用户名: 密码: 验证码:
粒子群优化及其在图像处理中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粒子群优化(Particle Swarm Optimization, PSO)是群体智能中的一个重要分支,为解决那些难以建立严格的理论模型,传统优化方法难以奏效甚至根本无法解决的问题提供了新的思路。粒子群优化以其算法实现简单,对软硬件要求较低,适用性强的优点获得了广泛应用。PSO优化过程中粒子多样性的丧失可能会使算法陷入局部极值。近年来,人们依据不同的物理或生物模型引入的多子群结构对克服陷入局部极值有积极作用,但由于这些研究多针对具体应用提出,多子群优化算法尚缺乏统一的理论框架。
     本文主要围绕粒子群优化理论和应用技术展开研究,对粒子群优化的算法改进、理论框架、基于粒子群优化的小波神经网络和PSO在图像去噪、图像融合等实际应用做了较为深入系统的研究。本文的主要研究内容和贡献如下:
     (1)把生态进化策略中的r-选择和K-选择的概念引入到粒子群优化中,提出了一种基于r-选择和K-选择的r/KPSO(r-selection and K-selection based Particle Swarm Optimization, r/KPSO)算法。r/KPSO把整个种群分为r-子群和K-子群,r-子群偏重以数量见长r-选择的进化策略,用于保持种群的多样性,是广度意义上的搜索;而K-子群偏重以质量见长的K-选择策略,在已知最优点的附近做精细搜索,是深度意义上的搜索。两个子群通过群内竞争和群间竞争,优势互补,共同达到优化的目的。为了定量衡量算法收敛的速度,提出了收敛起始代这一指标,用于表明算法开始收敛的代次。在对若干典型函数的极值优化的实验中,r/KPSO获得了较高的优化精度,并在“收敛起始代”意义下获得了更快的收敛速度。
     (2)在r/KPSO的基础上对多子群的概念加以扩展,提出了一种多子群多策略(Multi-Subswarms Multi-Strategies, MSMS)的广义粒子群优化结构框架。在MSMS框架下,不同的子群采用不同的策略,并提出了策略偏重度的概念,用于衡量各个策略对子群进化的影响程度。在MSMS框架下,各子群可以同步地或者异步地执行优化更新过程。以已有文献中的OPSO(Optimized Particle Swarm Optimization)和QSO(Quantum Swarm Optimization)两个典型多子群算法为例分别分析了MSMS框架的异步型和同步型。在MSMS框架下,进一步总结了r/KPSO,并在其指导下提出对r/KPSO的改进设想。几个典型实例的分析表明,MSMS架构能够适合于对多子群结构的粒子群优化进行分析总结,对改进已有算法和设计新算法有指导意义。
     (3)把粒子群优化和小波神经网络相结合,提出了基于粒子群优化的小波神经网络(Particle Swarm Optimized Wavelet Neural Network, PSOWNN),克服了Sigmoid前馈神经网络的缺点。PSOWNN在训练时采用“双循环”结构,在结构调整规则中指定期望的收敛速度和精度后,可以依据结构调整规则,自动地调整神经元个数,而小波神经元的权值和相关参数通过粒子群优化确定。通过对脉冲噪声去除中的像素分类问题,验证了PSOWNN的性能。
     (4)针对中值滤波存在较严重过度滤波的现象,提出了基于改进型中值滤波和分类(Modified Median Filtering and Classifying, MMFC)的两种去除脉冲噪声的方案,每个方案在滤波前都用PSOWNN对像素是否受到污染做出判断。在方案1中,PSOWNN从含噪图像中区分出未受污染的像素,并在滤波结果中把这些像素还原为其在原噪声图像中的值,其余像素采用采用滤波结果;在方案2中,PSOWNN从含噪图像中区分出那些未被污染的像素,在这些像素上执行滤波,而其余像素保持不变。由于增加了PSOWNN的分类判断,MMFC滤波的准确度和针对性得到提高,在脉冲噪声去除中有较好的主客观性能表现。
     (5)针对全局阈值无法体现子带系数分布差异的问题,提出了分级子带收缩算法(Hierarchical Subbands Shrinking, HSS),并针对硬阈值函数和软阈值函数的小波系数的过度扼杀的现象,提出了一种新的阈值函数——光滑阈值函数(Smooth Thresholding,ST)。HSS充分考虑到不同尺度、不同方向上的高频子带小波系数分布的差异,对每个子带采用不同的阈值;ST函数能够合理地收缩幅值较小的小波系数,而当小波系数较大时则拥有逼近于软阈值的收缩结果;此外ST函数还具有实数范围内全局可导的特性,便于数学处理。HSS采用ST函数作为阈值函数,并把粒子群优化用于确定各子带的阈值,获得了较好的去噪效果。
     (6)针对基于小波的多源图像融合中的若干阈值和参数仅凭主观经验进行设定难以达到最佳融合效果的问题,结合人眼的视觉特性提出了基于粒子群优化的小波区域(Particle Swarm Optimized Wavelet Region, PSOWR)图像融合算法。PSOWR算法用局部能量和区域对比度来指导小波系数融合过程,并把粒子群优化引入到图像融合之中,用于确定融合规则中的相关阈值和参数。遥感图像和医学图像的融合实验结果表明,PSOWR算法不论是从主观视觉质量还是客观数据指标上都有良好表现。
As a member of swarm intelligence, Particle Swarm Optimization (PSO) provides new ideas to sovle those difficult problems for those traditional optimization methods. For its easy implementation, low requirement and cheap cost, PSO has used in wide engineering fields. Similar to other optimization algorithms, diversity loss in optimization procedure may cause local minima. Inspired by biological or physical models, multi-subswarms optimization could do well in avoiding local minima. But most multi-subswarms optimization algorithms are proposed for sovling special problem, general frame is useful to analyze or design multi-subswarms optimization.
