用户名: 密码: 验证码:
光伏—太阳能热泵系统及多功能热泵系统的综合性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地球上化石能源的储量是有限的,而人类发展对能源的需求是无限的。探索可再生能源的利用方法和提高现有能源的利用效率,是解决人类发展过程中能源和环境两个根本问题的主要途径。本文以太阳能光电/光热综合利用和热泵多功能性开发利用为出发点,分别研究了光伏-太阳能热泵系统(PV-SAHP)和多功能热泵系统(MDHP)。PV-SAHP系统把热泵循环应用于太阳能光电/光热综合利用中,是一种高效的主动式太阳能利用方式。MDHP系统可以实现对热泵循环蒸发冷量和冷凝热量的综合利用,具有很高的能源利用效率,同时还可以减少夏季空调热污染。
     光伏-太阳能热泵(PV-SAHP)系统通过热泵循环,提高、稳定了太阳能光热转换的输出温度,同时维持光电转换在较低工作温度下进行,提高了光电转换效率。另一方面,PV-SAHP系统热泵循环的的蒸发过程在太阳直接辐照条件下完成,使得热泵循环的性能系数COP明显提高,也减少了热泵冬季供暖时常出现的运行不稳定和结霜等缺憾。
     本文采用特殊的真空层压工艺,把光伏电池和蒸发器板结合成一体,制作了PV-SAHP系统的关键部件-光伏蒸发器。光伏蒸发器的光伏电池和蒸发器板之间具有电绝缘和热良导体的特性,可以实现对太阳能的分波段、光电/光热综合应用。以PV-SAHP系统实验台为基础,结合系统模型,本文进行了辐照强度、冷凝水温、压缩机频率、玻璃盖板等多种参数对PV-SAHP系统性能的影响和优化研究。文中还专门建立了光伏蒸发器的分布参数模型,对辐照强度、环境温度、蒸发管长度、管间距、进口干度等参数对蒸发器性能的影响进行了研究。
     多功能热泵系统(MDHP)是根据目前的家用热泵现状所提出的一种新型热泵综合利用方式。在夏季,MDHP系统可以利用热泵蒸发器进行空调制冷,同时利用同一热泵循环的冷凝器来制取生活热水,低温水源吸热改善了冷凝器的散热,使得MDHP系统的制冷效率得到提高。由于MDHP系统的冷凝热不直接排向大气,夏季城市环境热污染得以减少。在其他季节,可以利用MDHP系统的单独制热水模式来制取生活热水,普及了高效热泵热水器的使用范围,提高了热泵设备的利用效率。
The normal fossil energy on earth is limited although the demand of energy for human development is never-ending. Searching for renewable energy and improving utility efficiency of energy are the main approach for the energy and the environmental issue. In Photovoltaic Solar Assisted Heat Pump (PV-SAHP) system, the heat pump recycle were used for the compound photovoltaic\thermal utility. PV-SAHP system is an effective application of solar energy. Multi-functional Domestic Heat Pump (MDHP) system can reach high efficiency of energy because the evaporating cooling energy and condensing heating energy can be utilized simultaneously by MDHP system. Thus the condensing heat pollution in summer is reduced.
    PV-SAHP system is an active compound system of photovoltaic/thermal application. The system can maintain the PV cell in a lower temperature for better photovoltaic performance and to get a higher temperature photo-thermal output. The coefficient of performance (COP) of PV-SAHP is improved because the evaporating process under insolation. Meanwhile the unstable features in winter of space heating and the evaporator frosting of normal heat pump are overcomed by PV-SAHP system.
    The photovoltaic evaporator as a key part of PV-SAHP system is combined with PV cells and a base evaporator panel made with special vacuum laminating technics to ensure that the base panel and PV cells are of high-quality bonding in providing the required electrical insulation and thermal conduction. Photovoltaic conversion and photo-thermal conversion can be done simultaneously for different wavelength incidence. Basing on the PV-SAHP experimental setup and system simulation, system performance and system optimization under the influence of solar radiation, condensing water temperature, compressor frequency, glass cover and other factors were studied in this work. Distributing parameters model of photovoltaic evaporator were developed to study the influence of the solar radiation, ambient temperature, the length of evaporating tube and the gap between tubs et al. on the evaporating,
引文
1.陈凤英,赵宏图,全球能源大棋局,北京,时事出版社,2005
    2.韩文科,能源冲击,晾望周刊,2004,15
    3.陈清泰,国家能源战略的基本构想,中国经济时报,2003,11,10
    4.“十五”国家高技术发展计划委员会,能源发展战略研究,北京,化学工业出版社,2004
    5.赵争鸣,刘建政,孙晓英等,太阳能光伏发电及其应用,北京,科学出版社,2005
    6. Kern Jr.E.C, Russell M.C, Combined photovoltaic and thermal hybrid collector systems. Proc. 13th IEEE Photovoltaic specialists, Washington, USA, 19?8, p1153-1157
    7. Hendrie S.D, Evaluation of combined photovoltaic/thermal collectors. Proc. ISES Int. Congress, Atlanta, USA, Vol. 3, p1865-1869
    8. Florschueta L.W, Extension of the Hottel-Whillier model to the analysis of combined photovoltaic/thermal flat plat collectors, Solar Energy, Vol. 22, p361-366
    9. Raghuraman P, Analytical predictions of liquid and air photovoltaic/thermal flat plate collector performance. J. of Solar Energy Engineering. Vol.103, p291-298
    10. Cox C.H, Raghuraman P, Design considerations for flat-plate photovolatic/thermal collectors, Solar Energy, Vol. 35, p227-245
    11. Lalovic B, A Hybrid amorphous silicon photovoltaic and thermal solar collector, Solar Cells, Vol.19, p131-138
    12. Loferski J.J, Ahmad J. M, Pandey A, Performance of photovoltaic cells incorporated into unique hybrid photovoltaic/thermal panels of a 2.8 Kw residential solar energy conversion system, Proc. of the 1988 Annual Meeting, American Solar Energy Society, Cambridge, Massachusetts, p427-432
    13. Bhargava A. K, Garg H. P, Agarwal R. K, Study of a hybrid solar system-solar air heater combined with solar cells, Energy Convers. Mgmt. Vol.31, p471-479
    
