用户名: 密码: 验证码:
妊娠期哮喘诱导子代肾上腺髓质细胞向交感神经元转变机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:肾上腺髓质嗜铬细胞(AMCC)分泌肾上腺素在支气管哮喘调节支气管收缩与舒张功能中发挥作用。表观遗传学研究提示,胎儿时期母体宫内环境的异常可以印迹成年疾病的发生,AMCC在发育分化中受到母体宫内各个环节影响,其分化的最终结果可能导致肾上腺素分泌和/合成障碍,加重支气管哮喘的发病。
     目的:探讨妊娠期哮喘对子代肾上腺髓质细胞向交感神经元转变的的机制及对子代支气管哮喘发病的影响。
     方法:32只妊娠大鼠分为正常对照组(CP)、哮喘组(AP)、NGF组(NP)和anti-NGF组(ANP)建立妊娠哮喘大鼠模型,产下子代,CP、AP、NP和ANP各组子代分别为OCP、OAP、ONP、OANP,观察各组大鼠及其所产子代在生后3天(P3)、出生后7天(P7)、出生后14天(P14)、出生后30天(P30)、出生后60天(P60)及成年期再给予OVA致敏及激发后血清肾上腺素(EPI)、神经生长因子(NGF)、皮质酮水平,肾上腺髓质的结构的改变,肾上腺髓质中NGF、苯乙醇胺N甲基转移酶(PNMT)、Rho-GDP解离抑制因子α(Rho GDIα)和外周蛋白表达的变化。
     结果:
     1、各组母代大鼠的肾上腺髓质变化
     AP组血清EPI水平无明显升高,电镜下AMCC线粒体肿胀、脂质增多、嗜铬颗粒浓度降低、细胞出现突起样改变;NP组血清EPI水平较CP组降低,肾上腺髓质病变较AP组进一步加重,ANP组中上述病变有所改善。
     2、各组子代发育期肾上腺髓质的变化
     OAP组及ONP组大鼠从P3到P14,AMCC肿胀、脱失、空泡化,EPl分泌颗粒出现数量减少,可见突起形成,细胞核梭形样变。从P30到P60,AMCC空泡样变性减少,EPI分泌颗粒逐渐增多。
     从P3至P14,OAP组大鼠血清EPI水平较对照组减少(P<0.05),从P30至P60血清EPI与OCP组大鼠比较无明显差异,而ONP组组大鼠从P3直至P60,血清EPI水平均较对照组降低(P<0.05)。从P3至P7,OAP及ONP组大鼠血清NGF水平较对照组增加(P<0.05),从P14至P60,两组血清NGF水平与OCP组比较无明显差异。在各组子代成长过程中,P3至P60,OAP及ONP组大鼠血清皮质酮水平较OCP组明显增加(P<0.05)。P3至P14,OAP组大鼠PNMT在肾上腺髓质的表达较OCP组是减少的(P<0.05),而ONP组大鼠从P3至P60,PNMT的表达均较OCP组降低(P<0.05)。从P3至P14,OAP及ONP组大鼠肾上腺髓质嗜铬细胞中NGF表达较对照组是增加的(P<0.05)。
     3、OVA致敏及攻击后子代肾上腺髓质变化
     各组子代大鼠成年后给予OVA致敏及攻击,ONP组大鼠气道高反应性及气道炎症明显增加,OAP组大鼠AMCC出现明显的空泡样变性,电镜显示线粒体水肿,脂质增多,EPI分泌颗粒减少。ONP组大鼠AMCC神经元表型的改变较OAP组更为明显,EPI分泌颗粒减少明显,甚至消失,EPI分泌及释放减少,OAP与ONP组大鼠血清中EPI降低,ONP组尤为明显,ONP组大鼠肾上腺髓质中PNMT表达明显减少,NGF表达明显增多(P<0.05)。ONP组大鼠血清皮质酮水平较OCP组明显增加(P<0.05)。
     4、各组子代发育期及OVA致敏及攻击后外周蛋白与Rho GDIa表达
     OCP组子代在P3时可以观察到较弱的外周蛋白表达,P7时表达逐渐增强,P14时达其峰值,然后减少,从P30到P60保持较低的水平。OAP及ONP组大鼠从P3至P14较OCP组有较强的外周蛋白表达(P<0.05),从P30到P60,OAP组大鼠的外周蛋白表达OCP组大鼠比较无明显差异,而ONP组大鼠明显减少(P<0.05)。成年后,各组子代大鼠给予OVA致敏及攻击,OAP组、ONP组肾上腺髓质中外周蛋白表达水平增强,且ONP组的外周蛋白表达水平高于OAP组(P<0.05),OANP组外周蛋白水平表达较OCP组降低(P<0.05)。
     正常组的子代大鼠肾上腺髓质中Rho GDIa从P3到P14表达较弱,从P30到P60表达P14表达开始增加。OAP组大鼠出生后,从P3至P14表达较OCP组弱,从P30到P60,Rho GDIa表达与OCP组无明显差异,但ONP组Rho GDIa表达从P3至P60均较OCP组减少。从P3到P14,OANP组Rho GDIa表达与OAP组比较明显增强(P<0.05),但从P30到P60,与OAP组比较无明显差异。成年后,各组子代大鼠给予OVA致敏及攻击,OAP组Rho GDIa表达水平减少,ONP组的表达低于OAP组(P<0.05)。OANP组的Rho GDIa表达水平较OAP组增加。
     结论:我们从肾上腺髓质发育学角度发现哮喘妊娠宫内高浓度的NGF暴露时,可以启动子代大鼠肾上腺髓质细胞的功能冗余性使其表型和功能发生转化,当其成年后受到OVA攻击促使AMCC肾上腺嗜铬细胞向交感神经元分化,延缓或/和抑制了肾上腺髓质结构和功能的成熟,导致肾上腺素合成受阻,支气管收缩与舒张功能失衡,加重支气管哮喘发病。Rho GDIα和外周蛋白参与其中并发挥作用。
Background:
     Adrenal neuroendocrine played an important role in asthma. Epigenetic studies suggest that abnormality in maternal intrauterine environment during fetal period can imprint occurrence of adult diseases.The activity of the sympathoadrenal system could be altered by early life events. The effects of maternal asthma during pregnancy on the adrenal medulla of offspring play a role in blocked adrenaline synthesis, imbalance between bronchial systolic and diastolic function, aggravating asthma severity.
