用户名: 密码: 验证码:
新型高效半导体光催化材料及光催化机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文针对目前半导体光催化剂可见光光催化效率低的问题,采用掺杂、复合等技术制备出了Si离子掺杂、Sn离子掺杂、N离子和Zr离子双相掺杂以及N-TiO2与N-ZrO2复合纳米结构的催化剂。研究了催化剂制备过程中掺杂离子的掺杂模式、半导体之间的复合模式以及催化剂的能带结构;并讨论了催化剂可见光光催化活性机理。另外,对近几年来被引入光催化领域的量子点结构进行了拓展性研究,通过理论模拟,对量子点阱能带结构进行了计算,分析了影响其能带结构的因素。其主要内容包括以下几个方面:
     1、采用溶胶-凝胶法制备出纯TiO2和不同浓度Sn4+离子掺杂的TiO2光催化剂(TiO2-Snx%),x%代表Sn4+离子掺杂的TiO2样品中Sn4+离子与Sn4+和Ti4+离子的摩尔百分含量。利用XRD(X射线衍射谱),XPS(X射线光电子能谱)和SPS(表面光电压谱)确定了TiO2-Snx%催化剂的晶相结构和能带结构,结果证明:当Sn4+离子浓度较低时,Sn4+离子进入TiO2晶格,取代并占据Ti4+离子的位置,形成取代式掺杂结构(Ti1-xSnxO2),其掺杂能级在导带下0.38eV处;当Sn4+离子浓度较高时,掺入的Sn4+离子在TiO2表面生成金红石TiO2,形成TiO2和SnO2复合结构(TiO2/SnO2), SnO2的导带位于Ti02导带下0.33eV。利用瞬态光电压谱和荧光光谱研究了TiO2-Snx%催化剂光生载流子的分离和复合的动力学过程,结果表明,Sn4+离子掺杂能级和表面Sn02能带的存在促进了光生载流子的分离,有效地抑制了光生电子与空穴的复合;然而,Sn4+离子掺杂能级能更有效的增加光生载流子的分离寿命,提高了光生载流子的分离效率,从而揭示了TiO2-Snx%催化剂的光催化机理。
     2、采用溶胶-凝胶法制备出Si4+离子掺杂的TiO2可见光催化剂(TiO2-XSi),该催化剂的可见光催化活性高于纯Ti02和N掺杂的TiO2(Ti02-N)。利用XRD、 XPS、FT-IR和UV-Vis DRS等表征技术,研究了TiO2-XSi催化剂的晶体结构、能带结构和表面性质。研究发现:掺入Si4+离子在Ti02粒子表面主要形成Ti-O-Si物种,并在导带下0.2-0.6eV区域形成表面态能级,该表面态能级存在是催化剂产生可见光响应,实现可见光催化的根本原因。另外,讨论了Si4+离子的掺杂对金红石相和晶粒的生长抑制作用,以及催化剂的比表面积和表面羟基等物种增加对可见光催化的影响。
     3、采用溶胶-凝胶法制备了一系列的N离子和Zr离子双掺的TiO2催化剂(TiO2-x%Zr)。研究发现,可见光条件下TiO2-x%Zr对对氯苯酚的降解率高于N离子单掺的TiO2催化剂。利用XRD、 Raman、BET、XPS、UV-vis DRS和PL表征技术对催化剂进行了表征。研究发现,在TiO2-N-x%Zr样品中,掺入的N离子以NOx物种的形式存在于TiO2-N-x%Zr催化剂的表面,NOx物种的能级位于TiO2导带上方0.3eV处。掺入的Zr离子有两种存在形式:一种是进入Ti02晶格中并占据了Ti离子的位置;另一种是在TiO2-N-x%Zr催化剂的表面形成ZrTiO4物种。TiO2和其表面的少量ZrTiO4形成了TiO2/ZrTiO4异质结构。电子从NOx物种能级到TiO2导带的跃迁和从ZrTiO4的价带到TiO2导带的跃迁引起了TiO2-N-x%Zr样品对可见光的响应。此外,以取代式掺杂模式存在的Zr离子和NOx物种能级的存在促进了光生电子和光生空穴的分离。因此,TiO2-N-x%Zr样品展现出高于TiO2-N和TiO2-x%Zr的可见光光催化活性。
     4、利用溶胶-凝胶法,将N离子掺杂的TiO2和N离子掺杂的ZrO2进行复合,制备出了一种新型的复合结构催化齐(?)(TiO2-N/ZrO2-N)。表面NO物种能级的引入、异质结构界面能带结构的形成以及参与光催化反应的光生载流子的数量的增多是TiO2-N/ZrO2-N催化剂表现出高于TiO2-N和纯TiO2的对甲醛的光催化活性的主要原因。此外,ZrO2-N的表面氧空位促进了光生电子和光生空穴在TiO2-N和ZrO2-N界面间的分离,从而有利于TiO2-N/ZrO2-N催化剂光催化活性的提高。我们通过DFT理论的计算模拟,确定了表面NO物种和氧空位能级的位置,且在此基础上对光催化反应的动力学过程进行了讨论。
     5、利用有效质量近似理论对InAS/InxGa1-xAs量子点阱结构的能带结构和光吸收谱进行了计算。研究表明,通过改变量子点的尺寸或InxGa1-xAs层的厚度能够实现对量子点阱的能带结构的调整。这为量子点阱结构在光催化领域的应用提供了理论依据。
Due to the lower utilization of visible light of semiconductor catalysts, we prepared Si-doped TiO2) Sn-doped TiO2, N/Zr-codoped TiO2and TiO2-N/ZrO2-N samples by using the methods of doping and coupling. We inveatigated the doping and coupling mechanism in the preparation of photocatalysts, as well as the photocatalytic of the catalysts under visible light irradiation. Besides, we paid attention to the quantum dots which was introduced to the photocatalysis filed at the recently years. The energy band and absorption spectures of quantum dots were calculated. We analysis the factors which leads the changing of the energyband of quantum dots. Our key words and results are shown as follows:
     1. Pure TiO2and Sn4+doped TiO2(TiO2-Sn x%) photocatalysts were prepared by a sol-gel method, where x%represents the nominal molar percentage of Sn4+ions in the TiO2structure. The crystal structure and energy band structure of the resultant catalysts were characterized by X-ray diffraction, X-ray photoelectron spectroscopy and surface photovoltage spectroscopy. The results show that for a low content of Sn4+ions, the Sn4+ions are doped into the TiO2lattice and replace lattice Ti4+ions in a substitute mode (Ti1-xSnxO2). The energy levels of these Sn4+ions are located0.38eV below the conduction band. Moreover, the rutile SnO2crystal structure evolves with increasing content of Sn4+ions, i.e., a TiO2/SnO2structure is formed. The conduction band of SnO2is located0.33eV lower than that of TiO2. The separation and recombination mechanism of the photo-generated carriers was characterized by photoluminescence and transient photovoltage techniques. The results showed that the formation of the energy levels of Sn4+ions and the conduction band of rutile SnO2can enhance'the separation of the photo-generated carriers, and suppress the recombination of photo-generated carriers. However, the energy levels of Sn4+can lead to a much longer lifetime and higher separation efficiency of the photo-generated carriers. For different content of Sn4+in Sn4+ion doped TiO2(TiO2-Snx%), the abovementioned aspects improve the photocatalytic activity.
     2. TiO2photocatalysts (TiO2-XSi) doped by different contents of silicon were prepared by a sol-gel method. The catalysts exhibited a better photocatalytic ability than the pure TiO2and N-doped TiO2(TiO2-N). The samples were characterized by XRD, XPS, FT-IR. and UV-Vis diffuse reflectance absorption spectra. It was revealed that the doped silicon ions formed Si-O-Ti bonds on the surface of TiO2particles. And thus, surface state energy attributed to the silicon dopant was located at0.2-0.6eV below the conduction band of TiO2, which enhanced the response to the visible light and photocatalytic ability. It was discussed the suppression to the formation of rutile phase and the growth of titanium dioxide crystals because of the doped silica in TiO2particles and the effect of catalysts'surface area and surface species such as hydroxyl to the photocatalytic activity.
     3. A series of nitrogen and zirconium co-doped TiO2(TiO2-N-x%Zr) photocatalysts have been synthesized by a sol-gel method. They show higher activities than both nitrogen doped TiO2(TiO2-N) and zirconium doped TiO2(TiO2-x%Zr) for degradation of4-chlorophenol (4-CP) under visible-light irradiation. The samples were characterized by XRD, Raman, BET, XPS, UV-vis DRS and PL techniques. For TiO2-N-x%Zr samples, the introduced nitrogen is present as surface species (NOx) whose energy levels locate at0.3eV above the valence band of TiO2. Zirconium irons can incorporate into TiO2lattice and substitute the lattice Ti to form substitutional Zr4+irons, whose energy levels located below the conduction band of TiO2. Besides, on the surface of TiO2-x%Zr samples, a small amount of ZrTiO4species was formed, leading to the formation of TiO2/ZrTiO4heterostructures. As a result, the electronic excitations from energy level of NOx species to the conduction band of TiO2together with the electronic excitations from valance band of ZrTiO4to the conduction band of TiO2lead to significant absorption in the visible-light region. In addition, the separation of photogenerated electrons and holes was enhanced by the introduction of surface nitrogen specials and substitutional Zr4+irons. Therefore, TiO2-N-x%Zr samples exhibit higher activity than both TiO2-N and TiO2-x%Zr under visible-light irradiation.