    14. Prakash J, Transient analysis of a photovoltaic-thermal solar collector for co-generation of electricity and hot air/water, Energy Convers. Mgmt. Vol. 35, p967-972
    
    15. Sopian K, Liu H. T, Yigit K. S. et al, An investigation into the performance of a double pass photovoltaic thermal solar collector. Proc. ASME Int. Mechanical Engineering Congress and Exhibition, San Francisco, USA, AES Vol.35, p89-94
    
    16. Sopian K, Liu H. T, Kakac S. etal, Performance of a hybrid photovoltaic thermal solar collector, Proc. ASME Int. Mechanical Engineering Congress and Exhibiton, Atlanta, USA, AES Vol. 36 p341-346
    
    17. Takashima T, Tanaka T, Doi T. etal, New proposal for photovoltaic-thermal solar energy utilization method, Solar Energy, Vol.52, p241-245
    
    18. Bergene T, Lovvik 0. M, Model calculations on a flat-plate solar heat collector with integrated solar cells. Solar Energe. Vol.55, p453-462
    
    19. Brinkworth B. J, Cross B. M, Marsahal R. H. etal, Thermal regulation of photovoltaic cladding. Solar Energy, Vol. 61, pl69-178
    
    20. Garg H. P, Ahhikari R. S, Conventional hybrid photovoltaic/thermal (PV/T) air heating collector: steady-state simulation, Renewable Energy, Vol.11, p363-385
    
    21. Imre L, Bitai A, Bohonyey F, Hecker G. etal, PV-Thermal combined building elements, Proc. ISES Solar World Congress, Budapest, Hungary, Vol.3, p277-280
    