     The main research work in the dissertation is as follows:
     (1) The r-selection and K-selection strategies in Ecology are introduced into particle swarm, and the r/KPSO is proposed (r-selection and K-selection based Particle Swarm Optimization, r/KPSO). The swarm is devided into two subswarms, r-subswarm favoring r-selection strategy and K-subswarm favoring K-selection strategy. The main task of r-subswarm is to explore the search space in quite high speed and r-paricles can breed many progencies. K-paritlces only breed few offsprings, and the offspring exploit the search space around their parent. The two subswarms compete and collaborate for the purpose of optimization. To evaluate the speed of convergence quantitatively, fisrt converging generation (FCG) is introduced to tell the first genertation where convergence begins. Some experiments on type benchmark functions showed that r/KPSO did well in most cases.
     (2) Based on r/KPSO, a PSO frame named Multi-Subswarms Multi-Strategies (MSMS) is provided for the analysis of multiswarm optimization. MSMS allows subswarms adopte various strategies, and the strategy favoring degree (SFD) can be used for evaluate the weight of certain strategy for the subswarm. All subswarms in MSMS can update synchronizingly or asynchronously. MSMS frame can be used for PSO structure analysis or design. As two examples, the OPSO and QSO are analyzed under MSMS frame. In the view of MSMS, r/KPSO is summarized and the ideas to improve it are also discussed.
     (3) Combining the PSO algorithm and wavelet neural network, the PSOWNN (Particle Swarm Optimized Wavelet Neural Network) is presented. PSOWNN can adjust its own structure by adding new neuron according to the network structure update principles. In the WNN training, PSO adoptes so-called“double cycles”structure, one for particle optimizing and another for structure adjusting. The test of pixles classifying proved the approximation performance of PSOWNN.
     (4) A noval denoising algorithm named MMFC (Modified Median Filtering and Classifying) is used to remove pulse noise. Two approaches (App1 and App2) of MMFC are provided and both of which adopte PSOWNN to classifying the pixels. If PSOWNN distinguishes the uncorrupted pixcels in the result image, App1 sets them as the values in noisy image. If PSOWNN distinguishes the corrupted pixels, App2 filters them and keeps others as before. For the classifying of PSOWNN, MMFC can process those pixels more properly than traditional median filtering.
     (5) Hierarchical Subbands Shrinking (HSS) is proposed for Gaussian noise removal. HSS adoptes special threshold determined by PSO for every subband. A noval thresholding function, smooth-thresholding (ST) is proposed and adopted by HSS. The ST function is suite for mathematic processing for it is continuous and derivatable for all real numbers.
     (6) Many variables need to be determined in image fusion based on wavelet region local statistics. A noval image fusion algorithm named PSOWR (Particle Swarm Optimized Wavelet Region) is proposed. The thresholds and other parameters used by image fusion are all determined by PSO and the fusion rules like local energy, contrast, weighted average and selection are combined with“region”idea for coefficient selection in the low- and high-pass subbands. The experiments on remote sense and medical images showed PSOWR can provide a more satisfactory fusion outcome.
引文
[1]王俊伟粒子群优化算法的改进及应用东北大学博士论文[D], 2006.01
    [2]Holland JH. Adaptation in Nature and Artificial Systems [M], University of Michigan, Ann Arbor, 1975.
    [3]莫愿斌粒子群优化算法的扩展与应用浙江博士论文[D],2006.10
    [4]王芳粒子群算法的研究西南大学博士论文[D], 2006.04
    [5]张丽平粒子群优化算法的理论及实践浙江大学博士学位论文, 2005.01
    [6]崔锦泰(著),程正兴(译).小波分析导论.西安交通大学出版社,1995,西安
    [7] Grossman A., Morlet J., Decomposition of hardy functions into square integrable wavelets of constant shape. SIAM J. Math. Anal., 1984, 15(4):723-736
    [8] Meyer Y. Wavelets and operators. UK:Cambridge University Press,1992,
    [9] Mallat S. Multiresolution approximations and wavelet orthonormal bases of L2(R) Trans. Amer. Math. Soc., 1989,31(5):69-87
    [10] Daubechies I. Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math., 1988.41(6):909-996
    [11] Mallat S. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. On PAMI, 1989,11(7):674-693
    [12]冯象初甘小冰宋国乡.数值泛函与小波理论.西安:西安电子科技大学出版社. 2003.