     Subject:
     This study aims to explore the influence of maternal asthma during pregnancy on the development of adrenal medulla development of offspring and the differentiation of adrenal medulla cells (AMCC) to sympathetic neurons in adult offspring asthma.
     Methods:
     32SD rats were randomly divided into four groups:Asthmatic pregnancy rats (AP), nerve growth factor (NGF)-treated pregnant rats (NP) and NGF antibody-treated pregnant rats (ANP) were sensitized and challenged with ovalbumin (OVA), NP and ANP were treated with NGF and NGF antibody respectively. Rats were select from every pregnant group offspring at random and were divided into four groups(n=40per group):offspring from control pregnant rats (OCP), offspring from AP (OAP), offspring from NP (ONP), offspring from ANP (OANP).Adrenal glands were obtained for electron microscopic examination. The expression of NGF, phenylethanolamine N-methyltransferase (PNMT), peripherin and Rho GDIa were were analyzed by immunohistochemistry combine with the micro-image analysis. The concentration of epinephrine (EPI), NGF and corticosterone in serum were measured by ELISA.
     Result:
     1. Serum epinephrine levels were not significantly increased in AP group, electron microscopy show swelled mitochondria, decreased chromaffin granules, appearance of processes like change on adrenal medulla chromaffin cells. Serum epinephrine levels decreased in AP group. NP rats showed an aggravation of above mentioned pathological changes, while NP group NGF showed improved such changes.
     2. The adrenal medulla cells of OAP and ONP rats showed edema of cytoplasm and mitochondrial, vacuolar degeneration, deceased EPI secretory granule. chromaffin cells appeared fiber outgrowth and changed into spindle shape with long fusiform nucleus from postnatal day3(P3) to postnatal day14(P14). From postnatal day30(P30) to postnatal day60(P60), vacuolar degeneration showed decreased and the PEI secretory granule become increasing.
     Serum levels of EPI decreased in OAP rats from P3to P147compared to OCP rats and regained normal level from P30to P60; however, in ONP rats, from P3to P60, serum levels of EPI were lower than those in OCP rats. Serum levels of NGF increased from P3to P7in OAP and ONP rats and regained normal level from P14to P60. Serum levels of corticosterone in OAP and ONP rats increased significantly compared to OCP rats from P3to P60.
     The expression of PNMT proteins in the OAP and ONP rats adrenal medulla decreased significantly compared to OCP rats from P3to P14and gradually increased in OAP rats from P30to P60, there was a trend towards a lower expression in ONP rats. The expression of NGF increased in OAP and ONP rats adrenal medulla compared to OCP rats from P3to P14and return to normal level from P30to P60.
     3. After OVA sensitization and challenge, adult OAP and ONP rats showed significant Airway hyperresponsiveness and airway inflammation. The increase of vacuolar degeneration and lipid in adrenal medulla cells were observed in in OAP and ONP rats, Electron microscopy studies showed that AMCC presented signs of lesions:swelling mitochondrion, increased lipid, decreased EPI chromaffin granules in OAP and ONP rats. AMCC showed significant neuronal phenotype, EPI secretory granules even disappeared in ONP rats. ONP rats significantly reduced the expression of PNMT compared to OCP rats and NGF was significantly higher in ONP rats than OCP rats. Serum levels of EPI decreased in ONP rats. Serum levels of corticosterone in ONP rats increased significantly compared to OCP rats.
     4. The expression of peripherin increased in OAP and ONP rats adrenal medulla cells compared to OCP rats from P3to P14and return to normal level from P30to P60in OAP rats. However, the expression of peripherin in ONP rats increased from P30to P60compared to OCP. The expressions of peripherin in OANP rats increased from P3to P14compared to OAP. After OVA sensitization and challenge, the expression of peripherin increased in adult OAP and ONP rats compared to OCP rats and ONP rats showed more expression than OAP rats.
     The expression of Rho GDIa in the OAP and ONP rats adrenal medulla reduced significantly compared to OCP rats from P3to P14and gradually increased in OAP rats from P30to P60, there was a trend towards a lower expression in ONP rats from P30to P60. The expression of Rho GDIa in the OANP rats increased significantly compared to OAP rats from P3to P14and showed no difference from P30to P60. After OVA sensitization and challenge, OAP and ONP rats significantly reduced the expression of Rho GDIa in adrenal medulla and there was a trend towards a lower expression in ONP rats.
     Conclusion:
     Exposure to high level of NGF in the intrauterine environment may play an important role in the process of neural stem cell growth, migration and the differentiation of AMCC into sympathetic neurons, interfering with the synthesis, storage, release of EPI, even participating in adult bronchial asthma in offspring rats after OVA sensitization and challenge. Peripherin and Rho GDIa may play an important role in the differentiation of AMCC of the offspring from asthmatic pregnant rats.
引文
[1]Akinbami LJ, Moorman JE, Liu X.Asthma prevalence, health care use, and mortality:United States,2005-2009. Natl Health Stat Report.2011,12;(32):1-14
    [2]Kw B, Anderson H R, Austin J, el al. Prevalencc of asthma sympmms, diagnosis, and treatment in 12-14 year old children across Great Britain(International Study nf Asthma and A-Ilergies in Childhood, ISAAC UK). BMJ,1998,316(7125): 118—124.
    [3]全国儿童哮喘防治协作组.中国城区儿童哮喘患病率调查.中华儿科杂志,2003,41(2):123—127.
    [4]陈育智.儿童哮喘流行病情况简介.中国医疗信息。2004,19(3):13.
    [5]Triche EW, Lundsberg LS, Wickner PG, Belanger K, Leaderer BP, Bracken MB. Association of maternal anemia with increased wheeze and asthma in children. Ann Allergy Asthma Immunol.2011,106(2):131-139.
    [6]Kurukulaaratchy RJ, Matthews S, Arshad SH.Relationship between childhood atopy and wheeze:what mediates wheezing in atopic phenotypes? Ann Allergy Asthma Immunol.2006,97(1):84-91
    [7]Miyake Y, Sasaki S, Tanaka K, Hirota Y.Consumption of vegetables, fruit, and antioxidants during pregnancy and wheeze and eczema in infants. Allergy. 2010,65(6):758-65.
