用户名: 密码: 验证码:
基于沉陷控制的充填材料配制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采空区充填是目前解决煤矿开采沉陷及地表破坏最为有效的方法,也是防治煤矿开采诱发地质灾害的重要技术措施,该技术还可从源头治理煤矸石、粉煤灰无序堆积造成的环境污染,实现固体废物资源化,改变先污染后治理的现状,促进勘探—采煤—矿山环境治理全过程控制技术的发展。
     充填材料是充填采空区技术的核心,其中胶结充填材料的性能决定充填效果,影响充填成本的高低,对最终的地表减沉效果起着关键作用。为此,本论文通过矿物成分测试、浆体流动性试验、试件强度试验和理论分析等,对矸石-粉煤灰充填料的配料性能及配比进行了研究,取得了一定的创新成果。
     根据充填采空区的工艺流程及采空区岩层变形理论,对充填材料的基本性能要求进行了分析。充填体的早期强度需达到0.15MPa才能满足其稳定自立的能力;充填体的后期强度应与充填体在采空区所受的载荷相匹配。为达到泵送需求,充填材料的坍落度应达到20cm以上;泌水率应控制在1.5%-4.5%,以保证充填材料有一定的泌水能力,又不过度泌水;粗骨料煤矸石颗粒应达到一定的级配要求。
     对塔山矿区煤矸石的化学成分、颗粒特征及矿物组成进行了详细分析,其煤矸石颗粒属粘土质矸石,性质较为稳定,适宜用于充填配料的粗骨料;其原状煤矸石颗粒中,大颗粒比重过大,配比时需加以破碎。塔山电厂粉煤灰的化学成分及矿物组成分析表明,该电厂粉煤灰具有一定的火山灰活性,可用于充填配料,但钙含量较低、活性欠佳,充填配料时要加钙并适当的激发其活性。
     论文还分析研究了充填配料中涉及到的粉煤灰、水泥、辅助材料及外加剂的性能和作用机理。采用石灰吸收法,对塔山电厂粉煤灰进行了化学激发实验,结果表明,碱性激发剂、硫酸盐激发剂和氯盐激发剂均对粉煤灰有激发效果,配比时优先考虑应用Ca(OH)2、CaSO4和CaCl2。实验分析了充填配料的流动能力,结果表明浆体坍落度随粉煤灰掺量的增加呈上升趋势,但掺入量也不能太多,否则会影响材料坍落度,泌水率对粉煤灰掺入量也有一定限制;坍落度随浆体质量浓度的增大而减小,泌水率随浆体质量浓度的增大而降低。
     为验证粉煤灰的激发效果,得到充填材料的最优配比,论文设计了粉煤灰、水泥和煤矸石配比试验和粉煤灰、石灰和石膏和煤矸石配比试验。粉煤灰、水泥和煤矸石配比试验表明,水泥是影响充填材料强度的最关键因素;浆体的浓度也对材料的强度有较大影响,特别对材料的后期强度影响明显;粉煤灰的增加对于充填材料的不同龄期强度影响有限。粉煤灰、石灰、石膏和煤矸石配比试验表明,各材料配比合理,不使用水泥也可满足充填材料的需求;石灰用量对试件强度的影响最大,只有石灰用量与粉煤灰相匹配时,才能最大发挥二者的水化作用,形成较大胶凝作用;石膏仅能起到改善材料强度的作用,对强度影响较小。
Goaf filling is the current efficient solution of mining subsidence and surface damage and the important technical measures of prevention of geological disasters induced by mining. The technology can also control the environmental pollution caused by coal gangue and fly ash disordered stacking from the source. It could change solid waste into resources, change the treatment status after pollution, promoting the exploration, mining, mine environment management controlling technology development in whole process.
     The filling material is the core of filled goaf technology, wherein the backfill material performance determines the filling effect and affects the high or low cost of filling, which plays a key role in subsidence-reducing effect of the final surface. To this end, the mineral composition testing, the paste liquidity test, the specimen strength test and theoretical analysis are taken to study the performance and proportion of gangue-fly ash ingredients of the filling material. It has resulted in some innovations.
     According to the process of goaf-filling and the rock deformation theory in goaf areas, the basic performance of the filling material is analyzed. The early strength of the backfill should be above0.15MPa to meet their stable self-sustaining. The late strength of the backfill should match its load in goaf area. Bleeding rate should be controlled between1.5%~4.5%, in order to ensure that the filling material is capable of bleeding, without any excess. In order to achieve pumping demand, the slump of the filling material should be more than20cm. And the coal gangue of coarse aggregate should be met a certain gradation requirements.