    [13] Cohen A., Daubechies I., and Feauveau J.C. Biorthogonal bases of compactly supported wavelets. Comm. Pure Appl. Math, 1992,45:485-560
    [14] Sweldens W. The lifting scheme:A custom-design comstruction of biorthogonal wavelets, Appl. Comut. Harmon. Appl., 1996,3(2):186-200
    [15] Sweldens W. The lifting scheme: A construction of second generation wavelets. SIAM J. Math. Anal., 1997,29(2):511-546
    [16] Zhang Qinghua,Benveniste Albert.Wavelet networks[J].IEEE Trans on Neural Networks, 1992, 3(6):889-898
    [17] BakshiBahavik R, George Stephanopoulos. Wavenet: A multiresolution hierarchical neural network with localized learning.AICHE Journal,1993,39(1):57-81
    [18] Stephen A. Billings and Hua-Liang Wei, A New Class of Wavelet Networks for Nonlinear System Identification, IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 16, NO. 4, JULY 2005, pp.862-874
    [19] S. Pittner, S. V. Kamarthi, and Q. G. Gao,“Wavelet networks for sensor signal classification in flank wear assessment,”J. Intell. Manufact., vol.9, pp. 315–322, Aug. 1990.
    [20]吴耀军.B样条小波神经网络[J].模式识别与人工智能,1996,9(3):228-233
    [21]李银国张邦礼曹长修.小波神经网络及其结构设计方法[J].模式识别与人工智能,1997,10(3):197-205
    [22]Zhang Jun, Walter Gilbert G, Miao Yubo,et al.Wavelet neural networks for function learning [J].IEEE Trans. on Signal Processing,1995,43(6):1485-1496
    [23]刘志刚王晓茹何正友等.小波变换、神经网络和小波网络的函数逼近能力分析与比较,电力系统自动化,26(20):39-44, 2002
    [24] J. Gao, et al., On the Construction of Support Wavelet Network, Proceedings of IEEE International Conference on Systems, Man and Cybernetics, 2004, pp. 3204-3207
    [25] Langton C G . Artificial life [M], Redwood: Addison-Wesley,1989,1- 47.
    [26]Adami C. Introduction to Artificial Life [M ],Springer Verlag,1998.
    [27] Zhang Qinghua.Using wavelet networks in nonparametric estimation.IEEE Trans. on Neural Networks,1997,8(2):227-236
    [28]Farmer JD, Packed NH , Perelson A S. The immune system, adaptation, and machine learning [J], Physica, 1986, 22( 2):187-204.
    [29] Dorigo M, Maniezzo V, Colomi A. The ant system: optimization by a colony of cooperating agents [J], IEEE Trans. On Systems, Man and Cybernetics Part B, 1996, 26(1):29-41.
    [30] Hopfield JJ, Tank DW. Neural Computation of decision in optimization problems , Biological Cybernetics, 1985, 52 :141-152.
    [1] ___,“Dynamic search with charged swarms,”in Proc. Genetic Evol. Comput. Conf., W. B. Langdon et al., Eds., 2002, pp. 19–26.
    [2] T. M. Blackwell,“Particle swarms and population diversity I: Analysis,”in Proc. GECCO Workshop on Evolutionary Algorithms for Dynamic Optimization Problems, J. Branke, Ed., 2003, pp. 9–13.
    [3]____,“Particle swarms and population diversity II: Experiments,”in Proc. GECCO Workshop on Evolutionary Algorithms for Dynamic Optimization Problems, J. Branke, Ed.,2003, pp. 14–18.
    [4] ___,“Particle swarms and population diversity,”Soft Computing, vol. 9, no. 11, pp. 793–802, 2005.
    [5] A. Carlisle and G. Dozier,“Adapting particle swarm optimization to dynamic environments,”in Proc. Int. Conf. Artif. Intell., 2000, pp.429–434.
    [6] X. Hu and R. Eberhart,“Adaptive particle swarm optimization: Detection and response to dynamic systems,”in Proc. Congr. Evol. Comput., 2002, pp. 1666–1670.
    [7] T. Krink, J. Vesterstrom, and J. Rigel,“Particle swarm optimization with spatial particle extension,”in Proc. Congr. Evol. Comput., 2002, pp. 1474–1479.
    [8] K. E. Parsopoulos and M. N. Vrahatis,“On the computation of all global minimizers through particle swarm optimization,”IEEE Trans. Evol. Comput., vol. 8, no. 3, pp. 211–224, Jun. 2004.
    [9] T. Blackwell,“Swarms in dynamic environments,”in Proc. Genetic and Evol. Comput. Conf., vol. 2723, E. Cantu-Paz, Ed., 2003, pp. 1–12.
    [10] T. Blackwell and J. Branke,“Multi-swarm optimization in dynamic environments,”in Applications of Evolutionary Computing. ser. Lecture Notes in Computer Science, G. R. Raidl et al., Eds. Berlin, Germany: Springer-Verlag, 2004, vol. 3005, pp. 489–500.
    [11] X. Li and K. H. Dam,“Comparing particle swarms for tracking extrema in dynamic environments,”in Proc. Congr. Evol. Comput., 2003, pp. 1772–1779.
    [12] S. Janson and M. Middendorf,“A hierarchical particle swarm optimizer for dynamic optimization problems,”in Applications of Evolutionary Computing. ser. Lecture Notes in Computer Science, G. R. Raidl, Ed. Berlin, Germany: Springer-Verlag, 2004, vol. 3005, pp. 513–524.
    [13]____, Evolutionary Optimization in Dynamic Environments. Norwell, MA: Kluwer, 2001.
