用户名: 密码: 验证码:
基于储能装置不同接入方式的微电网控制策略与运行特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
储能装置作为微电网中不可或缺的重要设备,在保证系统安全稳定运行、改善电能质量、提高供电可靠性以及优化微电网经济效益等方面发挥着重要作用。本文以风光储互补微电网为研究对象,实现微电网安全稳定运行为目标,研究了储能装置在微电网中的作用机理。
     首先,介绍了微电网中各种类型的储能装置,分析了储能装置在微电网中作用,根据储能装置不同接入方式,将微电网中储能系统分为分布式储能和集中式储能。采用蓄电池储能作为研究对象,建立了蓄电池的等效电路模型和充放电电路,设计了蓄电池的充放电控制方法。
     其次,研究了微电网的运行特性和控制策略。风光储微电网中,光伏电池、直驱式永磁同步风力电机以及蓄电池储能都是通过逆变器并网发电,所以研究了基于电力电子接口的微电源三种控制策略:PQ控制、V/F控制和Droop控制。研究了微电网系统层面控制策略:主从控制和对等控制。
     然后,为了搭建风光储微电网系统,建立了两级式光伏并网发电系统和直驱式永磁同步风力发电系统。采用基于Boost电路的占空比扰动观察法的光伏电池最大功率点跟踪控制方法和最优叶尖速比的最大风能追踪控制方法,实现太阳能和风能的最大利用率。并采用直流电压外环电感电流内环的并网逆变器控制策略,实现了光伏电池和直驱永磁同步风力电机的并网发电。
     最后,建立了含集中式储能和含分布式储能两种不同拓扑结构的风光储微电网系统,含集中式储能的微电网设计为主从控制、含分布式储能的微电网设计为对等控制。利用Matlab/Simulink软件进行仿真实验,两种不同结构的微电网,都实现了并网模式和孤岛模式时安全稳定运行,以及两种运行模式之间的平滑切换,验证了设计的控制策略的有效性和正确性。
Energy storage device as an integral part of the microgrid equipment plays an important role to ensure safe and stable operation of the system, to improve power quality and reliability, and to optimize the economic benefits of micro-grid. In this thesis, the hybrid microgrid composed of wind farm, photovoltaic generation and energy storage system; is the research object. The realization of the microgrid security and stability is the goal, and the mechanism of energy storage devices in the micro-grid was researched.
     First, the various types of energy storage device in microgrid were recommended, and the effect of energy storage device in the microgrid was analyzed. The microgrid energy storage system was classified into distributed storage and centralized storage by the different access of energy storage device. As the Battery energy storage was the research object, a battery equivalent circuit model and charging and discharging circuit was established, the charge and discharge control method of the battery was designed.
     Secondly, the operation characteristics and control strategy of the microgrid was researched. In the hybrid microgrid composed of wind farm, photovoltaic generation and energy storage system;, photovoltaic cells, direct drive permanent magnet synchronous wind motor and battery energy storage was connected to the grid through the inverter. So three control strategies based on power electronics interface have been researched. They were PQ control, V/F control and Droop control. What's more, the system-level control strategies of the microgrid have been researched. They were centralized control and peer-to-peer control.
     Then, in order to construct the microgrid system containing wind power, solar power and energy storage, the two-stage photovoltaic power generation system and the direct-drive permanent magnet synchronous wind power generation system was established. The maximum power point tracking control method of the photovoltaic cell based on the perturbation and observation method of the duty ratio in a the Boost circuit and the maximum wind power tracking control method under optimal tip speed ratio have been devised, achieve the maximum utilization of solar and wind energy. In addition, the grid-connected inverter control strategy using the DC voltage outer loop and the inductor current inner loop was designed, which realized the photovoltaic cells and direct-drive permanent magnet synchronous wind motors connecting to the power generation.
     Finally, the microgrid system containing distributed energy storage and centralized storage scenery storage, two different topologies, was established. Moreover, the microgrid with centralized storage was designed as master-slave control, and the microgrid with distributed energy storage was designed as peer-to-peer control. Basing on the Matlab/Simulink software simulation, the two different structures of microgrid realized safe and stable operation under network mode and island mode, as well as the smooth switching between the two modes of operation. In the end, the effectiveness and correctness of the control strategy was verified.
引文
[1]王成山,高菲,李鹏等.低压微网控制策略研究[J].中国电机工程学报,2012,32(25):2-8.
    [2]李鹏,张玲,盛银波.新能源及可再生能源并网发电规模化应用的有效途径微网技术[J].华北电力大学学报,2009,36(1):10-14.
    [3]梁有伟,胡志坚,陈允平.分布式发电及其在电力系统中的应用研究综述[J].电网技术,2003,2(12):71-76.
    [4]Lasseter R H. Microgrids[C]. Proceedings of IEEE Power Engineering Society Winter Meeting. NewYork.2002(1):305-308.
    [5]王成山,李鹏.分布式发电、微网与智能配电网的发展与挑战[J].电力系统自动化,2010,34(2):10-14.