     Coal gangue from Tashan Mine has been analyzed in chemical composition, particle characteristics and mineral composition in detail, and the result is that gangue particles are clayey gangue; its nature is more stable and suitable for coarse aggregate of the filling ingredients. Among the original coal gangue particles, the proportion of large particles is too large, so they need to be broken when mixing with other ingredients. An analysis about the chemical composition and mineral composition of the fly ash from Tashan power plant showed that the fly ash has pozzolanic activity and can be used in the filling ingredients, but the calcium and the activity content is low, and extra calcium should be added and the activity should be properly stimulated when the mixing the filling ingredients.
     It is also analyzed in this paper that the performance and mechanism of the filling ingredients involves the fly ash, cement, auxiliary materials and additives. The lime absorption method is adopted to take chemical excitation experiments on the fly ash in Tashan power plant, and the results show that the alkaline activator, sulfate activator and chloride activator can all stimulate the effect of fly ash. The priority in mixing the filling ingredients is an application of Ca(OH)2,CaSO4and CaCl2. The experiments analyzed the flow capacity of the filling ingredients, and the results are that paste slump tends to go upward with the increase of the fly ash, but the incorporation can not be too much, otherwise it will affect the slumps of the filling ingredients. The fly ash incorporation is limited by bleeding rate. Slump decreases as the paste concentration increases, and bleeding rate reduces as the paste concentration increases.
     In order to verity the stimulational results of fly ash and get the optimal proportion of filling material, the fly ash-cement and gangue proportioning test and the fly ash-lime-gypsum and gangue proportioning test were been designed. The fly ash-cement and gangue proportioning test indicates that cement is the key material influencing the strength of filling materials, the mass concentration also wields a large influence on the strength of filling materials, especially in later stages of the materials. The incorporation of fly ash's influence is limited on concrete strength in different ages. The fly ash-lime-gypsum and gangue proportioning test indicates that if various materials are of reasonable proportion, the requirements of fill materials can be met without cement. Lime content most influences the specimen strength. When the content matches with fly ash, their hydration is best, and jellification is relatively better. Gypsum can only improve the strength, and the effect is not much.
引文
[1]罗斐.煤炭资源的现状与结构分析[J].中国煤炭,2008,34(3):91-94,96.
    [2]BP Statistical Review. BP Statistical Review of World Energy (2002-2011) [R]. http//:www.bp.com/statistical review,
    [3]中国国家统计局.中国统计年鉴2010[M].北京:中国统计出版社,2010:201-207.
    [4]钱鸣高,缪协兴,许家林.资源与环境协调(绿色)开采及其技术体系[J].采矿与安全工程学报,2006,23(1):1-5.
    [5]孔改红,李富平.采煤沉陷区环境保护与治理研究[J].河北煤炭,2006,(1):4-5.
    [6]杨逾,刘文生,缪协兴等.我国采煤沉陷及其控制研究现状与展望[J].中国矿业,2007,16(7)43-46.
    [7]徐法奎,李凤明.我国“三下”压煤及开采中若干问题浅析[J].煤炭经济研究,2005,(5):26-27.
    [8]边炳鑫,解强,赵由才等.煤系固体废物资源化技术[M].北京化学工业出版社,2005.
    [9]曹建军,刘永娟,郭广礼.煤矸石的综合利用现状[J].环境污染治理技术与设备,2004,5(1):19-22.
    [10]杨旭鸿,黄斌,舒建成等.国内煤矸石的资源化利用现状及展望[J].云南化工,2011,38(2):37-40.
    [11]袁春华.粉煤灰的特性及多种元素提取方法研究[J].广东化工,2009,36(11):101-103.
    [12]茅沈栋,李镇,方莹.粉煤灰资源化利用的研究现状[J].混凝土,2011,(07):82-84.
    [13]鲁晓勇,朱小燕.粉煤灰综合利用的现状与前景展望[J].辽宁工程技术大学学报,2005,24(2):295-298
    [14]汪群慧,叶暾,谷庆宝.固体废物处理及资源化[M].北京:化学工业出版社,2004.
