu-ral Systems,1989,1:61-68
    [190] E Oja. Principal components, minor components, and linear neural networks[J]. Neural Net-works,1992,5:927-935
    [191] Y N Rao, J C Principe. An RLS type algorithm for generalized eigendecomposition[J]. IEEEWorkshop on Neural Networks for Signal Processing2001, XI7:263-272
    [192] Y Xia. An extended projection neural network for constrained optimization[J]. Neural Compu-tation,2004,16:863-883
    [193] Y Xia. Further results on global convergence and stability of globally projected dynamicalsystems[J]. J. Optim. Theory Appl.,2004,122:195-217
    [194] Y Xia, J Wang. A recurrent neural network for solving nonlinear programming convex problemssubject to linear constraints. IEEE Trans[J]. Neural Networks,2005,16(2):379-385
    [195] L Xu, E Oja, C Suen. Modified Hebbian learning for curve and surface fitting[J]. Neural Net-works,1992,5:441-457
    [196] Q F Zhang, Y W Leung. A class of learning algorithms for principal component analysis andminor component analysis[J]. IEEE Transactions on Neural Networks,2000,11:200-204
    [197] Y Zhang, F Yan, H J Tang. Neural networks based approach for computing eigenvectors andeigenvalues of symmetric matrix[J]. Comput. Math. Appl.,2004,47:1155-1164
    [198] C Ziegaus, E W Lang. A neural implementation of the JADE algorithm (nJADE) using high-erorder neurons[J]. Neurocomputing,2004,56:79-100
    [199] Y G Liu, Z S You, L P Cao. A functional neural network computing some eigenvalues andeigenvectors of a special real matrix[J]. Neural Networks,2005,18:1293-1300
    [200] Y G Liu, Z S You, L P Cao. A Recurrent Neural Network Computing the Largest Imaginary orReal Part of Eigenvalues of Real Matrices[J]. Computers and Mathematics with Applications,2007,53:41-53
    [201] C Q Wang. Several properties of the real anti-symmetric matrix[J]. Journa l of Gansu NormalCollege,2010,15(2):8-9
    [202] N J Higham. Evaluating Pade approximants of the matrix logarithm[J]. SIAM J. Matrix Anal.Appl.,2011,22:1126-1135
    [203] P I Davies, N J Higham. A Schur-Parlett algorithm for computing matrix functions[J]. SIAM J.Matrix Anal. Appl.,2003,25:464-485
    [204] S H Cheng, N J Higham, C S Kenney, et al. Approximating the logarithm of a matrix to specifiedaccuracy[J]. SIAM J. Matrix Anal. Appl.,2001,22:1112-1125
    [205] C B Moler, C F V Loan. Nineteen dubious ways to compute the exponential of a matrix[J].SIAM Review,1978,20:801-836
    [206] L Mirsky. On the minimization of matrix norms[J]. Amer. Math. Monthly,1958,65(2):106-107
    [207] C P Huang, R T Gregory. A norm-reducing Jacobi-like algorithm for the eigenvalues of non-normal matrices[J]. Colloquia Mathematica Societatis Janos Bolyai, Keszthely,1977,20:365-393
    [208] I Kiessling, A Paulik. A norm-reducing Jacobi-like algorithm for the eigenvalues of non-normalmatrices[J]. Journal of Computational and Applied Mathematics,1982,8(3):203-207
    [209] D R Sacks. A real norm-reducing Jacobi-type eigenvalue algorithm[J]. Austral. Comput. J.,1975,7(2):65-69

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700