    [6]Lasseter R H, Paigi Paolo. Microgrid:a conceptual solution[C]. Annual Power Electronics Specialists Conference. Anchen, Germany.2004(1):4285-4290.
    [7]盛鹍,孔力,齐智平等.新型电网-微电网(Microgrid)研究综述[J].继电器,2007,35(12):75-80.
    [8]鲁宗相,王彩霞,闵勇等.微电网研究综述[J].电力系统自动化,2007,31(19):104-111.
    [9]张建华,黄伟.微电网运行控制与保护技术[M].北京:中国电力出版社,2010.
    [10]N. Hatziargyriou, H. Asano, R. Irvanani, and et al. An overview of on goning research, development, and demonstration projects[J]. IEEE power & energy magazine,2007(1):78-94.
    [11]N. Natziargyriou. Overview of Microgrid R&D in Europe[C]. Nagoya 2007 Symposium on Microgrids. Nagoya.2007:479-485.
    [12]S. Morozumi. Micro-grid demonstration projects in Japan[C]. IEEE power Conversion Conference,2007:635-642.
    [13]CHEN Haisheng, CONG T N, YANG Wei, et al. Progress in electrical energy storage system:a critical review[J]. Progress in Nature Science,2009,19(3):291-321.
    [14]程华,徐政.分布式发电中的储能技术[J].高压电器,2003,39(3):53-56.
    [15]周林,黄勇,郭珂.微电网储能技术研究综述[J].电力系统保护与控制,2011,39(7):147-152.
    [16]陈伟,石晶,任丽等.微网中的多元复合储能技术[J].电力系统自动化,2010,34(1):112-115.
    [17]邱培春,葛宝明,毕大强.基于蓄电池储能的光伏并网发电功率平抑控制研究[J].电力系统保护与控制,2011,39(3):29-33.
    [18]李蓓,郭剑波.平抑风电功率的电池储能系统控制.策略[J].电网技术,2012,36(8):38-43.
    [19]ZHOU Haihua, BHATTACHARYA T, TRAN D, et al. Composite energy storage system involving battery and ultracapacitor with dynamic energy management in microgrid applications[J]. IEEE Trans on Power Electronics,2011,26(3):923-930.
    [20]张国驹,唐西胜,齐智平.超级电容器与蓄电池混合储能系统在微网中的应用[J].电力系统自动化,2010,34(12):85-89.
    [21]陈健,王成山,赵波等.考虑储能系统特性的独立微电网系统经济运行优化[J].电力系统自动化,2012,36(20):25-31.
    [22]刘天琪,江东林.基于储能单元运行方式优化的微电网经济运行[J].电网技术,2012,36(1):45-50.
    [23]丁明,张颖媛,茆美琴等.包含钠硫电池储能的微网系统经济运行优化[J].中国电机工程学报,2011,31(4):7-14.
    [24]唐西胜,邓卫,齐智平.基于储能的微网并网/离网无缝切换技术[J].电工技术学报,26(增刊1):279-284.
    [25]赵冬梅,张楠,刘燕华.基于储能的微网并网和孤岛运行模式平滑切换综合控制策略[J].电网技术,2013,37(2):301-306.
    [26]Gyuk I, Kulkarni P, Sayer J H, etc al. The United States of storage [electric energy storage][J]. IEEE Power and Energy Magazine,2005,3(2):31-39.
    [27]Kinjo T, Senjyu T, Urasaki N, et al. Output leveling of renewable energy by electric double-layer capacitor applied for energy storage system[J]. IEEE Transaction on Energy Coversion,2006,21(1):221-227.
    [28]王立乔,孙孝峰.分布式发电系统中的光伏发电技术[M].北京:机械工业出版社,2010.
    [29]贾宏新.储能技术在风力发电系统中的应用[J].可再生能源,2009,27(6):10-15.
    [30]尹忠东,张哲然,周瑞臣.基于超级电容储能的可变速驱动抵御扰动研究[J].水电能源科学,2005,23(6):81-83.
    [31]张文亮,丘明,来小康.储能技术在电力系统中的应用[J].电网技术,2008,32(7):1-9.
    [32]王中秋.分布式储能对微网运行特性作用的研究[D].华北电力大学硕士学位论文,2011.
    [33]刘霞.含多种分布式电源和储能的微电网控制技术[D].浙江大学硕士学位论文,2012.
    [34]肖有文.铅酸蓄电智能充电器研究与设计[D].天津大学硕士学位论文,2010.
    [35]王治国,高玉峰,杨万利.铅酸蓄电池等效电路模型研究[J].装甲兵工程学院学报,2003,17(1):78-81.
    [36]曾杰.可再生能源发电与微网中储能系统的构建与控制研究[D].华中科技大学博士学位论文,2009.
    [37]Olivier Tremblay, Louis-A, Dessaint, Abdel-Illah Dekkiche. A Generic BatteryModel for the Dynamic Simulation of Hybrid Electric Vehicles[C]. Proceedings of the 2007 IEEE VehiclePower and Propulsion Conference.2007:284-289.