    [15]钱鸣高,许家林,缪协兴.煤矿绿色开采技术[J].中国矿业大学学报(自然科学版),2003,32(4):343-348.
    [16]缪协兴,钱鸣高.中国煤炭资源绿色开采研究现状与展望[J].采矿与安全工程学报,2003,32(4):343-348.
    [17]王新民.基于深井开采的充填材料与管输系统的研究[D].长沙:中南大学,2005
    [18]万海涛,方勇,肖广哲等.充填采矿法的应用现状及发展方向[J].世界有色金属,2009,32(8):26-28.
    [19]张海波,宋卫东.评述国内外充填采矿技术发展现状[J].中国矿业,2009,18(12):59-62.
    [20]缪协兴,张吉雄,郭广礼.综合机械化固体充填采煤方法与技术研究[J].煤炭学报,2010,35(1):1-6.
    [21]王湘桂,唐开元.矿山充填采矿法综述[J].矿业快报,2008,(12):1-5.
    [22]余斌.水砂充填砂浆制备与输送技术新进展[J].中国矿业,1994,3(6):37-41·
    [23]孙恒虎.当代胶结充填技术[M].北京:冶金工业出版社,2002.
    [24]高士田.我国矿山胶结充填技术现状及改进方向[J].中国矿业,1996,(4):1-4.
    [25]张吉雄,缪协兴,郭广礼.矸石(固体废物)直接充填采煤技术发展现状[J].采矿与安全工程学报,2009,26(4):395-401.
    [26]赵才智.煤矿新型膏体充填材料性能及其应用研究[D].徐州:中国矿业大学,2008.
    [27]冯光明.超高水充填材料及其充填开采技术研究与应用[D].徐州:中国矿业大学,2009.
    [28]石建新.高水膨胀材料充填采煤技术的研究与应用[J].山东煤炭科技,2010,(4):128-129.
    [29]刘树江,石建新,王苇等.高水膨胀材料充填采煤试验研究[J].煤炭科学技术,2011,39(6):21-25.
    [30]REN Yafeng, FENG Guorui, GUO Yu xia, etal. The Research Status and Trend for Cementitious Filling Material of Coal Mine [C].2010 International Conference on Future Industrial Engineering and Application, Shenzhen, China,2010, Dec3-8:213-218.
    [31]邓代强.混凝土充填体强度特性试验研究[J].矿冶工程,2006,26(4):10-12.
    [32]唐建新,胡海,涂兴东等.普通混凝土巷旁充填沿空留巷试验[J].煤炭学报,2010,35(9):1425-1429.
    [33]周保精,徐金海,倪海敏.小宽高比充填体沿空留巷稳定性研究[J].煤炭学报,2010,35(S):33-37.
    [34]谢开维,张葆春.块石胶结充填的应用现状及发展[J].矿业研究与开发,2002,22(2):1-4.
    [35]胡华,孙恒虎.矿山充填工艺技术的发展及似膏体充填新技术[J].中国矿业,2001,10(6):47-50.
    [36]孙文标,张惠聚,田坤云.似膏体充填体的早期强度及其影响因素研究[J].矿业安全与环保,2009,36(2):7-9.
    [37]赵才智,周华强,瞿群迪.膏体充填材料力学性能的初步实验[J].中国矿业大学学报,2004,33(2):159-161.
    [38]赵才智,周华强,柏建彪.膏体充填材料强度影响因素分析[J].辽宁工程技术大学学报,2006,25(6):904-906.
    [39]郑保才,周华强,何荣军.煤矸石充填材料的试验研究[J].采矿与安全工程学报,2006,23(4):460-463.
    [40]黄玉诚,孙恒虎,时召兵.似膏体充填建筑物下采煤可行性分析[J].煤炭科学技术,2003,31(10):51-53.
    [41]孙文标,孙恒虎,刘建庄.似膏体充填料浆配合比的实验研究[J].中国矿业,2005,14(8):70-71.
    [42]孙文标,刘马群,张景飞.煤矿似膏体充填体的性能研究[J].中国矿业,2008,17(4):92-94.
    [43]宋存义,陈克丕,汪辉.高水材料的水化硬化反应机理的研究[J].矿物岩石地球化学通报,1999,18(4):261-263.
    [44]王新民,尹新才,陈昌民.铁铝型高水速凝充填材料物化性能的研究[J].金属矿山,2001,10(304):49-51.