    22. Posnansky M, Gnos S, Coonen, The importance of hybrid PV-building integration, Proc. IEEE First World Conf. on Photovoltaic Energy Conversion, Waikoloa, Hawaii, Vol.I, p998~1003
    23. Ricaud A, Roubeau P, Capthel, a 66% efficient hybrid solar module and the Ecothel co-generation solar system, Proc. IEEE First World Conf on Photovoltaic Energy Conversion, Waikoloa, Hawaii, Vol. Ⅰ, p1012-1015
    24. Elazari A, Multi solar system. Solar multimodule for electrical and hot water supply for residentially building. Proc. of 2nd World Conf. and Exhibition on Photovoltaic Solar Energy Conversion, Vienna, Austria, p2430-2433
    25. Hauser T, Rogash H, Latent heat storage on photovoltaics, Proc. 16th European PV Solar Energy Conf, Glasgow, U.K, Vol. Ⅲ, p2265-2267
    26. Thomas H.P, Hayter S.I, Martin R.L. etal, PV and PV/Hybrid products for buildings. Proc. 16th European Solar Energy Conf. Glasgow, U.K. Vol. Ⅱ, p1894-1897
    27. Huang B.J, Lin T.H, Huang W.C. etal, Performance evaluation of solar photovoltaic/thermal systems, Soalar Energy, Vol. 70, p443-448
    28. Ji Jie, Chow T.T, He Wei, Dynamic performance of hybrid photovoltaic/thermal collector wall in Hong Kong, Building and Environment, Vol. 38, p1327-1334, 2003
    29.季杰,程洪波,何伟等,太阳能光伏光热一体化系统的试验研究,太阳能学报,Vol.26.2,p170-174,2005
    30. Meyer, J.,etc. .Hot water for homes in South Africa with heat pump. Energy, the International Journal , 1991.16(7),p1039-1044
    31. Bivens, D.B, et al. HCFC-22 alternative for air conditioners and heat pumps. ASHRAE Transactions ,1994,100(2),p566-572
    32. Smith, F.J, etc,.Investigation of the potential effect of zeotropic refrigerant mixture on performance of a hot water heat pump. ASHRAE Trans. 1998.104(1),p387-394
    33. Andreas Buhring, Modeling and development of compression heat pumps in integrated ventilation and heat supply units for passive solar houses. ASHRAE Trans ,2003, p207-218
    34. P.G. Rousseau, G.P. Greyvenstein. Enheancing the impact of heat pump water heaters in the South African commercial sector. Energy, 25(2000) p51-70
    35. Ji Jie, Pei Gang, Chow T.T etal, Performance of multi-functional domestic heat pump system, Applied Energy, Vol. 80.3, p307-326,2005
    36. J.A. Duffle, W.A. Beckman. Solar Engineering of Thermal Processes[M], 2nd Edition, John Willy& Sons, Inc, 1991.2
    37.丁国良,张春路.制冷空调装置仿真与优化,北京:科学出版社,2001.6
    38.丁国良,小型制冷装置动态仿真研究,博士论文,上海交通大学热能动力工程学院,1992
    39.薛卫华,变频控制热泵式VRV空调机组数学模型,流体机械,Vol.31.9,p58-632003
    40.陈志澜,等.涡旋压缩机HFC替代工质的研究.制冷学报,1995,(1)
    41.李连生.涡旋压缩机,北京:机械工业出版社,1998
    42.陈芝久,蒋文强.制冷蒸发器与热力膨胀阀回路稳定性研究,上海交通大学学报,1990,(2)
    43. Hueller ZR. Matching of the Evaporator and Thermostatic Expansion Value by Using a Digital Computer. Proceeding of Ⅹ Ⅲ. Ⅰ. C. R. 1982, (2) :751~7581
    44. Wedekind GL, Bhatt B L, Beck B T. A-system mean void fraction model for predicting various transient phenomena associated with two phase evaporating and condensing flows. Int J Multiphase Flow,1978, (4) : 97~1141
    45.彦启森,等.空气调节用制冷技术,北京:中国建筑工业出版社,1985
    46.张早校,冯宵等,制冷与热泵,北京:化学工业出版社,2000.1
    47.刘志刚,刘咸定,赵冠春,制冷工质热物性程序的编制,科学出版社,1991
    48.张春路,基于模型的制冷空调装置智能仿真方法基础研究,博士论文,上海交通大学能源工程学院,1999
    49. www.hvacr.com.cn. 2004.11.
    50. Jie Ji, T.T Chow, Gang Pei. etc, Domestic air-conditioner and integrated water heater for subtropical climate. Applied Thermal Engineering. Vol. 23. (2003). P581-592
    51. M. Willatzen, N.B.O.L. Pettit, L. Ploug-Sorensen. A general dynamic simulation model for evaporators and condensers in refrigeration, International Journal of refrigeration, Vol. 21, Issue:5, pp. 398-414
    52.季杰,裴刚,何伟等,空调热水器一体机单独制热水模式的性能模拟和实验研究,暖通空调,2004,34(12)96-98
    53. M.N.A Hawlader, S.K. Chou, M.Z. Ullah, The performance of a solar assisted heat pump water heating system. Applied Thermal Engineering, 2001,21:1049-1065
    54.季杰等.家用空调和热水器一体化装置,中国专利,ZL 00 2 40603.9