     4. A new type of photocatalyst was prepared by coupling nitrogen-modified TiO2(TiO2-N) and nitrogen-modified ZrO2(ZrO2-N)[TiO2-N/ZrO2-N] with using a simple sol-gel method. Under visible and UV light irradiation, the TiO2-N/ZrO2-N photocatalyst exhibits a higher photocatalytic activity for HCHO photodegradation than that of TiO2-N as well as pure TiO2, which is due to the introducing of surface nitrogen species (such as N-O species), the formation of energy band structure at heterointerface and the increase of the total number of photogenerated charge carriers (electrons and holes). Besides, the surface oxygen vacancies on the surface of ZrO2-N plays an important role for promoting the separation of photogenerated electrons and holes at the heterointerface in TiO2-N/ZrO2-N and leads to further improvement of the photocatalytic activity of TiO2-N/ZrO2-N photocatalyst. Moreover, for TiO2-N/ZrO2-N, the energy levels of surface nitrogen species and the energy band structure are ascertained by the experiment results and the DFT calculation. The photocatalytic mechanism is discussed by using the energy band structure of TiO2-N/ZrO2-N under visible and UV irradiation.
     5. Building on the effective-mass envelope function theory, we focuses on the study of the energy band and absorption coefficient in InAs/InxGal-xAs quantum dots in a wells (DWELL) structures. The enegy band structure can be controlled through changing the size of the resultant quantum dots as well as changing the depth of the InxGa1-xAs layer. Hence, the InAs/InxGa1-xAs quantum dot may be can applied in the photocatalysis fileds.
引文
[1]Joo J, Kwon S G, Yu T, Cho M, Lee J, Yoon J, and Hyeon T. Large-Scale Synthesis of TiO2 Nanorod via Nonhydrolytic Sol-Gel Ester Elimination Reaction and Their Application to Photocatalytic Inactivation of E. coli. J. Phy. Chem. B,2005,109(32):15297-15302
    [2]Ohko Y, Fujishima A, Hashimoto K. Kinetic Analysis of the Photocatalytic Degradation of Gas-phase 2-Propanol under Mass Transport-Limited Condition with a TiO2 Film Photocatalyst. J. Phy. Chem. B,1998,102:1724-1729
    [3]Schwitzgebel J, Ekerdt J G, Sunada F, Lindquist S E, Heller A. Increasing the Efficiency of the Photocatalytic Oxidation of Organic Film on Aqueous Solution by Reactively Coating the TiO2 Photocatalyst with a Chlorinated Silicone. J. Phy. Chem. B,1997,101:2621-2624
    [4]El-Roz M, Kus M, Cool P, and Thibault-Starzyk F. New Operando IR Technique to Study the Photocatalytic Activity and Selectivity of TiO2 Nanotubes in Air Purification:Influence of Temperature, UV Intensity, and VOC Concentration. J. Phy. Chem. C,2012,116: 13252-13263
    [5]Sunada F, and Heller A, Effects of Water, Salt Water, and Silicone Overcoating of the TiO2 Photocatalyst on the Rates and Products of Photocatalytic Oxidation of Liquid 3-Octanol and 3-Octanoe. Environ. Sci. Technol.,1998,32:282-286
    [6]Yu H, Chen S, Quan X, Zhao H, and Zhang Y. Fabrication of a TiO2-BDD Heterojunction and its Application As a Photocatalyst for the Simultaneous Oxidation of an Azo Dye and Reduction of Cr(VI). Environ. Sci. Technol.,2008,42:3791-3796
    [7]Wessels K, Minnermann, Rathousky J, Wark M, and Oekennann T. Influence of Calcination Temperature on the Photoelectrochemical and Photocatalytic Properties of Porous TiO2 Films Electrodeposited from Ti(IV)-Alkoxide Solution. J. Phys. Chem. C,2008,112: 15122-15128
    [8]Valence State and Catalytic Role of Cobalt Ions in Cobalt TiO2 Nanoparticle Photocatalysts for Acetaldehyde Degradation under Visible Light. J. Phys. Chem. C,2011,115: 17359-17367
    [9]Zhang J, and Nosaka Y. Quantitative Detection of OH Radicals for Investigating the Reaction Mechanism of Various Visible-Light TiO2 Photocatalysts in Aqueous Suspension. J. Phys. Chem. C,2013,117:1383-1391
    [10]Noska Y. Takahashi S, Salkamoto H, and Nosaka A. Reaction Mechanism of Cu(II)-Grafted Visible-Light Responsive TiO2 and WO3 Photocatalysts Studied by Means of ESR Spectroscopy and Chemiluminescence Photometry. J. Phys. Chem. C,2011,115: 21283-21290
    [11]Guo Y, Quan X, Lu N, Zhao H, and Chen S, High Potocatalytic Capability of Self-Assembled Nanoporous WO3 with Preferential Orientation of (002) Planes. Environ. Sci. Technol., 2007,41:4422-4427
    [12]Das J, and Khushalani D. Nonhydrolytic Route for Synthesis of ZnO and Its Use as a Recyclable Photocatalyst. J. Phys. Chem. C,2010,114:8114-8114
    [13]Wang J, Liu P, Fu X, Li Z, Han W and Wang X. Relationship between Oxygen Defects and the Photocatalytic Property of ZnO Nanocrystals in Nafion Membranes. Langmuir,2009,25: 1214-1223
    [14]Raula M, Rashid M, Paira T, Dinda E, Mandal T. Ascorbate-Assisted Growth of Hierarchical ZnO Nanostructures:Sphere, Spindle, and Flower and Their Catalytic Properties. Langmuir, 2010,26:8769-8782
    [15]Becher J, Raghupathi K, Pierre J, Zhao D, and Koodali R. Tuning of the Crystallite and Particle Sizes of ZnO Nanocrystalline Materials in Solvothermal Synthesis and Their Photocatalytic Activity for Dye Degradation. J. Phys. Chem. C,2011,115:13844-13850
    [16]Wang Y, Li X, Lu G, Quan X, and Chen G Highly Oriented 1-D ZnO Nanorod Arrays on Zinc Foil:Direct Growth from Sunstrate, Optical Properties and Photocatalytic Activities. J. Phys. Chem. C,2008,112:7332-7336
    [17]Fu H, Xu T, Zhu S, and Zhu Y. Photocorrosion inhibition and Enhancement of Photocatalytic Activity for ZnO via Hybridization with C60.Environ. Sci. Technol.,2008,42:8064-8069.