    [8]Devereux G, Turner SW, Craig LC, McNeill G, Martindale S, Harbour PJ, Helms PJ, Seaton A.Low maternal vitamin E intake during pregnancy is associated with asthma in 5-year-old children. Am J Respir Crit Care Med.2006,174 (5):499-507.
    [9]Willers SM, Devereux G, Craig LC, McNeill G, Wijga AH, Abou El-Magd W, Turner SW, Helms PJ, Seaton A.Maternal food consumption during pregnancy and asthma, respiratory and atopic symptoms in 5-year-old children. Thorax. 2007,62(9):773-9.
    [10]Kanaka-Gantenbein C. Fetal origins of adult diabetes. Ann N Y Acad Sci. 2010,1205 (1):99-105.
    [11]Swanson JM, Entringer S, Buss C, Wadhwa PD.Developmental origins of health and disease:environmental exposures. Semin Reprod Med.2009,27(5):391-402. Epub 2009 Aug 26.
    [12]Hall JG. Review and hypothesis:syndromes with severe intrauterine growth restriction and very short stature--are they related to the epigenetic mechanism(s) of fetal survival involved in the developmental origins of adult health and disease? Am J Med Genet A.2010,152A(2):512-27.
    [13]Wells JC.Historical cohort studies and the early origins of disease hypothesis: making sense of the evidence. Proc Nutr Soc.2009,68(2):179-88.
    [14]C. Nassenstein;J. Kutschker;D. Tumes; A. Braun. Neuro-immune interaction in allergic asthma:role of neurotrophins.Biochemical Society Transactions.2006,34 (Pt 4):591-3.
    [15]Butler,CA; Heaney,LG. Neurogenic inflammation and asthma. Inflamm Allergy Drug Targets,2007,6(2):127-32.
    [16]Guenter Paeth; Armin Braun; Nina Meents; Sebastian Kerzel; David Quarcoo; Ulrike Raap; Gary W. Hoyle; Wolfgang A. Nockher; Harald Renz. Augmentation of Allergic Early-Phase Reaction by Nerve Growth Factor. American journal of respiratory and critical care medicine.2002,166(6):818-26
    [17]Groneberg DA; Quarcoo D; Frossard N; Fischer A.Neurogenic mechanisms in bronchial inflammatory diseases.Allergy,2004,59(11):1139-52.
    [18]Sergio Bonini; Alessandro Lambiase; Stefano Bonini. Circulating nerve growth factor levels are increased in humans with allergic diseases and asthma. Proceedings of the National Academy of Sciences of the United States of America, 1996,93(20):10955-109060
    [19]Sehreeder H, Beeke rA, Grceksch G, et al.The efeet of Peutylenetetrazol Kindling 011 synaptic mechanisms of interacting glutamatergic and opioid system in the hippocampus of rats.Brain Beseareh,1998,8(11):40-46
    [20]Hoyle G, R Graham, J Finkelstein, et al.Hyper-innervation of the airways in reansgenic mice over expressing nerve growth factor. Am J Respir Cell Mol Biol, 1998,18(11):140:149
    [21]Kubota T, Koga K, Araki H, et al.The relationships of mononuclear leukocyte beta-adrenargic receptors to aerobic capacity and exereise-induced asthma in asthmatic children. Aiemgi,2000,49(1):40-51
    [22]Counil Fp, Varray A, Karila C, et al.Wingate test performance in children with asthima:aerobic or anaerobic limitation? Med Sei Sports Exere,1997,29(4): 430-435
    [23]Powers JF, Picard KL, Nyska A, Tischler AS. Adrenergic differentiation and Ret expression in rat pheochromocytomas. Endocr Pathol.2008,19(1):9-16.
    [24]汪俊,胡成平,冯俊涛.神经生长因子对哮喘大鼠肾上腺素释放障碍的机制研究.中华结核和呼吸杂志,2006,29(12):812-815.
    [25]Boulter E, Garcia-Mata R,et al. Regulation of Rho GTPase crosstalk, degradation and activity by RhoGDI1. Nat Cell Biol.2010 May;12(5):477-83.
    [26]Tedeschi G, Cappelletti G, Nonnis S,et al. Tyrosine nitration is a novel post-translational modification occurring on the neural intermediate filament protein peripherin. Neurochem Res.2007 Mar;32(3):433-41.
    [27]E. Reaven, M. Kostrna, J. Ramachandran and S. Azhar. Structure and function changes in rat adrenal glands during aging. Am J Physiol Endocrinol Metab, 1988,255 (6 Pt 1):E903-E911.
    [28]Masako Y, Ryoko Y, Kazuyoshi A. Study of migration of neural crest cells to adrenal medulla by threee-dimensional reconstruction.J.Vet. Med.Sci,2004,66(6): 635-641
    [29]Molenear WM,Lee VMY. Early fetal acquisition of the chromaffin and neuronal immunophenotype by human adrenal medullary cells:An immunohistological study using monoclonal antibodies to chromagranin A,Synaptophysin,tyrosine hydroxylase,and neuronal cytoskeletal proteins. Exp Neurol,1990,108(1):1115-21
    [30]Xing Y, Nakamura Y, Rainey WE. G protein-coupled receptor expression in the adult and fetal adrenal glands. Mol Cell Endocrinol.2009 Mar 5;300(1-2):43-50.
    [31]Aloe L, Levi-Montalcini R. Nerve growth factor-induced transformation of immature chromaffin cells in vivo into sympathetic neurons:effect of antiserum to nerve growth factor.Proc Natl Acad Sci U S A.1979 Mar;76(3):1246-50.
    [32]Grumolato L, Louiset E, Alexandre D,PACAP and NGF regulate common and distinct traits of the sympathoadrenal lineage:effects on electrical properties, gene markers and transcription factors indifferentiating PC 12 cells. Eur J Neurosci.2003 Jan;17(1):71-82.
    [33]D'Alessandro R, Racchetti G, Meldolesi J. Outgrowth of neurites is a dual process. Commun Integr Biol.2010,3(6):576-8.