    55.季杰,裴刚,何伟等,空调热水器一体机制冷兼制热水模式的性能模拟与实验研究,暖通空调,Vol.33(2),p19-23,2003
    56.珠海料压缩机有限公司,QX-218090压缩机规格书,2002
    57.春兰空调有限公司,KFR—35GW/A空调使用安装说明书,2003
    58.中华人民共和国国家标准,GB/T7725—1996《房间空气调节器》
    59.中华人民共和国国家标准,GB/T7725-1996附录A,制冷量和热泵制热量的试验及计算方法
    60.丁国良 张春路,制冷空调仿真装置与优化,北京,科学出版社,2001
    61.葛云亭,房间空调器仿真模型研究,博士论文,清华大学热能工程系,1997
    62. A.E. Dabiri, C.K. Rice. A compressor simulation method with correlaton for the level of sction gas superheat. ASHRAE. Trans. Vol. 87, Part 2,1981
    63. Bittle R R, Wolf D A, Pate M B .A generalized performance prediction method for adiabatic capillary tubes. HVAC&R Research, 1998,4(1)
    64. Melo C, Ferreira R T S, Neto C B, etal. An experimental analysis of adiabatic capillary tubes. Applied Themal Engineering, 1999,19(6)
    65. Dongsoo Jung, Chunkun Park etal. Capillary tube selection for HCFC22 alternatives. International Journal of Refrigeration. 1999,22(8).
    66. Bansal P K, Rupasinghe A S. An experical correlation for sizing capillary tubes. Int J Refrigeration, 1996,19(8)
    67. Chert S L, Liu C H, Jwo C S. On the develoment of rating correlations for R134a flowing through adiabatic capillary tubes. ASHRAE Transaction, 1999,105(2)
    68.《中国能源发展报告》编委会,中国能源发展报告,中国计量出版社,2001
    69.徐邦裕,陆亚俊等,热泵,中国建筑工业出版社,1988.
    70.吴志坚,李颂哲等,热泵在我国开发与应用的可行性论证,中科院广州能源研究所,1987.
    71.王庆数,ENERGY IN CHINA,冶金工业出版社,1988
    72. Bivens, D.B, et al. HCFC-22 alternative for air conditioners and heat pumps. ASHRAE Transactions ,1994,100(2):566-572
    73. Meyer, J.P, and G..P Greyvenstein..Hot water for homes in South Africa with heat pump. Energy, 1991.16(7):1039-1044
    74. Smith, F.J, and J.P. Meiyer..Investigation of the potential effect of zeotropic refrigerant mixture on performance of a hot water heat pump. ASHRAE Transactions . 1998.104(1):387-394
    75. Spatz, M.W, and J.~-Zheng. R-22 Alternative refrigerant :Performance in unitary equipment. ASHRAE Transactions 1993.99(2):779-785
    76. Sporn P and Ambrose ER. The heat pump and solar enegy. Proceedings of the World Symposium on Appiied Solar Energy, Phoenix, Arizona, 1955
    77. F.B. Gorozabel Chata, S.K. Chaturvedi, Analysis of adirect expansion solar assisted heat pump using different refrigerants[J].Energy Conversion & Management, 2005,46:2614-2624
    78. S.K. Chaturvedi, Y.F. Chiang and A.S. Roberts, Analysis of two-phase flow solar collector with application to heat pumps[J]. Joural of Solar Energy Engineering, 1982,104:358-365
    79. S.K. Chaturvedi,Y.F and James Y. Shen, Thermal performance of a direct expansion solar-assisted heat pump[J]. Solar Energy 1984,33:155-162
    80. M.P.O' Dell, J.W. Mitchell, Design method and performance of heat pumps with refrigerant-filled solar collectors. Joural of Solar Energy Engineering, 1984,106:159-164
    81. G..L. Morrison, Simulation of packaged solar heat-pump water heaters. Solar Energy, 1994,53:249-257
    82. M.N.A. Hawlader, K.A. Jahangeer, Solar heat pump drying and water heating in the tropics. Solar Energy, Available online 16 June 2005
    83. J.G. Cervantes and E. Torres-Reyes, Experiments on a solar-assisted heat pump and an exergy analysis of the system. Applied Thermal Engineering, 2002,22:1289-1297
    84. B.J. Huang and J.P. Chyng, Performance characteristic of integral type solar-assisted heat pump. Solar Energy, 2001,71:403-414
    85. Viorel Badescu, First and second law analysis of a solar assisted heat pump based heating system, 2002,43:2539-2552
    86.旷玉辉,王如竹,许煜雄,直膨式太阳能热泵供热水系统的性能研究,工程热物理学报,2004,25(5):737-740
    87.旷玉辉,王如竹,直膨式太阳能热泵热水器的试验研究,工程热物理学报,2005,26(3):379-381
    88.余延顺,廉乐明,寒冷地区太阳能—土壤源热泵系统运行方式的探讨,太阳能学报,2003,24(1):111-115
    89.李舒宏,武文彬,张小松等,太阳能热泵热水装置试验研究与应用分析,东南大学学报(自然科学版)2005,35(1):82-85
    90.杨卫波,施明恒,董华,太阳能土壤源热泵系统联合供暖运行模式的探讨,暖通空调,2005,35(8):25-31
    91.林伟,曾祖勤,沈辉等,深圳首个户用太阳能示范系统分析,太阳能学报,2005,26(2):174-182

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700