    [14]____,“Memory enhanced evolutionary algorithms for changing optimization problems,”in Proc. Congr. Evol. Comput., vol. 3, 1999, pp.1875–1882. [15 ]Tim Blackwell and Jürgen Branke, Multiswarms, Exclusion, and Anti- Convergence in Dynamic Environments, IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 10, NO. 4, AUGUST 2006, pp.459-472
    [16] Eberhart RC and Shi Y, Comparing inertia weights and constriction factors in Particle Swarm Optimization. Proceedings of the Congress on Evolutionary Computating 2000:84-88.
    [17] Clerc M and Kennedy J., The Particle Swarm–Explosion, Stability and Convergence in a Multidimensional Complex Space. IEEE Transactions on Evolutionary Computation, 2002:58-73.
    [18] KennedyJ and Eberhart RC. Particle Swarm Optimization. Proceedings of IEEE International Conference on Neural Networks, IV:1942–1948. IEEE Service Center, Piscataway, NJ, 1995.
    [19] Eberhart RC and Kennedy J. A New Optimizer Using Particle Swarm Theory. Proceedings of Sixth Symposium on Micro Machine and Human Science, 39–43. IEEE Service Center, Piscataway, NJ, 1995
    [20] William L. G., Gray D. Ferrier and John Rogers, Global Optimization of Statistical Functions with Simulated Annealing, Journal of Econometrics vol.60, pp.65-99. (1994)
    [21] D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, AddisonWesley, Reading, MA, 1989.
    [22] Dorigo M, Maniezzo V, Colomi A. The ant system: optimization by a colony of cooperating agents, IEEE Trans. On Systems, Man and Cybernetics PartB ,1996, 26( 1) :29-41
    [23]付国江王少梅刘舒燕等,含维变异算子的粒子群算法,武汉大学学报(工学版),第38卷第4期, 2005年8月,pp.79-73
    [24] Kalyan Veeramachaneni, et al. Improving Classifier Fusion Using Particle Swarm Optimization, Proceedings of the 2007 IEEE Symposium on Computational Intelligence in Multicriteria Decision Making (MCDM 2007), pp.128-135
    [25] YI-TONG LIU, MING-YIN FU, HONG-BIN GAO, Multi-Threshold Infrared Image Segmentation Based on the Modified Particle Swarm OptimizationAlgorithm, Proceedings of the Sixth International Conference on Machine Learning and Cybernetics, Hong Kong, 19-22 August 2007,pp.383-388
    [26] K.Geetha, K.Thanushkodi A. and Kishore kumar, New Particle Swarm Optimization for Feature Selection and Classification of Microcalcifications in Mammograms, IEEE-International Conference on Signal processing, ommunications and Networking Madras Institute of Technology, Anna University Chennai India, Jan 4-6, 2008. pp.458-463
    [27] Yan Shen, Bing Guo, Dianhui Wang, Optimal Coalition Structure Based on Particle Swarm Optimization Algorithm in Multi-Agent System, Proceedings of the 6th World Congress on Intelligent Control and Automation, June 21 - 23, 2006, Dalian, China, pp.2494-2497
    [28] Hong-Ji Meng, Peng Zhang, et al., "A hybrid particle swarm algorithm with embedded chaotic search", IEEE conference on Cybernatics and Intelligent Systems, Vol.1, pp. 367-371, 2004
    [29] LIU Li-jue, CAI Zi-xing, CHEN Hong, Immunity clone algorithm with particle swarm evolution, J. Cent. South Univ. Technol. 2006, 13(6), pp.703-706
    [30] WEI-PING YANG, Vertical Particle Swarm Optimization Algorithm and its Application in Soft-Sensor Modeling, Proceedings of the Sixth International Conference on Machine Learning and Cybernetics, Hong Kong, 19-22 August 2007, pp.1985-1988
    [31]刘洪波,王秀坤,孟军神经网络基于粒子群优化的学习算法研究,小型微型计算机系统,第26卷第4期, 2005年4月, pp.638-640.
    [32] Coello C A , Lechuga M S. MOPSO : A Proposal for Multiple Objective Particle Swarm Optimization. Proceedings of the 2002 Congress on Evolutionary Computation (CEC’2002). Piscataway, New Jersey: IEEE Service Center ,2002.
    [33] K.E.Parsopoulos and M.N. Vrahatis. Recent approaches to global optimization problems through Particle Swarm Optimization. Natural Computing, 235–306. Kluwer Academic Publishers, Netherlands, 2002.
    [34] Reynold C W. , Flock, herds and schools: a distributed behavioral model, Computer Graphics,1987,21(4):25 -34.
    [1]达尔文著,周建人叶笃庄方宗熙译,《物种起源》北京:商务印书馆,1995.06
    [2]李博主编杨持等编《生态学》北京:高等教育出版社2000
    [3] Karin Kiontke, Antoine Barrière, Irina Kolotuev et.al., Trends, Stasis, and Drift in the Evolution of Nematode Vulva Development, Current Biology, Vol.17, pp. 1925-1937, 20 November 2007.
    [4] MacArthus R.H. and E.O. Wilson, The theroy of island biogeography, Princeton Univesity Press, Princetion, N.J, pp.203, 1967.