    [34]汪俊,胡成平,冯俊涛,等。新生小牛肾上腺髓质嗜铬细胞的原代培养及其儿茶酚胺的分泌.中国应用生理学杂志,2008;24(1):103-105.
    [35]Hu C, Wedde-Beer K, Auais A, Rodriguez MM, Piedimonte G. (2002)Nerve growth factor and nerve growth factor receptors in respiratory syncytial virus-infected lungs. Am J Physiol Lung Cell Mol Physiol283(2):L494-502.
    [36]James G, Martin JG, Suzuki M, Maghni K, Pantano R, Ihaku D, et al. The Immunomodulatory Actions of Prostaglandin E2 on Allergic Airway Responses in the Rat.The Journal of Immunology,2002,169 (7):3963-3969.
    [37]Murphy VE, Clifton VL, Gibson PG. Asthma exacerbations during pregnancy: incidence and association with adverse pregnancy outcomes. Thorax.2006 Feb;61(2):169-76.
    [38]Murphy VE, Gibson P, Talbot PI, Clifton VL.Severe asthma exacerbations during pregnancy. Obstet Gynecol.2005,106(5 Pt 1):1046-54
    [39]Martel MJ, Rey E, Beauchesne MF, Malo JL, Perreault S, Forget A, Blais L. Control and severity of asthma during pregnancy are associated with asthma incidence in offspring:two-stage case-control study. Eur Respir J.2009,34(3): 579-87. Epub 2009 Jun 18.
    [40]Nishimura T, Ishima T, Iyo M, Hashimoto K. Potentiation of nerve growth factor-induced neurite outgrowth by fluvoxamine:role of sigma-1 receptors, IP3 receptors and cellular signaling pathways.2008, PLoS One,3(7):e2558.
    [41]Ferrini M, Nardicchi V, Mannucci R, Arcuri C, Nicoletti I, Donato R, Goracci G. Effect of NGF on the subcellular localization of group IIA secretory phospholipase A(2) (GIIA) in PC 12 cells:role in neuritogenesis. Neurochem Res.2010 35(12):2168-74.
    [42]Frossard N,Advenier C. Nerve growth factor and its receptors in asthma and inflammation.European Journal of Pharmacology,2004,500(1-3):453-65.
    [43]Bachar O,Adner M,Uddman R,Cardell LO. Nerve growth factor enhances cholinergic innervation and contractile response to electric field stimulation in a murine in vitro model of chronic asthma. Clinical and experimental allergy.2004, 7(5):312-20
    [44]Quarcoo D, Schulte Herbruggen O, Lommatzsch M, Schierhorn K, Hoyle GW, Renz H, Braun A. Nerve growth factor induces increased airway inflammation via a neuropeptide-dependent mechanism in a transgenic animal model of allergic airway inflammation. Clinical and experimental allergy,2004,34(7):1146-51.
    [45]Verbout NG, Jacoby DB, Gleich GJ.Fryer AD. Atropine-enhanced, antigen challenge-induced airway hyperreactivity in guinea pigs is mediated by eosinophils and nerve growth factor. American Journal of Physiology.2009,297(2):L228-37.
    [46]Lau C, Rogers JM. (2004) Embryonic and fetal programming of physiological disorders in adulthood.Birth Defects Res C Embryo Today72(4):300-12.
    [47]Sleiman PM, Hakonarson H. Recent advances in the genetics and genomics of asthma and related traits. Curr Opin Pediatr,2010,22(3):307-12.
    [48]P W Ind, R C Causon, M J Brown, and P J Barnes Copyright notice Circulating catecholamines in acute asthma.Br Med J (Clin Res Ed).1985 January 26; 290(6464):267-269.
    [49]Hofmann HD, Seidl K, Unsicker K. Development and plasticity of adrenal chromaffin cells:cues based on in vitro studies. J Electron Microsc Tech,1989, 12(4):397-407.
    [50]Molendi-Coste O, Laborie C, Scarpa MC, Montel V, Vieau D, et al. Maternal perinatal undernutrition alters postnatal development of chromaffin cells in the male rat adrenal medulla. Neuroendocrinology,2009,90(1):54-66.
    [51]Evinger MJ, Powers JF, Tischler AS. Transcriptional silencing of glucocorticoid-inducible phenylethanolamine N-methyltransferase expression by sequential signaling events.Exp Cell Res,2007,313(4):772-81.
    [52]Ziegler MG, Bao X, Kennedy BP, Joyner A, Enns R. Location, development, control, and function of extraadrenal phenyl ethanolamine N-methyltransferase. Ann N Y Acad Sci,2002,971:76-82.
    [53]Ziegler CG, Sicard F, Lattke P, Bornstein SR,Ehrhart-Bornstein M, et al Dehydroepiandrosterone induces a neuroendocrine phenotype in nerve growth factor-stimulated chromaffin pheochromocytoma PC 12 cells. Endocrinology,2008, 149(1):320-8.
    [54]Noguchi T, Makino S, Matsumoto R, Nakayama S, Nishiyama M, Terada Y, Hashimoto KRegulation of glucocorticoid receptor transcription and nuclear translocation during single and repeated immobilization stress. Endocrinology. 2010;151(9):4344-55. Epub 2010 Jul 21.
    [55]Taylor AN, Rahman SU, Tio DL, Gardner SM, Kim CJ, Sutton RL. Injury severity differentially alters sensitivity to dexamethasone after traumatic brain injury. J Neurotrauma.2010; 27(6):1081-9.
    [56]Poole JA, Claman HN. Immunology of pregnancy. Implications for the mother. Clin Rey Allergy lmmun.2004,26(3):161-170.
    [57]Winders BR, Schwartz RH, Bruniquel D. A distinct region of the murine IFN-gamma promoter is hypomethylated from early T cell development through mature naive and Thl cell differentiation, but is hypermethylated in Th2 cells. J Immunol 2004;173(12):7377-7384.
    [58]Yano S, Ghosh P, Kusaba H, Buchholz M, Longo DL. Effect of promoter methylation on the regulation of IFN-gamma gene during in vitro differentiation of human peripheral blood T cells into a Th2 population. J Immunol 2003;171(5): 2510-2516.
    [59]Tometten M, Klapp BF, Joachim R, Fest S, Zenclussen AC, Peters EM, Hertwig K, Arck PC. Nerve growth factor and its functional receptor TrkA are up-regulated in murine decidual tissue of stress-triggered and substance P-mediated abortion. Am J Reprod Immunol.2004; 51(1):86-93.