    [45]孙春东,冯光明.新型高水材料巷旁充填沿空留巷技术[J].煤矿开采,2010,15(1):58-61.
    [46]向宇.煤矸石的基本性质及作为橡胶补强填充剂的基础性研究[D].太原:太原理工大学,2004.
    [47]刘迪.煤矸石的环境危害及综合利用研究[J].气象与环境学报,2006,22(3):60-62.
    [48]张宏敏,李树伟,胡斌.煤矸石对矿山生态环境的破坏及其资源化[J].采矿技术,2008,8(5):62-64.
    [49]郝临山,彭建喜,董秀桃.大同高岭岩煤矸石资源的矿物学研究[J].山西大同大学学报(自然科学版),2007,23(1):45-49.
    [50]郝临山,王平泽,彭建喜.大同石炭二迭纪煤矸石煅烧活化研究[J].山西大同大学学报(自然科学版),2009,23(1):66-69.
    [51]孙抱真,贾传玖,水翠娟.粉煤灰的颗粒形貌及其物理性质[J].硅酸盐学报,1982,10(1):64-69.
    [52]徐红.粉煤灰的矿物相态和颗粒组成分析[J].电力环境保护,2009,15(4):24-26.
    [53]林秀.粉煤灰的矿物组成和常温下粉煤灰活性的研究[J].硅酸盐学报,1982,10(4):486-490.
    [54]钱觉时,吴传明,王智.粉煤灰的矿物组成(上)[J].粉煤灰综合利用,2001,(1):26-31.
    [55]钱觉时,王智,吴传明.粉煤灰的矿物组成(中)[J].粉煤灰综合利用,2001,(2):37-41.
    [56]钱觉时,王智,张玉奇.粉煤灰的矿物组成(下)[J].粉煤灰综合利用,2001,(4):24-28.
    [57]邵靖邦,邵绪新,王祖讷.煤中矿物成分对粉煤灰性质的影响[J].煤炭加工与综合利用,1996,(6):37-41.
    [58]李坚利,周惠群,李咸浩等.水泥生产工艺[M].武汉:武汉理工大学出版社,2008.
    [59]李崇智,周文娟,王林等.建筑材料[M].北京:清华大学出版社,2009.
    [60]陈建奎.混凝土外加剂的原理与应用[M].北京:中国计划出版社,1997.
    [61]杜天玲,李红,傅智.公路工程水泥混凝土缓凝剂应用技术[J].公路,2006,(4):23-26.
    [62]谢兴建.混凝土早强剂应用技术研究[J].建筑石膏与胶凝材料,2005,(5):33-35.
    [63]吴志寰.早强剂对混凝土强度和弹性模量的影响[J].铁道建筑,2005,(5):93-94.
    [64]武萍,尚建丽,刘北.液体速凝剂对水泥胶砂强度影响的试验研究[J].建筑科学,2007,23(5):56-58.
    [65]王晓丽,宋学锋.速凝剂与水泥的适应性及速凝剂的作用机理研究[J].西安建筑科技大学学报(自然科学版),2007,42(5):745-750.
    [66]HIROSES, INOEK, NAGAOKAT, etal. Setting accelerator for wet-sprayed concrete [J]. Magazine of concrete research,1988,2(11):41-47.
    [67]沈旦申.粉煤灰混凝土[M].北京:铁道出版社,1989.
    [68]钱觉时.粉煤灰特性与粉煤灰混凝土[M].北京:科学出版社,2002.
    [69]Pietersen H S, Fraay A L A, Bien J M. Reactivity of fly ash at high pH [J]. Materials research society symposia proceeding,1990, Vol.178:139-157.
    [70]Joshi R C, Malhotra V M. Relationship between pozzolanic activity and chemical and physical characteristics of selected Canadian fly asbes [J]. Materials research society symposia proceeding,1987, Vol.86:113-125.
    [71]Fraay A L, Bien J M,Haan Y M.The reaction of fly ash in concrete:A critical examination[J]. Cement and Concrete Research,1989, Vol.19:235-246.
    [72]Tokyay M, Hubbard F H. Mineralogical investigation of high-lime fly ashes [C]. Proceeding Fourth International Conference, Istanbul, turkey,1992, May3-8:65-77.
    [73]陈益民,张洪涛,林震.三峡大坝粉煤灰的水化反应速率与大坝混凝土贫钙问题[J].水利学报,2002,(8):7-11.