    [5] Dobzhansky T. Evolution in the tropics, American Science, vol.38,pp.209-221, 1950.
    [6]孙濡泳,李庆芬,牛翠娟,娄安如《基础生态学》,高等教育出版社, 2002年
    [7] B.J. Richardson, r- and K-selection in Kangaroos, Nature, vol.255, pp.323-324, 1975.
    [8] Pianka Eric R. On r- and K-selection, American Naturalist, vol.104, pp.592-597, 1970.
    [9] Pianka Eric R. r and K selection or b and d Selection?, American Naturalist, vol.106, pp.581-588, 1972.
    [10] Gregory D. Parry, The Meanings of r- and K-Selection, Oecologia, vol.48, pp.260-264, 1981.
    [11] Kennedy J. and Eberhart RC, Particle Swarm Optimization, in Proceedings of IEEE International Conference on Neural Networks, IV: pp.1942-1948. IEEE Service Cente,Piscataway, NJ, 1995.
    [12] Eberhart RC and Kennedy J, A New Optimizer Using Particle Swarm Theory, in Proceedings of Sixth Symposium on Micro Machine and Human Science, pp. 39-43. IEEE Service Center, Piscataway, NJ, 1995.
    [13] K.E.Parsopoulos and M.N. Vrahatis, Recent approaches to global optimization problems through Particle Swarm Optimization, Natural Computing , pp.235-306, Kluwer Academic Publishers. Printed in the Netherlands, 2002.
    [14] Fogel D, Evolutionary Computation: Towards a New Philosophy of Machine Intelligence, IEEE Press, Piscataway, NJ, 1996.
    [15] Clerc M and Kennedy J, The Particle Swarm -Explosion, Stability, and Convergence in a Multidimensional Complex Space. IEEE Transactions on Evolutionary Computation; 2002:58-73.
    [16] Eberhart RC and Shi Y, Comparing inertia weights and constriction factors in Particle Swarm Optimization. Proceedings of the Congress on Evolutionary Computing 2000:84-88.
    [1] Michael Meissner, Michael Schmuker and Gisbert Schneider, Optimized Particle Swarm Optimization (OPSO) and its application to artificial neural network training, BMC Bioinformatics 2006, 7:125
    [2] Tim Blackwe and Jürgen Branke, Multiswarms, Exclusion, and Anti- Convergence in Dynamic Environments, IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 10, NO. 4, AUGUST 2006, pp.459-472
    [3]A. Petrowski,“A clearing procedure its a niching method for genetic algorithms,”in Proc. Int. Conf. Evol. Comput., J. Grefenstette, Ed., 1996, pp. 798–803..
    [4] T. Blackwell,“Swarms in dynamic environments,”in Proc. Genetic and Evol. Comput. Conf., vol. 2723, E. Cantu-Paz, Ed., 2003, pp. 1–12.
    [5] T. Blackwell and J. Branke,“Multi-swarm optimization in dynamic environments,”in Applications of Evolutionary Computing. ser. Lecture Notes in Computer Science, G. R. Raidl et al., Eds. Berlin, Germany: Springer-Verlag, 2004, vol. 3005, pp. 489–500.
    [6] T. M. Blackwell,“Particle swarms and population diversity I: Analysis,”in Proc. GECCO Workshop on Evolutionary Algorithms for Dynamic Optimization Problems, J. Branke, Ed., 2003, pp. 9–13.
    [7]____ ,“Particle swarms and population diversity II: Experiments,”in Proc. GECCO Workshop on Evolutionary Algorithms for Dynamic Optimization Problems, J. Branke, Ed., 2003, pp. 14–18.
    [8]____,“Dynamic search with charged swarms,”in Proc. Genetic Evol. Comput. Conf., W. B. Langdon et al., Eds., 2002, pp. 19–26.
    [9] Inthachot M., Supratid S. A Multi-Subpopulation Particle Swarm Optimization: A Hybrid Intelligent Computing for Function Optimization, in Proc. of 3rd International Conference on Natural Computation (ICNC 2007), HaiKou China, Aug. 2007
    [10] N. Chaiyarataiia and A. M. S. Zalzala, Recent Developments in Evolutionary and Genetic Algorithms: Theory and Applications, in Proceeding of IEEE Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications, 2-4 September 1997
    [11] Ying Gao, Lei Shi and Pingjing Yao, Study on Multi-Objective Genetic Algorithm, Proceedings of the 3d World Congress on Intelligent Control and Automation June 2CJuly 2,2000, Hefei, P.R. China,pp.646-650
    [12] J. Branke and H. Schmeck,“Designing evolutionary algorithms for dynamic optimization problems,”in Theory and Application of Evolutionary Computation: Recent Trends, S. Tsutsui and A. Ghosh, Eds. Berlin, Germany: Springer-Verlag, 2002, pp. 239–262.
    [13] R. Brits, A. Engelbrecht, and F. van den Bergh,“A niching particle swarm optimizer,”in Proc. Asia-Pacific Conf. Simulated Evol. Learning, 2002, pp. 692–696.
    [14] A. Carlisle and G. Dozier,“Adapting particle swarm optimization to dynamic environments,”in Proc. Int. Conf. Artif. Intell., 2000, pp.429–434.