    [60]Karima Djabali, Afroditi Zissopoulou, Meltsje J. de Hoop, Spyros D. Peripherin Expression in Hippocampal Neurons Induced by Muscle Soluble Factor(s). The Journal of Cell Biology,1993,123(5) 1197-1206.
    [61]John M. Aletta, Michael L. Shelanski, and Lloyd A. Phosphorylation of the Peripherin 58-kDa Neuronal Intermediate Filament Protein. The Journal of Biologicaclh Emistry.1989,264 (8),4619-4627.
    [62]M Fornaroa, J.M. Leea, S Raimondoa, et al. Neuronal intermediate filament expression in rat dorsal root ganglia sensory neurons:An in vivo and in vitro study. Neuroscience.2008,153(4):1153-63.
    [63]Gabriella T, Graziella C, Simona N, Francesca T, Armando N, Cristina R, Severino R. Tyrosine Nitration is a Novel Post-translational Modification Occurring on the Neural Intermediate Filament Protein Peripherin. Neurochem Res.2007, 32(3):433-441
    [64]Michel Es, Karima D, Madeleine G, Franqois G, Marie-M. Differential Expression of Two Neuronal Intermediate-Filament Proteins, Peripherin and the Low-Molecular-Mass Neurofilament Protein (NF-L), During the Development of the Rat. The Journal of Neuroscience,1990,10(3):764-764.
    [65]Ho CL, Chin SS, Carnevale K, Liem RK. Translation initiation and assembly of peripherin in cultured cells. Eur J Cell Biol.1995 68(2):103-12.
    [66]Ulrich R, Markus K, Silke MO, Elvira W, Andrea H, Cornelia H, Stefan HC, Karl-H Sc. Expression of Intermediate Filament Proteins and Neuronal Markers in the Human Fetal Gut. Journal of Histochemistry & Cytochemistry 2006,54(1): 39-46.
    [67]F. Lallemend, R. Vandenbosch, S. Hadjab, M. Bodson, Breuskin, G. Moonen, P. P. Lefebvre, B. Malgrange.New insights into peripherin expression in cochlear neurons. Neuroscience 150 (2007) 212-222
    [68]Robertson J, Beaulieu JM, Doroudchi MM, Durham HD, Julien JP, Mushynski WE. Apoptotic death of neurons exhibiting peripherin aggregates is mediated by the proinflammatory cytokine tumor necrosis factor-alpha. J Cell Biol.2001 15;155(2):217-26.
    [69]Jean-Martin Beaulieu, Jasna Kriz, Jean-Pierre Julien. Induction of peripherin expression in subsets of brain neurons after lesion injury or cerebral ischemia. Brain Research 2002,946 (2) 153-161
    [70]Monica M. Oblinger, Johnson Wong, Linda M, Parysek. Axotomy-Induced Changes in the Expression of a Type III Neuronal Intermediate Filament Gene The Journal of Neuroscience,1989,9(11):3766-3775
    [71]David M. LoebS, Robert M. StephensP, Terry Copelandn, David R. KaplanP, and Lloyd A. GreeneSl1. A Trk Nerve Growth Factor (NGF) Receptor Point Mutation Affecting Interaction with PhospholipasCe -yl Abolishes NGF-promoted Peripherin Induction but Not Neurite Outgrowth The Journal of Biolwicachle Mistry.269, (12):89011-98994.
    [72]Debra G. B. Leonard, Edward B. Ziff, Lloyd A. Identification and Characterization of mRNAs Regulated by Nerve Growth Factor in PC 12 Cells. Molecular and Cellular Biology,1987,7(9):3156-3167.
    [73]Danielle D, Andre R.The TATA Motif Is a Target for Efficient Transcriptional Activation and Nerve Growth Factor Induction of the Peripherin Gene. The Journal of Biological Chemistry.1996,271(40):24976-24981.
    [74]Thompson MA, Ziff EB.Neuron. Structure of the gene encoding peripherin, an NGF-regulated neuronal-specific type III intermediate filament protein. 1989;2(1):1043-53.
    [75]Feng JT, Hu CP. Dysfunction of releasing adrenaline in asthma by nerve growth factor. Med Hypotheses.2005;65(6):1043-6.
    [76]Grumolato L, Louiset E, Alexandre D,PACAP and NGF regulate common and distinct traits of the sympathoadrenal lineage:effects on electrical properties, gene markers and transcription factors indifferentiating PC12 cells. Eur J Neurosci.2003 Jan;17(1):71-82.
    [77]McLean J, Liu HN, Miletic D, Weng YC, Rogaeva E, Zinman L, Kriz J, Robertson J. Distinct biochemical signatures characterize peripherin isoform expression in both traumatic neuronal injury and motor neuron disease. J Neurochem.2010 114(4):1177-92.
    [78]Xiao S, Tjostheim S, Sanelli T, McLean JR, Home P, Fan Y, Ravits J, Strong MJ, Robertson J An aggregate-inducing peripherin isoform generated through intron retention is upregulated in amyotrophic lateral sclerosis and associated with disease pathology. J Neurosci.2008,20;28(8):1833-40.
    [79]Lariviere RC, Julien JP Function of intermediate filaments in neuronal development and disease. J Neurobiol,2004,58(1):131-148
    [80]Strom A, Sonier B, Chapman HD, Mojibian M, Wang GS, Slatculescu CR, Serreze DV, Scott FW. Peripherin-reactive antibodies in mouse, rabbit, and human blood. J Proteome Res.2010; 9(3):1203-8.
    [81]Shibasaki Y, Ishihara H, Kizuki N, Asano T, Oka Y, Yazaki Y. Massive actin polymerization induced by phosphatidylinositol-4-phosphate 5-kinase in vivo. J Biol Chem,1997,272(12):7578-81.
    [82]Tolias KF, Hartwig JH, Ishihara H, Shibasaki Y, Cantley LC, Carpenter CL.Type Ialpha phosphatidylinositol-4-phosphate 5-kinase mediates Rac-dependent actin assembly. Curr Biol.2000,10(3):153-6.