    [18]Fujishima, A.; Honda, K. Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature,1972,238(5358):37-38
    [19]Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor power. J. Phys. Chem.,1977,81:1481-1488
    [20]Li G, Zhang D, and Yu J. A new Visible-Light Photocatalyst:CdS Quantum Dots Embedded Mesoporous TiO2. Environ. Sci. Technol.2009,43,7079-7085
    [21]Ge L, Zuo F, Liu J, Ma Q, Wang C, Sun D, Bartels L, and Feng P. Synthesis and Efficient Visible Light Photocatalytic Hydrogen Evolution of Polymeric g-C3N4 Coupled with CdS Quantum Dots. The Physical Chemistry C,2012,116,13708-13714.
    [22]余家国,赵建修.半导体多相光催化原理及其在环境保护中的应用.武汉工业大学学报,2000,22:12-15.
    [23]Martin S. T. Time-resolved microwave cinducyivity(TRMC) 1.TiO2 photoactivity and size quantization. J. Chem Soc Trans Faraday Soc.1994,90:3-315
    [24]George S, Pokhrel S, Ji Z, Henderson BL, Xia T,Li L, Zink J, Nel A, Madler L. Role of Fe doping in tunning the band gap of TiO2 for the photo-oxidation-induced cytotoxicity paradigm. J. Am Chem Soc.,2011,133:11270
    [25]Yang G, Jiang Z, Shi H, Xiao T and Yan Z. Preparation of highly visible-light active N-dopedTiO2. J. Mater. Chem.,2010,20:5301-5309
    [26]Wei F, Ni L, Gui P. Preparation and characterization of N-S-codoped TiO2 photocatalyst and its photocatalyst and its photocatalytic activity. Journal of Hazardous Materials 156:135.
    [27]Zhu H, Tao J, and Dong X. Preparation and Photoelectrochemical Activity of Cr-Doped TiO2 Nanocavities. J. Phys. Chem. C,2010,114:2873-2879.
    [28]Chandiran A, Sauvage F, Casas-Cabanas M, Comte P, Zakeeruddin S M, and Graetzel. Doping a TiO2 Photoanode with Nb5+ to Enhance Transparency and Charge Collection Efficiency in Dye-Sensitized Solar Cells. J. Phys. Chem. C,2010,114:15849-15856
    [29]George S, Pokhrel, Ji Z, Henderson B, Xia T, Li L, Zink J, Nel A, and Madler. Role of Fe Doping in tuning the Band Gap of TiO2 for the Photo-Oxidation-Induced Cytotoxicity Paradigm. J. Am. Chem. Soc.,2011,113:11270-11278.
    [30]Klosek and Raftery. Visible Light Driven V-Doped TiO2 Photocatalyst and Its Photooxidation of Ethanol. J. Phys. Chem. B.,2001,105:2815-2819.
    [31]Yin J, and Zhao X. Preparation and Enhanced Electrorheological Activity of TiO2 Doped with Chromiun Ion. Chem. Mater.,2004,16:321-328
    [32]Pereira A, Gracia L, Beltran, Lisboa-Filho P, Silva J, and Andres J. Structural and Electronic Effects of Incorporating Mn in TiO2 Films Grown by Sputtering:Anatase versus Rutile. J. Phys. Chem. C,2012,116:8753-8762.