    [15] M. Clerc and J. Kennedy,“The particle swarm: Explosion, stability, and convergence in a multi-dimensional complex space,”IEEE Trans. Evol. Comput., vol. 6, no. 1, pp. 58–73, Feb. 2002.
    [16] Y. Jin and J. Branke,“Evolutionary optimization in uncertain environments—a survey,”IEEE Trans. Evol. Comput., vol. 9, no. 3, pp.303–317, Jun. 2005.
    [17] F. van den Bergh and A. P. Engelbrecht,“A cooperative approach particle swarm optimization,”IEEE Trans. Evol. Comput., vol. 8, no. 3,pp. 225–239, Jun. 2004.
    [18]刘宇,覃征,史哲文简约粒子群优化算法西安交通大学学报.第40卷第8期, 2006年8月, pp.883-887
    [19]赫然,王永吉等.一种改进的自适应逃逸微粒群算法及实验分析.软件学报. Vol.16, No.12, 2005, pp.2036-2044
    [20] Hu W, Li ZS. A simpler and more effective particle swarm optimization algorithm. Journal of Software, 2007, 18(4):861?868.
    [21]倪长健崔鹏向睿.域约束优化问题的普适免疫进化算法.西南交通大学学报.第40卷第4期, 2005年8月, pp.548-552.
    [1] Qinghua Zhang and Albert Benveniste, Wavelet Network, IEEE Trans. on Neural Networks, vol.3 pp.889-898,Nov.1992
    [2]焦李成.神经网络系统理论.西安:西安电子科技大学出版社. 1996.
    [3] Xieping Gao, A Comparative Research on Wavelet Neural Networks, Proceedings of ICONIP’02, Vol.4 pp.1699-1703
    [4]顾成奎,王正欧.基于多分辨分析神经网络的函数逼近.天津大学学报,2001,34(1):119-123
    [5] Gonzalo R.Arce and Robert L.Stevenson, On the Synthesis of Median Filter Systems, IEEE Trans. Circuits and Systems, vol.34, NO.4, pp.420-429, April.1987
    [6]王耀南.小波神经网络的遥感图像分类.中国图像图形学报,1999, 4A(5):368-371
    [7] S.Amari and S.C. Douglas, Why Natural Gradient? Proceedings of ICASSP '98, Vol. 2, pp.1213-1216, May 1998
    [8] Chih-Ming Chen and Hahn-Ming Lee, An Efficient Gradient Forecasting Search Method Utilizing the Discrete Difference Equation Prediction Model, Applied Intelligence, vol.16, NO.1, pp.43-58, Jan.2002
    [9] Lei Guo and Baolong Guo, Diffusion-concentration neural system for separating figures from background, Neurocomputing, vol.7, Issue 1, pp.41-59, Jan.1995
    [10] Pei-yan Fei and Bao-long Guo“Image denoising based on the dyadic wavelet transform,”Proceeding of ICCIMA 2003,pp.402-406,Sept.2003
    [11] Zhao-Yang Dong, Bai-Ling Zhang and Qian Huang, Adaptive neural network short term load forecasting with wavelet decompositions, Power Tech Proceedings, 2001 IEEE Porto,Vol.2, pp.6,Sept.2001
    [12] Tsu-Tian Lee and Yuan-Chang Chang, Approximating nonlinear functions via neural networks based on discrete affine wavelet transformations, IEEE Symposium on ETFA, pp.174-181, Nov.1994.
    [13] Jun Zhang, et al, Wavelet networks for function learning, IEEE Trans. Signal Processing, 1995, 43(6),pp.1485-1496
    [14] Stephen A. Billings and Hua-Liang Wei, A New Class of Wavelet Networks for Nonlinear System Identification, IEEE Trans. on Neural Networks, Vol.16, No.4, July 2005.
    [15] Jinhua Xu and Daniel W.C.Ho, Adaptive wavelet networks for nonlinear system identification, Proceedings of the American Control Conference, pp.3472-3473,June 1999.
    [16] Lin Yin, Ruikang Yang, Gabbouj, M. and Neuvo, Y., Weighted median filters: a tutorial, IEEE Trans. on Circuit and Systems II, vol.43, Issue 3, pp.157-192, March 1992.
    [17] Xiaoyin Xu and Miller, E.L, Adaptive two-pass median filter to remove impulsive noise, IEEE International Conference Proc. on. Image Processing, Vol.1, pp.808-811, Sept. 2002
    [18] CAI Ninan, et al., Noise Removal in Digital Images Based on a Wavelet Neural Network, Acta Biophysica Sinica, vol.21, No.1, Feb.2005.
    [19] Pantelis G. Bagos, et al., Faster Gradient Descent Training of Hidden Markov Models, Using Individual Learning Rate Adaptation, Proceeding of ICGI 2004, Springer-Verlag GmbH, p.40,Volume 3264 / 2004,
    [20] Andrew I. Hanna, Danilo P. Mandic, A Data-Reusing Nonlinear Gradient Descent Algorithm for a Class of Complex-Valued Neural Adaptive Filters, Neural Processing Letters,vol.17,NO.1, pp.85-91,Jan.2003
    [21] Clancy D. and Ozguner U., Wavelet neural network: A Design Perspective, IEEE Proceeding of the 1994 International Symposium on Intelligent control, pp.376-381,August 1994
    [22] Licheng Jiao, Jin Pan and Yangwang Fang, Multiwavelet Neural Network and Its Approximation Properties, IEEE Trans. on Neural Networks, vol.12,No.5, pp.1060-1066, Sep.2001.