    [83]Cappelletti G, Maggioni MG, Tedeschi G, Maci R.Protein tyrosine nitration is triggered by nerve growth factor during neuronal differentiation of PC 12 cells. Exp Cell Res.2003,288(1):9-20.
    [84]Tedeschi G, Cappelletti G, Nonnis S, Taverna F, Negri A, Ronchi C, Ronchi S. Tyrosine nitration is a novel post-translational modification occurring on the neural intermediate filament protein peripherin. Neurochem Res.2007,32(3):433-41.
    [85]Chamberlain JL, Pittock SJ, Oprescu AM, Dege C, Apiwattanakul M, Kryzer TJ, Lennon VA.Peripherin-IgG association with neurologic and endocrine autoimmunity. J Autoimmun.2010,34(4):469-77.
    [86]Dovas A, Couchman JR. RhoGDI:multiple functions in the regulation of Rho family GTPase activities. Biochem. J.2005,390(Pt 1):1-9
    [87]Yun-Jong Park, Hyung Joon Ahn, Hye Kyung Chang, Joon Ye Kim, Kyu Ha Huh, Myoung Soo Kim, Yu Seun Kim.The RhoGDI-a/JNK signaling pathway plays a significant role in mycophenolic acidinduced apoptosis in an insulin-secreting cell line. Cellular Signalling,2009,21:356-364
    [88]Ying-Xin Qi, Ming-Juan Qu, Ding-Kun Long, Bo Liu, Qing-Ping Yao, Shu Chien, and Zong-Lai Jiang. Rho-GDP dissociation inhibitor alpha downregulated by low shear stress promotes vascular smooth muscle cell migration and apoptosis:a proteomic analysis. Cardiovascular Research 2008,80(1):114-122
    [89]Assia S, Thomas C, Sudhof, Michael PC. Cloning, Characterization, and Expression of a Novel GDP Dissociation Inhibitor Isoform from Skeletal Muscle. Molecular and Cellular Biology,1994,14(5):3459-3468
    [90]Maddala R, Reneker LW, Pendurthi B, Rao PV. Rho GDP Dissociation Inhibitor-Mediated Disruption of Rho GTPase Activity Impairs Lens Fiber Cell Migration, Elongation and Survival. Dev Biol.2008 Mar 1;315(1):217-31.
    [91]Hiroyoshi Ishizaki, Atsushi Togawa, Miki Tanaka-Okamoto, Keiko Hori, Miyuki Nishimura, Akiko Hamaguchi. Defective Chemokine-Directed Lymphocyte Migration and Development in the Absence of Rho Guanosine Diphosphate-Dissociation Inhibitors. The Journal of Immunology,2006,177:8512-8521.
    [92]Ryuichi Aikawa, Issei Komuro, Tsutomu Yamazaki, Yunzeng Zou, Sumiyo Kudoh, Weidong Zhu, Takashi Kadowaki, Yoshio Yazaki. Rho Family Small G Proteins Play Critical Roles in Mechanical Stress-Induced Hypertrophic Responses in Cardiac Myocytes. Circulation Research.1999;84:458-466.
    [93]Yu-Lan Bianl, Yin-Xin Qi1, Zhi-Qiang Yana, Ding-Kun Longa, Bao-Rong Shena and Zong-Lai Jiang. A proteomic analysis of aorta from spontaneously hypertensive rat:RhoGDI alpha upregulation by angiotensin Ⅱ via AT1 receptor. European Journal of Cell Biology,2008,87, (2):101-110
    [94]Gretchen A. Murphy, Stephanie A. Jillian, David Michaelson, Mark R. Philips, Peter D'Eustachio and Mark G. Rush. Signaling Mediated by the Closely Related Mammalian Rho Family GTPases TC10 and Cdc42 Suggests Distinct Functional Pathways. Cell Growth & Differentiation.2001,12(3):157-167,
    [95]Stephane Gasmanl, Sylvette Chasserot-Golazl, Michel R.Involvement of Rho GTPases in calcium-regulated exocytosis from adrenal chromaffin cells. Journal of Cell Science.1999,112(Pt 24),4763-4771.
    [96]Ohira K, Homma KJ, Hirai H, Nakamura S, Hayashi M. TrkB-Tl regulates the RhoA signaling and actin cytoskeleton in glioma cells. Biochem Biophys Res Commun.2006 14; 342(3):867-74.
    [97]Yamashita T, Tohyama M. The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI. Nat Neurosci.2003; 6(5):435-6.
    [98]Harrington AW, Li QM, Tep C, Park JB, He Z, Yoon SO. The role of Kalirin9 in p75/nogo receptor-mediated RhoA activation in cerebellar granule neurons. J Biol Chem.2008;283(36):24690-7.
    [99]Etienne Boulter, Rafael Garcia-Mata, Christophe Guilluy, Adi Dubash, Guendalina Rossi,Patrick JB, Keith Burridge.Regulation of Rho GTPase crosstalk, degradation and activity by RhoGDI. Nature Cell Biology.2010,12(5):477-483
    [100]Mana M. Parast, Sean Aeder, and Ann E. Sutherland. Trophoblast Giant-Cell Differentiation Involves Changes in Cytoskeleton and Cell Motility. Developmental Biology.2001,230(1),43-60
    [101]Balazs Debreceni, Zhong Guo, Marinilce F. Santos, J. Different Roles for RhoA During Neurite Initiation, Elongation, and Regeneration in PC12 Cells. Neurochem. 1999,73(3),949-960
    [102]No'ra Nusser, Elvira Gosmanova, Yi Zheng, and Gabor Tigyi.Nerve Growth Factor Signals through TrkA, Phosphatidylinositol 3-Kinase, and Rac1 to Inactivate RhoA during the Initiation of Neuronal Differentiation of PC 12 Cells. The Journal of Biological Chemistry.2002,277, (39):35840-35846.
    [1]Waterland RA, Michels KB. Epigenetic epidemiology of the developmental origins hypothesis. Annu Rev Nutr 2007; 27:363-388.
    [2]Barker DJ. In utero programming of chronic disease. Clin Sci (Colch) 1998;95:115-128.
    [3]Cheung P, Lau P.Epigenetic regulation by histone methylation and histone variants. Mol Endoerinol.2005,19:563-573.