    [33]Jeon S, and Braun P. Hydrothermal Synthesis of Er-Doped Luminescent TiO2 Nanoparticles. Chem. Mater.,2003,15:1256-1263
    [34]Nikolay T, Larina L, Shevaleevskiy O and Ahn B. Electronic structure study of lightly Nb-doped TiO2 electrode for dye-sensitized solar cells. Energy Environ. Sci.2011,4: 1480-1486
    [35]Cao J, Zhang Y, Liu L and Ye J. Ap-type Cr-doped TiO2 photo-electrode for photo-reduction. Chem. Commun.,2013,49:3440-3442
    [36]Yang M, Jha H, Liu N, and Schmuki P. Increased photocurrent response in Nb-doped TiO2 nanotubes. J. Mater. Chem.,2011,21:15202-15208
    [37]Liu S, Guo E, and Yin L. Tailored visible-light driven anatase TiO2 photocatalysts based on controllable metal ion doping and ordered mesoporous structure. J. Mater. Chem.,2012,22: 5031-5041
    [38]Zhao J, Sallard S, Smarsly B, Gross S, Bertino M, Boissiere C, Chen H, and Shi J. Photocatalytic performances of mesoporous TiO2 films doped with gold clusters J. Mater. Chem.,2010,20:2831-2839
    [39]Yang M, Kim D, Jha H, Lee K, Paul J, and Schmuki P. Nb doping of TiO2 nanotubes for an enhanced efficiency of dye-sensitized solar cells. Chem. Commum.,2011,47:2032-2034
    [40]Zhu G, Cheng Z, Lv T, Pan L, Zhao Q and Sun Z. Zn-doped nanocrystalline TiO2 films for CdS quantum dot sensitized solar cells. Nanoscale,2010,2:1229-1232
    [41]Nikolay T, Larina L, Shevaleevskiy and Ahn B. Electronic structure study of lightly Nb-doped TiO2 electrode for dye-sensitized solar cells. Energy Environ, Sci.,2011,4: 1480-1486
    [42]Manhanty S, Roy S, Sen S. Effect of Sn doping on the structural and optical properties of sol-gel TiO2 thin films. Journal of Crystal Growth.2004,261:77-81.
    [43]Sathish M, Viswanathan B, Viswanath R, and Gopinath C. Synthesis, Characterization, Electronic Structure, and Photocatalytic Activity of Nitrogen-Doped TiO2 Nanocatalyst. Chem. Mater.,2005,17:6349-6353.
    [44]Wang E, Yang W, Cao Y. Unique Surface Chemical Species on Indium Doped TiO2 and Their Effect on the Visible Light Photocatalytic Activity. J. Phys. Chem. C.,2009,113: 20912-20917
    [45]Dong F, Guo S, Wang H, Li X, and Wu Z. Enhancement of the Visible Light Photocatalytic Activity of C-Doped TiO2 Nanomaterials Prepared by a Green Synthetic Approach. J. Phys. Chem. C,2011,115:13285-13292
    [46]Mole F, Wang J, Clayton D, and Pan S. Highly Conductive Nanostructured C-TiO2 Electrodes with Enhanced Electrochemical Stability and Double Layer Charge Storage Capacitance. Langmuir,2012,28:10610-10619
    [47]Wu G, Wang J, Thomas D, and Chen A. Synthesis of F-Doped Flower-like TiO2 Nanostructures with High Photoelectrochemical Activity. Langmuir,2008,24:3503-3509
    [48]Wu G, Nishikawa T, Ohtani B, and Chen A. Synthesis and Characterization of Carbon-Doped TiO2 Nanostructures with Enhanced Visible Light Response. Chem. Mater.,2007, 19:4530-4537 J. Am. Chem. Soc.,2013,135:1607-1616
    [49]Zhang G, Ding X, Hu Y, Huang B, Zhang X, Qin X, Zhou J, and Xie J. Photocatalytic Degration of 4BS Dye by N, S-Codoped TiO2 Pillared Montmorillonite Photocatalysts under Visible-Light Irradiation J. Phys. Chem. C.,2008,112:17994-17997
    [50]Zhou J, Yu J, Li H, Guo P, Sun H, and Zhao X. Synthesis of Self-Orgnized Polycrystalline F-doped TiO2 Hollow Microspheres and Their Photocatalytic Activity under Visible Light. J. Phys. Chem. C.,2008,112:5316-5321.