    [23] Baron R. and Girau B, Parameterized normalization: application to wavelet networks, Neural Networks Proceedings IEEE World Congress on Computational Intelligence. vol.2, pp.1433– 1437, May 1998.
    [24]李弼程罗建书编著.小波分析及其应用.北京:电子工业出版社. 2005.
    [25]李建平.小波分析与信号处理——理论、应用与软件实现.重庆:重庆出版社. 1998
    [26]高协平等.区间小波神经网络(I)——理论与实现.软件学报,1998, 9(3):217-221
    [27]高协平等.区间小波神经网络(II)——性质与模拟.软件学报, 1998, 9(4):246-250
    [28] Michael Meissner, Michael Schmuker and Gisbert Schneider, Optimized Particle Swarm Optimization (OPSO) and its application to artificial neural network training, BMC Bioinformatics 2006, 7:125
    [1] D.L. Donoho. De-noising by soft-thresholding. IEEE Trans. On Inform. Theory, 41:613–627, May 1995.
    [2] D.L. Donoho and I.M. Johnstone. Ideal spatial adaptation via wavelet shrinkage. Biometrika, 81:425-455, 1994.
    [3] S.Grace Chang, Bin Lu and Martin Vettli. Adaptive Wavelet Thresholding for Image Denoising and Compression. IEEE Trans. Image Processing, 9(9):1532–1546, Sept. 2000.
    [4] KennedyJ and Eberhart RC. Particle Swarm Optimization. Proceedings of IEEE International Conference on Neural Networks, IV:1942–1948. IEEE Service Center, Piscataway, NJ, 1995.
    [5] Eberhart RC and Kennedy J. A New Optimizer Using Particle Swarm Theory. Proceedings of Sixth Symposium on Micro Machine and Human Science, 39–43. IEEE Service Center, Piscataway, NJ, 1995.
    [6] K.E.Parsopoulos and M.N. Vrahatis. Recent approaches to global optimization problems through Particle Swarm Optimization. Natural Computing, 235–306. Kluwer Academic Publishers, Netherlands, 2002.
    [7] David L. Donoho and Iain M.Johnstone. Adapting to Unknown Smoothness via Wavelet Shrinkage. Journal of the American Statistical Assoc., 90(432): 1200– 1224, December, 1995.
    [8] S. Mallat. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Machine Intell., 11:674–693, July 1989.
    [9] E. Simoncelli and E. Adelson. Noise removal via Bayesian wavelet coring. Proc. IEEE Int. Conf. Image Processing, 1:379–382, Sept. 1996.
    [10] http://sipi.usc.edu/database/database.cgi?volume=misc
    [11] Beyer H-G. Evolutionary algorithms in noisy environments: Theoretical issues and guidelines for practice. Comput. Methods Appl. Mech. Engrg., 186: 239-269, 2000.
    [12] Goldberg D. Genetic Algorithms in Search,Optimization and Machine Learning. Addison Wesley,Reading,MA,1989.
    [13] Fogel D. Evolutionary Computation: Towards a New Philosophy of Machine Intelligence. IEEE Press, Piscataway, NJ, 1996.
    [14] Yong-Ling Zhang, et al., On the Convergence Analysis and Parameter Selection in Particle Swarm Optimization. Proc. Int. Conf. Machine Learning and Cybernetics, 1802–1807, Xi’an, Nov. 2003.
    [15] Yuhui Shi and Russell C. Eberhart. Parameter Selection in Particle Swarm Optimization. Lecture Notes in Computer Science, 1447:591–603, 1998.
    [16] Yunyi Yan and Baolong Guo. Application of Wavelet Neural Network (WNN) and Gradient Descent Method (GDM) in Natural Image Denoising. Journal of Computational Information Systems, 2(2):625–631, 2006.
    [17] William L. Goffe, Gray D. Ferrier and John Rogers. Global Optimization of Statistical Functions with Simulated Annealing. Journal of Econometrics, 60:65–99, 1994.