    [38]肖朝霞.微网控制与运行特性分析[D].天津大学博士学位论文,2008.
    [39]张兴.PWM整流器及其控制策略的研究[D].合肥工业大学博士学位论文,2003.
    [40]王成山,李琰,彭克.分布式电源并网逆变器典型控制方法综述[J].电力系统自动化学报,2012,24(2):12-20.
    [41]王成山,肖朝霞,王守相.微网综合控制与分析[J].电力系统自动化,2008,32(7):98-103.
    [42]Barsali S, Ceraolo M, Pelacchi P. Control techniques of dispersed generators to improve the continuity of electricity supply[C]. Proceedings of Power Engineering Society Winter Meeting.Vol 2, Jan 27-31,2002, New York, USA:789-794
    [43]庄岩,刘承志,陈勇等.基于电压电流双环解耦电压型逆变器控制的研究[J].伺服控制,2011,5:37-39.
    [44]王志群,朱守真,周双喜等.逆变型分布式电源控制系统的设计[J].电力系统自动化,2004,28(24):64-66.
    [45]鞠洪新.分布式微网电力系统中多逆变电源的并网控制研究[D].合肥工业大学博士学位论文,2006.
    [46]王成山,肖朝霞,王守相.微网中分布式电源逆变器的多环反馈控制策略[J].电工技术学报,2009,24(2):100-107.
    [47]Engler A. Applicability of droops in low voltage grids[J]. International Jouranal of DistributedEnergy Resources,2005,1(1):1-6.
    [48]杨占刚.微网实验系统研究[D].天津大学博士学位论文,2010.
    [49]郭力,王成山.含多种分布式电源的微网动态仿真[J].电力系统自动化,2009,33(2):82-86.
    [50]Dimeas A L, Hatziargyriou N D. Operation of a multiagent system for MicroGrid control[J]. IEEE Trans on Power Systems,2005,20(3):1447-1455.
    [51]毕大强,牟晓春,任先文等.含多微源的微电网控制策略设计[J].高电压技术,2011,37(3):687-693.
    [52]Katiraei F, Iravani M. Power management strategies for a microgrid with multiple distributedgeneration units[J]. IEEE Trans on Power Systems,2006,21(4):1821-1831.
    [53]Guerrero J M, Matas J, De Vicuna L G, et al. Wireless control strategy for parallel operation of distributed generation inverters[J].IEEE Trans on Industrial Electronics,2006,53(5):1461-1470.
    [54]曹太强.光伏发电系统及其控制技术研究[D].西南交通大学博士学位论文,2010.
    [55]沈辉,曾祖勤.太阳能光伏发电技术[M].北京:化学工业出版社,2006.
    [56]刘东冉,陈树勇,马敏等.光伏发电系统模型综述[J].电网技术,2011,35(8):48-52
    [57]陈中华,赵敏荣,葛亮等.硅太阳电池数学模型的简化[J].上海电力学院学报,2006,22(2):178-180.
    [58]唐敏,任奇.一种太阳能电池最大功率点跟踪的算法研究[J].通信电源技术,2007,24(4):12-13.
    [59]崔岩,蔡炳煌,李大勇等.太阳能光伏系统MPPT控制算法的对比研究[J].太阳能学报,2006,27(6):535-539.
    [60]符江升.基于超级电容储能的光伏发电系统技术研究[D].西南交通大学硕士学位论文,2012.
    [61]魏伟,许胜辉.光伏并网逆变器的研究[J].电力电子技术,2008,42(11):43-44.
    [62]张兴.太阳能光伏并网发电及其逆变控制[M].北京:机械工业出版社,2011.
    [63]吴双群,赵丹平,贾彦等.风力发电原理[M].北京:北京大学出版社,2011.
    [64]李兴国,何玉林,金鑫.风力发电机组系统建模与仿真[J].重庆大学学报,2008,31(11):1126-1230.
    [65]柳明,柳文.基于风速和空气密度估计的最大风能捕获[J].电网技术,2009,33(1):56-60.
    [66]刘其辉.变速恒频风力发电系统运行与控制研究[D].浙江大学博士学位论文,2005.
    [67]孙延昭,黄守道,黄科员等.直驱式永磁同步风电机侧PWM控制[J].电气,2009,39(11):42-44.
    [68]S H Song, S I Kim, N K Hahm. Implementation and control of grid connected AC-DC-AC power converter for variable speed wind energy conversion system[C]. 18th Annual IEEE Applied Power Electronics Conference and Exposition, Miami Beach, FL, United States,2003,1:154-158.
    [69]郑竞宏,王燕廷,李兴旺等.微电网平滑切换控制方法及策略[J].电力系统自动化,2011,35(18):17-24.
    [70]张纯,陈民铀,王振存.微网运行模式平滑切换的控制策略研究[J].电力系统保护与控制,2011,39(20):1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700