    [4]Krobs JE. Moving mlll'ks:dynamic histone modifications in yeast. Mol Biosyst, 2007,3:590-597.
    [5]Poole JA, Claman HN. Immunology of pregnancy Implications for the nlogher. Clin Bey Allergy Immunol; 2004,26:161-170.
    [6]Fedulov AV, Kobzik L. Allergy Risk is Mediated by Dendritic Cells with Congenital Epigenetic Changes.Am J Respir Cell Mol Biol.2010, Jan 29.
    [7]Sanders VM. Epigenetic regulation of Thl and Th2 cell development. Brain BehavImmun 2006;20:317-324.
    [8]White GP, Hollams EM, Yerkovich ST, Bosco A, Holt BJ, Bassami MR et al. CpG methylation patterns in the IFNgamma promoter in naive T cells:variations during Thl and Th2 differentiation and between atopics and non-atopics. Pediatr Allergy Immunol 2006;17:557-564.
    [9]White GP, Watt PM, Holt B J, Holt PG. Differential patterns of methylation of the IFN-gamma promoter at CpG and non-CpG sites underlie differences in IFN-gamma gene expression between human neonatal and adult CD45RO-T cells. J Immunol 2002; 168:2820-2827.
    [10]Winders BR, Schwartz RH, Bruniquel D. A distinct region of the murine IFN-gamma promoter is hypomethylated from early T cell development through mature naive and Thl cell differentiation, but is hypermethylated in Th2 cells. J Immunol 2004; 173:7377-7384.
    [11]Yano S, Ghosh P, Kusaba H, Buchholz M, Longo DL. Effect of promoter methylation on the regulation of IFN-gamma gene during in vitro differentiation of human peripheral blood T cells into a Th2 population. J Immunol 2003; 171: 2510-2516.
    [12]Szabo SJ,Sullivan BM,Stemmann C,et al. Distinct effects of T-bet in TH1 lineage commitment and IFN-gamma production in CD4 and CD8 T cells.Science,2002, 295:338-342.
    [13]Suzuki K,Kaminuma O,Hiroi T,et al.Downregulation of IL-13 gene transcription by T-bet in human T cells.Int Arch Allergy Immunol,2008,146(Suppl 1):33-35
    [14]Yamashita M, Ukai-Tadenuma M, Miyamoto T, Sugaya K, Hosokawa H, Hasegawa A et al. Essential role of GATA3 for the maintenance of type 2 helper T (Th2) cytokine production and chromatin remodeling at the Th2 cytokine gene loci. J Biol Chem 2004;279:26983-26990.
    [15]Zhu J, Cote-Sierra J, Guo L, Paul WE. Stat5 activation plays a critical role in Th2 differentiation. Immunity 2003; 19:739-748.
    [16]Stevens L,Htut TM,White D,et al.Involvement of GATA3 in protein kinase C the ta-induced Th2 cytokine expression. Eur J Immunol,2006,36:3305-3314.
    [17]Su R, Becker A, Kozyrskyj A, Hayglass K. Epigenetic regulation of established human type 1 versus type 2 cytokine responses. J Allergy Clin Immunol 2008;121:57-63.
    [18]Ito K, Caramori G, Lim S, Oates T, Chung KF, Barnes PJ et al. Expression and activity of histone deacetylases in human asthmatic airways. Am J Respir Crit Care Med 2002;166:392-396.
    [19]Su RC,Becker AB,Kozyrskyj AL,et al. Epigenetic regulation of established human type 1 versus type 2 cytokine responses.J Allergy Clin Immunol,2007,121:57-63.
    [20]43.Fujimaki W, Takahashi N, Ohnuma K, Nagatsu. M, Kurosawa H, Yoshida S et al.Comparative study of regulatory T cell functionof human CD25CD4 T cells from thymocytes,cord blood, and adult peripheral blood. Clin Dev Immunol 2008;2008:305859.
    [21]Schaub B, Liu J, Hoppler S, Haug S, SattlerC, Lluis A et al. Impairment of T-regulatory cells in cord blood of atopic mothers. J Allergy Clin Immunol 2008; 121:1491-1499.
    [22]Schaub B, Liu J, Schleich I, Hoppler S, Sattler C, von Mutius E. Impairment of T helper and T regulatory cell responses at birth. Allergy 2008;63:1438-1447.
    [23]Akimzhanov AM, Yang XO, Dong C.Chromatin remodelling of interleukin-17(IL-17)-IL-17F cytokine gene locus during inflammatory helper T cell differentiation.; Biol Chem 2007;282:5969-5972.
    [24]Kim HP, Leonard WJ. CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression:a role for DNA methylation. J Exp Med 2007;204:1543-1551.
    [25]Smith M, Tourigney MR, Noakes P, Thornton CA, Prescott SL. Egg allergic children have evidence of reduced neonatal CD4+CD25+CD127 lo/-T regulatory cell function. J Allergy Clin Immunol 2008;121:1460-1466.
    [26]Prescott SL, Noakes P, Chow B, Breckler L, Thornton CA, Hollams EM et al. Presymptomatic differences in toll-like receptor function in infants who develop allergy. J Allergy Clin Immunol 2008;122:391-399.
    [27]Schaub B, Liu J, Hoppler S, Haug S, Sattler C, Lluis A et al. Impairment of T-regulatory cells in cord blood of atopic mothers. J Allergy Clin Immunol 2008;121:1491-1499.
    [28]Strachan D. Hay fever, hygeine, and houseold size. Br Med J 1989; 299: 1259-1260.
    [29]Bottcher MF, Nordin EK, Sandin A, Midtvedt T, Bjorksten B. Micro flora-associated characteristics in faeces from allergic and nonallergic infants. Clin Exp Allergy 2000;30:1591-1596.
    [30]Blumer N, Sel S, Virna S, Patrascan CC, Zimmermann S, Herz U et al. Perinatal maternal application of Lactobacillus rhamnosus GG suppresses allergic airway inflammation in mouse offspring. Clin Exp Allergy 2007;37:348-357.
    [31]Maternal TLR signaling is required for prenatal asthma protection by the nonpathogenic microbe Acinetobacter lwoffii F78. J Exp Med.2009 Dec 21;206(13):2869-77. Epub 2009 Dec
    [32]Vuillermin PJ, Ponsonby AL, Saffery R, Tang ML, Ellis JA, Sly P et al. Microbial exposure, interferon gamma gene demethylation in naive T-cells, and the risk of allergic disease. Allergy 2009;64:348-353.