    [18] Daubechies I. The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. on IT, 1990,36(5):961-1005
    [19] Antonini M., Barlaud M, et al. Image coding using wavelet transform. IEEE Trans. on Image compression using wavelet transform and multiresolution decomposition, IEEE Trans. on Image Processing, 1992,1(2): 205-220
    [20] Hartung F. and Kutter M. Multimedia:Watermarking techniques. Procee dings of the IEEE, 1999,87(7):1079-1107
    [21]刘瑞祯,谭铁牛.数字图像水印研究综述.通信学报,2000,21(8):39-48
    [22] Goswami J. C., Chan A.K. and Chui C.K. on solving first-kind integral equations using wavelets on a bounded interval. IEEE Trans. On AP, 1995, 43(6) :614-622
    [23] Mallat S. and Zhong S.Charqacterization of signals from multiscale edges. IEEE Trans. on PAMI, 1992,14(7):710-732
    [24] Mallat S. and Hwang W.L. Singularity detection and processing with wavelets. IEEE Trans. on IT, 1992,38(2):617-643
    [25] Mallat S. A wavelet tour of signal processing. California:Academic Press, 1998
    [26] Daubechies I. Ten lectures on wavelets. Philadelphia: Society for Industrial and Applied Mathematics, 1992
    [27] Daubechies I., Grossman A. and Meyer Y. Painless nonorthogonal expansions. Journal of math. Phys., 1986,27:1271-1283
    [28] Aldroubi A., Abry P. and Unser M. Construction of biorthogonal wavelets starting from any two given multiresolution analyzes. IEEE Trans. on SP., 1998,46(3):1130-1133
    [29] Cohen A., Daubechies I., and Feauveau J.C. Biorthogonal bases of compactly supported wavelets. Comm. Pure Appl. Math, 1992,45:485-560
    [30]宋国乡,甘小冰.数值泛函及小波分析初步.河南科学技术出版社,郑州,1993
    [31] Donoho D.L. and Johnstone I. Ideal spatial adaptation via wavelet shrinkage Biometrika, 1994,81(12):425-455
    [32] Donoho D.L. and Johnstone I.M. Adapting to unknown smoothness via wavelet shrinkage. Journal of American Stat. Assoc., 1995,90(12):1200-1224
    [33] Coifman R.R. and Donoho D.L. Translation-invariant denoising. In Wavelets and Statistics, Springer Lecture Notes in Statistics 103. New York:Springer-Verlag, 1994,125-150
    [34] Gao H. Wavelet shrinkage denoising using the non-negative garrote. Journal of Computational and Graphical Statistics, 1998,7(4):469-488
    [35] Gao H. and Bruce A. Waveshrink with firm shrinkage. Statistica Sinica, 1997, 7:855-874
    [36] Bruce A. and Gao H. Waveshrink:Shrinkage function and thresholds. SPIE, 1996, 25(6):270-281
    [38] Cohen A., Daubechies I., and Plonka G. Regularity of refinable function vectors. J. Fourier Anal. Appl., 1997,3(3):295-324
    [37] Johnstone I.M. and Silverman B.W. Wavelet threshold estimators for data with correlated noise.J. R.Statist. Soc., series B, 1997,59(1):235-249
    [1] E. Waltz, J. Linas. Multisensor Data Fusion. Boston: Artech House, 1990.
    [2]何友,王国宏.多传感器信息融合及应用.电子工业出版社, 2000.
    [3] D.L. Hall. Mathematical Techniques in Multisensor Data Fusion. Artech House, 1992.
    [4]康耀红.数据融合理论与应用.西安电子科技大学出版社,1997.
    [5] C. Pohl. Multisensor image fusion in remote sensing: concepts, methods and applications. Inter. J. of Remote Sensing, Vol.19, No.5, pp.823-854, 1998.
    [6]毛士艺,赵巍.多传感器图像融合技术综述.北京航空航天大学学报, Vol.28, No.5, pp.512-518, 2002.
    [7] David L. Hall, James Linas. An introduction to multisensor data fusion. Proc. of the IEEE, Vol.85, No.1, pp.6-23, 1997.
    [8]李晖晖.多传感器图像融合算法研究[博士论文].西北工业大学.2006
    [9] W.J. Carper, T.M. Lillesand. The use of intensity-hue-saturation transformations for merging SPOT panchromatic and multispectral image data. Photogramm. Eng. Remote Sensing, Vol.56, No.5, pp.459-467, 1990.
    [10] J.R. Harris. IHS Transform for the integration of radar imagery with other remotely sensed data. Photogammetric Engineering and Remote Sensing, No.12, pp.1631-1641, 1990.
    [11] P.S. Chavez, S.C. Sides. Comparison of Three Difference Methods to Merge Multiresolution and Multispectral Data: Landsat TM and SPOT Panchromatic. Photogramm.Eng.Remote Sensing, Vol.57, No.7, pp.295-343, 1991.
    [12] P.J. Burt, E.H. Adelson. The Laplacian pyramid as a compact image code. IEEE Trans. on Communications, Vol.31, No.4, pp.532-540, 1983.
    [13] A. Toet, L.J. Ruyven. J.M.Valeton, Merging themal and visual images by a contrast pyramid, Optical Engineering,Vol.28, No.7, pp.789-792, 1989.
    [14] P.J. Burt. A gradient Pyramid basis for pattern-selective image fusion. Society for Information Display Digest of Technical Papers, No.16, pp.467-470, 1985.
    [15] Z. Zhang, R. S. Blum. A categorization of multiscale-decomposition-based image fusion schemes with a performance study for a digital camera application. Proceedings of the IEEE, Vol.2987, No.8, pp.1315-1326, 1999.
    [16] H. Li, B.S. Manjunath,. Multisensor Image Fusion Using the Wavelet Transform. Graphical Models and Im. Proc., Vol.57, No.3, pp.235-245, 1995.
    [17] X. Jiang, L. Zhou. Multispectral image fusion using wavelet transform.Proceedings of SPIE, Vol.2898, pp.35-42, 1996.
    [18]晃锐,张科,李言俊.一种基于小波变换的图像融合算法.电子学报, Vol.32, No.5, pp.750-753, 2004.
    [19]刘贵喜杨万海.基于小波分解的图像融合方法及性能评价.自动化学报.第28卷第6期, 2002年11月, pp.927-934

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700