    [74]Hassett K E, Eylands D F, Pflughoeft—Hassett. Fundarmental behavior of fly ash:heat of hydration [C]. Proceedings:12th International symposium on coal combustion by-product management and use, Orlando, Florida, American Coal Ash Association,1992, January25-30:25.
    [75]何廷树,卫国强.激发剂种类对不同粉煤灰掺量的水泥胶砂强度的影响[J].混凝土,2009,(5):62-64.
    [76]李大和.粉煤灰水化机理浅析[J].矿业研究与开发,1999,19(5):15-19.
    [77]张文生,陈益民,欧阳世翕.粉煤灰与水泥熟料共同水化硬化的基础研究进展及评述[J].硅酸盐学报,2000,28(2):160-164.
    [78]Takemoto K., Uchikawa H火山灰质水泥水化—第七届国际水泥化学会议论文选集[C].北京:中国建筑工业出版社,1985.340-370.
    [79]Wei F, Grutzeck M W, Roy D M. The retarding effects of fly ash upon the hydration of cement past e: the first 24 hours[J]. Cement Concert Research,1985,15(1):174-184.
    [80]Jawed I, Skalny J. Hydration of tricalcium silicate in the presence of fly ash [C]. Effects of Fly ash incorporation in Cement and concrete, Proceedings, symposium N Annual meetings November16-18,1981:50-70.
    [81]Massazza F, Daimon M. Chemistry of hydration of cements and cementitious systems[C]. Proceedings of the 9th International Congress on the Chemistry of Cement Voll. New Delhi:1992.383-446.
    [82]方泽锋,施惠生.粉煤灰对水泥浆体的水化及亚微观结构的影响[J].粉煤灰综合利用,2003,(5):48-5].
    [83]郭成举.氯盐对于水泥水化的促进作用[J].混凝土,1984,(5):1-5.
    [84]柯国军,杨晓峰,彭红.化学激发粉煤灰活性机理研究进展[J].煤炭学报,2005,30(2):366-370.
    [85]顾强康,李宜峰,李宁.粉煤灰活性激发及应用[J].四川建筑科学研究,2007,33(6):147-151.
    [86]栾晓风,潘志华,王冬冬.粉煤灰水泥体系中粉煤灰活性的化学激发[J].硅酸盐通报,2009,29(4):757-761.
    [87]肖勇丽.辐照激发粉煤灰活性研究[D].重庆:重庆大学,2008.
    [88]曹红红,匡建新,颜国平.激发剂作用下粉煤灰火山灰反应特征的研究[J].粉煤灰综合利用,1997,2:28-32.
    [89]王志刚.环境友好型渠道衬砌材料的研究[D].西安:西北农林科技大学,2007.
    [90]张超.粉煤灰路用品质的合理评价[J].公路,2000(4):57-58.
    [91]建筑材料科学研究院.水泥化学分析[M].北京:中国建筑工业出版社,1982,752-754.
    [92]张绍周,辛志军,倪竹君.水泥化学分析[M].北京:化学工业出版社,2007,241-244.
    [93]冯国瑞,任亚峰,张绪言等.塔山矿充填开采的粉煤灰活性激发实验研究[J].煤炭学报,2011,36(5):732-737.
    [94]Palomo A, Fernandez-Jimenez A, Criado M. Microstructure development of alkali-activated fly ash cement:a descriptive model [J]. Cement and Concrete Research,2005(35):1204-1209.
    [95]马保国.新型泵送混凝土技术及施工[M].北京:化学工业出版社,2006.
    [96]祝丽萍,倪文,张旭芳等.赤泥-矿渣少熟料体系制备全尾砂胶结充填料试验研究[J].金属矿山,2009,(11):175-178.
    [97]祝丽萍,倪文,黄迪等.赤泥膏体和似膏体全尾砂胶结充填料研究[J].矿业研究与开发,2011,31(4):17-21.
    [98]李亮,周华强,刘坤等.煤矿膏体充填料浆的工程检测及鉴别[J].能源技术与管理,2009,(3):67-69.
    [99]刘同有,周成浦,金铭良等.充填采矿技术与应用[M].北京:冶金工业出版社,2001.
    [100]陈志源,沈威,金容容等.新拌混凝土[M]..北京:中国建筑工业出版社,1990.
    [101]王洪江,王勇,吴爱祥等.从饱和率和泌水率角度探讨膏体新定义[J].武汉理工大学学报,2011,33(6):85-89.