    [33]Schaub B, Liu J, Hoppler S, Schleich I, Huehn J, Olek S et al. Maternal farm exposure modulates neonatal immune mechanisms through regulatory T cells. J Allergy Clin Immunol 2009; 123:774-782.
    [34]Finch CE, Crimmins EM. Inflammatory exposure and historical changes in human life-spans. Science 2004; 305:1736-1739.
    [35]Foster SL, Hargreaves DC, Medzhitov R. Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature 2007;447:972-978.
    [36]Shaheen S, Potts J, Gnatiuc L, Makowska J,Kowalski ML, Joos G et al. The relation between paracetamol use and asthma:a GA2LEN European case-control study. Eur Respir J 2008;32:1231-1236.
    [37]Haberg SE, London SJ, Stigum H, Nafstad P, Nystad W. Folic acid supplements in pregnancy and early childhood respiratory health. Arch Dis Child 2009;94:180-184.
    [38]Miller RL. Prenatal maternal diet affects asthma risk in offspring. J Clin Invest 2008;118:3265-3268.
    [39]Rampersaud GC, Kauwell G P, Huston A D, et al. Genomic DNA methylation decreases in response to moderate folate depletion in elderly women.Am J Clin Nut,2000,72:998-1003.
    [40]Kim Y I, Shirwadkar S, Choi S W, et al. Effects of dietary folate on DNA strand breaks within mutationprone exons of the p53 gene in rat colon. Gastroent-erology.2000,119(1):151-161.
    [41]Wolff GL, Kodell RL, Moore SR, Cooney CA. Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J 1998; 12:949-957.
    [42]Hollingsworth JW, Maruoka S, Boon K, Garantziotis S, Li Z, Tomfohr J et al. In utero supplementation with methyl donors enhances allergic airway disease in mice. J Clin Invest 2008; 118:3462-3469.
    [43]Jouni JK. Jaakkola, MD, Mika Gissler. Maternal Smoking in Pregnancy, Fetal Development, and Childhood Asthma American. Journal of Public Health 2004; 94,136-140.
    [44]Lodrup Carlsen KC, Carlsen KH. Effects of maternal and early tobacco exposure on the development of asthma and airway hyperreactivity Curr Opin Allergy Clin Immunol.2001, 1(2):139-43.
    [45]Kasznia-Kocot J, Kowalska M, Gorny RL, Niesler A, Wypych-Slusarska A. Environmental risk factors for respiratory symptoms and childhood asthma. Ann Agric Environ Med.2010 Dec;17(2):221-9.
    [46]Moodie FM, Marwick JA, Anderson CS, et al. Oxidative stress and cigarette smoke alter chromatin remodeling but differentially regulate NF-kappa B activation and proinflammatory cytokine release in alveolar epithelial cells. Faseb J,2004,18(15):1897-1899.
    [47]Nishikawa M, Kakemizu N, Ito T, et al. Superoxide mediates cigarette smoke-induced infiltration of neutrophils into the airways through nuclear factor-kappa B activation and IL-8 mRNA expression in guinea pigs in vivo. Am J Respir Cell Mol Biol,1999,20(2):189-198.
    [48]Landau LI. Tobacco smoke exposure and tracking of lung function into adult life. Paediatr Respir Rev.2008;9(1):39-43.
    [49]Hamada K, Suzaki Y, Leme A, et al. Exposure of pregnant mice to an air pollutant aerosol increases asthma susceptibility in offspring. J Toxicol Environ Health, 2007,70:688-695
    [50]Fedulov AV, Leme A, Yang Z, Dahl M, Lim R, Mariani TJ, Kobzik L. Pulmonary exposure to particles during pregnancy causes increased neonatal asthma susceptibility. Am J Respir Cell Mol Biol.2008 Jan;38(1):57-67.
    [51]Cao D, Bromberg PA, Samet JM.COX-2 expression induced by diesel particles involves chromatin modification and degradation of HDAC1.Am J Respir Cell Mol Biol,2007,37:232-239.
    [52]Liu J, Ballaney M, Al-alem U, Quan C, Jin X, Perera F et al. Combined inhaled diesel exhaust particles and allergen exposure alter methylation of T helper genes and IgE production in vivo. Toxicol Sci 2008; 102:76-81.
    [53]Shaheen SO, Newson RB, Henderson AJ, et al. Prenatal paracetamol exposeure and risk of asthma and elevated immunologlobulin E in childhood. Clin Exp Allergy,2005,35(1):18-25.
    [54]Annesi-Maesano I,Pollitt R, King G, et al.In utero exposure to lead and cord blood total IgE. Is there a connection?. Allergy,2003,58(7):589-594.
    [55]Hallstrand TS, Fischer ME, Wurfel MM, et al. Genetic pleiotropy between asthma and obesity in a communitybased sample of twins.J Allergy Clin Immunol,2005, 116:(1) 235-1241.
    [56]Peters JI, McKinney JM, Smith B, Wood P, Forkner E, Galbreath AD. Impact of obesity in asthma:evidence from a large prospective disease management study. Ann Allergy Asthma Immunol.2011 Jan;106(1):30-5.
    [57]Hersoug LG, Linneberg AThe link between the epidemics of obesity and allergic diseases:does obesity induce decreased immune tolerance?.Allergy.2007; 62(10):1205-13.
    [58]Scholtens S, Wijga AH, Brunekreef B, Kerkhof M, Postma DS, Oldenwening M, de Jongste JC, Smit HA. Maternal overweight before pregnancy and asthma in offspring followed for 8 years. Int J Obes (Lond).2010,34(4):606-13.
    [59]Denis GV. Bromodomain coactivators in cancer, obesity, type 2 diabetes, and inflammation. Discov Med.2010 Dec,10(55):489-99.
    [60]G. Krommydasa KI, Gourgoulianisb G, Andreouc E, Kotrotsioud V, Raftopulosd T. Fetal sensitivity to testosterone, left-handedness and development of bronchial asthma:a new Approach. Medical Hypotheses 2004,62,143-145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700