    [51]Burda C, Lou Y, Chen X, Samia A, Stout J, and Gole J. Enhanced Nitrogen Doping in TiO2 Nanoparticles. Nano Lett,2003,3,1049-1051
    [52]Kuroda Y, Mori T, Yagi K, Makihata, Kawahara Y, Nagao M, and Kittaka S. Preparation of Visible-Light-Responsive TiO2-xNx Photocatalyst by a Sol-Gel Method:Analysis of the Active Center on TiO2 that Reacts with NH3, Langmuir,2005,21:8026-8034
    [53]Diwald O, Thompson T, Zubkov T, Goralski E, Walck S, and Jr J. Photochemical Activity of Nitrogen-Doped Rutile TiO2(110) in Visible Light. J. Phys. Chem. B,2004,108:6004-6008
    [54]Wang J, Tafen N, Lewis J, Hong Z, Manivannan A, Zhi M, Li M, and Wu N. Origin of Photocatalytic Activity of Nitrogen-Doped TiO2 Nanobelts. J. Am. Chem. Soc.,2009,131: 12290-12297
    [55]Reyer-Garcia E, Sun Y, Reyes-Gil K, and Raftery D.15N Solid State NMR and ERR Characterization of N-Doped TiO2 Photocatalysts. J. Phys. Chem. C,2007,111:2738-2748
    [56]Diwald O, Thompson T, Goralski E, Walck S, and Jr J. The Effect of Nitrogen Iron Implantation on the Photoactivity of TiO2 Rutile Single Crystals. J. Phys. Chem. B,2004, 108:52-57
    [57]Gu D, Lu Y, Yang B and Hu Y. Facile preparation of micro-mesoporous carbon-doped TiO2 photocatalysts with anatase crystalline walls under template-free condition. Chem. Commun.,2008,0:2453-2455
    [58]Cao J, Zhang Y, Tong H, Li P, Kako T, and Ye J. Selective local nitrogen doping in a TiO2 electrode for enhancing photoelectrochemical water spliting. Chem. Commun.,2012,48: 8649-8651
    [59]Jiang Z, Yang F, Luo N, Chu B, Sun D, Shi H, Xiao T,and Edwards P. Solvothermal systhesis of N-doped TiO2 nanotubes for visible-light-responsive photocatalysis. Chem. Commun., 2008,0:6372-6374
    [60]Yang G, Jiang Z, Shi H, Xiao T, and Yan Z. Preparation of highly visible-light active N-doped TiO2 photocatalyst. J.Mater. Chem.,2010,20:5301-5309
    [61]Lee F, Chang K, Hu C, and Lin K. Synthesis of activated carbon-surrounded and carbon-doped anatase TiO2 nanocomposites. J. Mater. Chem.,2010,20:5682-5688
    [62]Asahi R, Morikawa T, Ohwaki T, et al. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science,2001,293:269-271
    [63]Sathish M, Viswanathan B, Viswanath R, and Gopinath C. Synthesis, Characterization, Electronic Strucrure, and Photocatalytic Activity of Nitrogen-Doped TiO2 Nanocatalyst. Chem. Mater.,2005,17:6349-6353
    [64]Yu C, Yu J, Ho W, Jiang Z, and Zhang L. Effects of F-Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders Jimmy Chem. Mater.,2002,14: 3808-3816
    [65]Feng N, Wang Q, Zheng A, Zhang Z, Fan J, Liu S, Amoureux J, and Deng F. Understanding the High Photocatalytic Activity of (B, Ag)-Codoped TiO2 under Solar-Light Irradiation with XPS, Solid State NMR, and DFT Calculations J. Am. Chem. Soc.,2013,135: 1607-1616
    [66]Breault T, and Bartlett B. Lowering the Band Gap of Anatase-Structured TiO2 by Coalloying with Nb and N:Electronic Structure and Photocatalytic Degradation of Methylene Blue Dye. J. Phys. Chem. C.,2012,116:5986-5994
    [67]Feng N, Zheng A, Wang Q, Ren P, Gao X, Liu S, Shen Z, Chen T, and Deng F. Boron Environments in B-Doped and (B, N)-Codoped TiO2 Photocatalysts:A Combined Solid-State NMR and Theoretical Calculation Study. J. Phys. Chem. C.,2011,115: 2709-2719
    [68]Cottineau T, Bealu N, Gross P, Pronkin S, Keller N, Savinova E, and Keller V. One step synthesis of niobium doped titania nanotube arrays to form (N, Nb) co-doped TiO2 with high visible light photoelectrochemical activity J. Mater. Ch'em. A,2013,1:2151-2160
    [69]Zong X, Xing Z, Yu H, Chen Z, Tang F, Zou J, Lu G and Wang L. Photocatalytic water oxidation on F, N co-doped TiO2 with dominant exposed{001} facets under visible light. Chem. Commun,2011,47:11742-11744
    [70]Morgan B, Scanlon D, and Watson G. Small polarons in Nb-and Ta-doped rutile and anatase TiO2. J. Mater. Chem.,2009,19:5175-5178
    [71]Dozzi M, Livrghi S, Giamello E and Elena S. Photocatalytic activity of S-and F-doped TiO2 in formic acid mineralization Photochem. Photobiol. Sci.,2011,10:343-349
    [72]Czoska A, Livraghi S, Paganini M, Giamello E, Valentin C, and Pacchioni G. The nitrogen-born paramagnetic center in visible light sensitized N-B co-doped TiO2. Experimental and theoretical characterization. Phys. Chem. Chem. Phys.,2011,13:136-143
    [73]Xu P, Xu T, Lu J, Gao S, Hosmane N, Huang B, Dai Y, and Wang Y. Visible-Light-driven photocatalytic S-and C-codoped meso/nanoporous TiO2. Energy Environ. Sci.,2010,3: 1128-1134
    [74]Kamat P, Fox M. Photosensitization of TiO2 Colloids by Erythrosin B in Acetonitrile. Chemical Physics Letter,1983,102:379-384
    [75]Yamada T, Gao Y, Nagai M. Hydrothermal synthesis and evaluation of visible-light-active photocatalyst of (N, F)-codoped anatase TiO2 from an F-containing titanium chemical. Jounal of the Ceramic Society of Japan.,2008,116:614-618
    [76]Wang E, He T, Zhao L, Chen Y, and Cao Y. Improved visible light photocatalytic activity of titania doped with tin and nitrogen. Jounal of Materials Chemictry.2010,21:144-150
    [77]Wang E, Zhang P, Chen Y, Liu Z, He T, and Cao Y. Improved visible-light photocatalytic activity of titania activated by nitrogen and indium modification. Jounal of Materials Chemictry,2012,22:14443-14449
    [78]Li W, Yang R. Krist K, and Regalbuto. Selective Adsorption of NOx from Hot Combustion Gases by Ce-Doped CuO/TiO2. Energy Fuels,1997,11,428-432.