    [102]Huynh L, Beattie DA, Fornasiero D, etal. Effect of Poly phosphate and Naphthalene Sulfo nate Form aldehyde Condensate on the Rheological Properties of Dewatered Tailings and Cemented Pastebackfill[J]. Minerals Engineering,2006,19(1):28-36.
    [103]蔡嗣经.矿山充填力学基础[M].北京:冶金工业出版社,2009.
    [104]王秀兰,许振良.粒度对浆体管道输送稳定性的影响[J].辽宁工程技术大学学报,2005,24(S):19-21.
    [105]赵传卿,胡乃联等.焦家金矿充填物料的颗粒级配优选研究[J].矿冶,2008,17(2):17-19.
    [106]吴浩,管学茂,姚燕等.新型充填材料颗粒级配试验研究[J].新型建筑材料,2006, (12);15-17.
    [107]李武,朱合华.大粒径高流态井壁混凝土的研究与应用[J].煤炭工程,2006,(2):34-35.
    [108]杨恢丽,张弘.混凝土泵送可靠性探讨[J].水力发电,2010,36(2):78-80.
    [109]张秀勇,乔登攀.金川二矿区胶结充填料浆可泵性影响因素分析[J].金属矿山,2010, (9):35-37.
    [110]孟祥礼,高传彬.建筑材料实训指导[M]郑州:黄河水利出版社,2009.
    [111]Wang Aiqin, Zhang Chengzhi, Sun Wei. Fly ash effects I. The morphological effect of fly ash[J]. Cement and Concret e Research,2003,33:2023-2029.
    [112]程云虹,张伟,郭晗等.粉煤灰对混凝土坍落度影响的试验研究[J].混凝土,2005,12:39-41.
    [113]陈志源,沈威,金容容等.新拌混凝士[M].北京:中国建筑工业出版社,1990.
    [114]陈俊彦.充填体的支撑作用机理[J].有色金属(矿山部分),1986,(02):7-13.
    [115]童光煦,潘键,陈俊彦.1983年充填采矿法国际会议技术述评(三)[J].矿业工程,1984,(06): 42-49.
    [116]冉竟强.关于对充填体作用的研究[J].黄金,1985,(01):29-30.
    [117]张相军,李希永,吴光炜.侯庄矿采矿方法及其生产中的几个安全问题[J].山东冶金,1997,19(4):52-54.
    [118]卢平.制约胶结充填采矿法的若干充填体力学问题[J].黄金,1994,15(7):18-22.
    [119]陈隆金.试论充填体的力学性态和支撑作用[J].有色金属(矿山部分),1988,(05):5-10.
    [120]Blight G E, Clarke I E. Design and properties of still fill for lateral support[C]. Lulea, Sweden, Mining with Backfill, Proc. of lnterna. Symp 1983.
    [121]卢平.胶结充填矿柱强度的设计[J].江西有色金属,1990,(2):48-53.
    [122]蔡嗣经.胶结充填体的强度设计[J].江西冶金学院学报,1985,(3).
    [123]Thomas E G, et al. Fill technology in underground metalliferous mines [M]. Ontario, Canada: Interna. Acad.Serv.Ltd 1979.
    [124]卢平.确定胶结充填体强度的理论与实践[J].黄金,1994,13(3):14-19.
    [125]刘长友,杨培举,侯朝炯等.充填开采时上覆岩层的活动规律和稳定性分析[J].中国矿业大学学报,2004,33(2):166-169.
    [126]王志方.充填体的强度,[J].化工矿山技术,1996,25(3):13-16.
    [127]邹友峰,柴华彬.我国条带煤柱稳定性研究现状及存在问题[J].采矿与安全工程学报,2006,23(2):144-]45.
    [128]谢和平,段法兵,周宏伟等.条带煤柱稳定性理论与分析方法研究进展[J].中国矿业,1998,7(5):37-41.
    [129]吴立新,王金庄,郭增长.煤柱设计与监测基础[M].徐州:中国矿业大学出版社,2000.
    [130]王旭春,黄福昌,张怀新等.A.H.威尔逊煤柱设计公式探讨及改进[J].煤炭学报,2002,27(6):604-608.
    [131]崔希民,缪协兴.条带煤柱中的应力分析与沉陷曲线形态研究[J].中国矿业大学学报,2000,29(4):392-394.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700