    [79]Schwartz V, Mullins D, Yan W, Zhu H, Dai S, and Overbury S. Structural Investigation of Au Catalysts on TiO2-SiO2 Supports:Nature of the Local Structure of Ti and Au Atoms by EXAFS and XANES. J. Phys. Chem. C.,2007,111:17322-17332
    [80]Fragala M, Cacciotti I, Aleeva Y, Nigro R, Bianco A, Malandrino G, Spinella C, Pezzotti G and Gusmano G Core-shell Zn-doped TiO2-ZnO nanofibers fabricated via a combination of electrospinning and metal-organic chemical vapour deposition. CrystEngComm,2010,12: 3858-3865
    [81]Cao Y,Zhang X, Yang W,Bai Y,Li T,and Yao J. A Bicomponent Ti02/Sn02 Particulate Film for Photocatalysis Chem. Mater.,2000,12:3445-3448
    [82]Cao Y, He T, Chen Y and Cao Y. Fabrication of Rutile TiO2-Sn/Anatase TiO2-N Heterostructure and its Application in Visible-Light Photocatalysis J. Phy. Chem. C,2010, 114:3627-3633
    [83]Li Y, Jiang F, Xiao Q, Li R, Li k, Zhang M, Zhang A, Sun S, and Liu Y. Enhanced photocatalytic activities of TiO2 nanocomposites doped with water-soluble mercapto-capped CdTe quantum dot. Applied Catalysis B:Environmental,2010,101:118-129
    [84]Guo Y, Shi X, Zhang J, Fang Q, Yang L, Dong F, Wang K. Facile one-pot preparation of cadmium sulfide quantum dots with good photocatalytic activies under stabilization of polar amino acids. Materials Letters,2012,86:146-149
    [85]Perera D, Lorek R, Khnayzer R, Moroz P, Connor T, Khon D, Diederich G, Kinder E, Lambright S, Castellano F, and Zamkov M. Photocatalytic Activity of Core/Shell Semiconductor Nanocrystals Featuring Spatial Separation of Charges. J. Phys. Chem. C, 2012,116:22786-22793
    [86]Fujishima A, Honda K, Honda K, Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature,1972,238(5358):37-38
    [87]Gratzel M. Photoelectrochemical cells. Nature,2001,414(6861):338-344
    [88]Khan S, Al-Shahry M, Ingler W B. Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2. Science,2002,297(5591):2243-2245
    [89]Yu H B, Chen S, Quan X, Zhao H M, and Zhang Y B. Fabrication of a TiO2-BDD Heterojunction and its Application As a Photocatalyst for the Simultaneous Oxidation of an Azo Dye and Reduction of Cr(VI) Environ. Sci. Technol.,2008,42:3791-3796
    [90]Asahi R, Morikawa T, Ohwaki K, Aoki K, Taga Y. Visible-Light Potocatalysis in Nitrogen-Doped Titanium Oxides. Science,2001,293:269
    [91]Francioso L, Presicce D S, Siciliano P, Ficarella A. Combustion conditions discrimination properties of Pt-doped TiO2 thin film oxygen sensor Sensors and Actuators B,2007, 123:516-521
    [92]Zhao W, Ma W, Chen C, Zhao J, Shuai Z. Efficient Degradation of Toxic Organic Pollutants with Ni2O3/TiO2-xBx under Visible Irradiation. J. Am. Chem Soc.,2004, 126:4782
    [93]Zhang J, Wu Y, Xing M, Leghari S, Sajijad S. Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides. Energy Environ. Sci.,2010,3: 715-726
    [94]Ji P, Takeuchi M, Cuong T, Zhang J, Matsuoka M, Anpo M. Recent advances in visible light-responsive titanium oxide-based photocatalysts. Res Chem Intermed,2010,36:327-347
    [95]Zhou X, Lu J, Li L, and Wang Z. Preparation of Crystalline Sn-Doped TiO2 and Its Application in Visible-Light. Photocatalysis Journal of Nanomaterials.,2011,2011:432947
    [96]Mahanty S, Roy S, Sen S. Effect of Sn doping on the structural and optical properties of sol-gel TiO2 thin films. Journal of Crystal Growth,2004,261:77-81
    [97]Gu Q, Long J, Zhou Y, Yuan R, Lin H, Wang X. Single-site tin-grafted anatase TiO2 for photocatalytic hydrogen production:Toward understanding the nature of interfacial molecular junctions formed in semiconduction composite photocatalysts. Journal of Catalysis,2012,289:88-99
    [98]Zheng T, Tian Z, Sun J, Su B, Lei Z. Preparation and photocatalytic properties of Sn4+-doped TiO2 hollow fiber materials. Chemical Research and Application,2012,24:1[郑焘,田泽,孙佳星,苏碧桃,雷自强.Sn4+掺杂TiO2中空纤维材料的制备及光催化性能化学研究与应用,2012,24,1.]
    [99]Duan Y, Fu N, Liu Q, Fang Y, Zhou X, Zhang J, Lin Y. Sn-Doped TiO2 Photoanode for Dye-Sensitized Solar Cells J. Phys. Chem.C.,2012,116:8888-8893
    [100]Cao Y, He T, Zhao L, Wang E, Yang W, and Cao Y. Structure and Phase Transition Behavior of Sn4+-Doped TiO2 Nanoparticles. J. Phys. Chem. C,2009,113:18121-18124
    [101]Cao Y, Yang Y, Zhang W, Liu G, and Yue P. Improved photocatalytic activity of Sn4+doped TiO2 nanoparticulate films prepared by plasma-enhanced chemical vapor deposition. New. J. Chem.,2004,28:218-222
    [102]Zhang H, Banfield J. Understanding Polymorphic Phase Transformation Behavior during Growth of Nanocrystalline Aggregates:Insights from TiO2. J. Phys. Chem. B,2000,104: 3481-3487
    [103]Wang Y, Ma C, Sun X, Li H. Preparation and characterization of SnO2 nanoparticles with a surfactant-mediated method. Nanotechnology,2002,13:565
    [104]Li J, and Zeng H C. Hollowing Sn-Doped TiO2 Nanospheres via Ostwald Ripening. J. Am. Chem. Soc.,2007,129(51):15839-15847
    [105]Xu H, Zhang L. Selective Nonaqueous Synthesis of C-Cl·Codoped TiO2 with Visible-Light Photocatalytic Activity. J. Phys. Chem. C.,2010,114(26):11534-11541:
    [106]Bullock E L, Patthey L, Steinemann S G. Clean and hydroxylated rutile TiO2(110) surfaces studied by X-ray photoelectron spectroscopy. Surf. Sci.,1996,352-354(0):504-510
    [107]Li D, Haneda H, Hishita D, Ohashi N. Visible-Light-Driven N-F-Codoped TiO2 Photocatalysts.2. Optical Characterization, Photocatalysis, and Potential Application to Air Purification Chem. Mater.,2005,17:2596-2602
    [108]Serpone N, Lawless D, Khairutdinov R. Size Effects on th Ptotophysical Properties of Colloidal Anatase TiO2 Particles:Size Quantization or Direct Transitions in This Indirect Semiconductor. J. Phys. Chem.,1995,99:16646-16654
    [109]Yuan J, Wu Q, Zhang P, Yao J, He T, Cao Y. Synthesis of Indium Borate and Its Application in Photodegradation of 4-Chlorophenol Environ. Sci. Technol.,2012,46:2330-2336
    [110]Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature,1972,238:37
    [111]Thompson T L, Yates Jr J T. Surface Science Studies of the Photoactivation of TiO2-New Photochemical Process. Chem. Rev.,2006,106:4428.
    [112]Chen X B and Mao S S. Titanium Dioxide Nanomaterials:Synthesis, Properties, Modifications, and Applications. Chem. Rev.,2007,107:2891.
    [113]Cao Y, Yang W, Zhang W, et al. Improved photocatalytic activity of Sn4+doped TiO2 nanoparticulate films prepared by plasma-enhanced chemical vapor deposition. New J. Chem.,2004,28:218.
    [114]Zhu J, Ren J, Huo Y, et al. Nanocrystalline Fe/TiO2 Visible Photocatalyst with a Mesoporous Structure Prepared via a Nonhydrolytic Sol-Gel Route. J. Phys. Chem. C., 2007,111:18965
    [115]王恩君,杨辉云,曹亚.Zr离子掺杂TiO2可见光光催化剂光催化活性的研究.化学学报,2009,67:2759Wang E, Yang H, Cao Y. Photocatalytic Activity of Visible-light-driven Zirconium Doped TiO2 Photocatalysts. Acta Chim.Sinica,2009,67:2759
    [116]Yang Y, Wang H, Li X, et al. Electrospun mesoporous W6+-doped TiO2 thin film for efficient visible-light photocatalysis. Mater. Lett.,2009,63:331-333
    [117]Nagaveni K, Hegde M S, Madras G S. Stucture and Photocatalytic Activity of Ti1-xMxO2±δ (M=W, V, Ce, Zr, Fe, and Cu) Synthesized by Solution Combustion Method[J]. J. Phys. Chem. B,2004,108:20204-20212
    [118]Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science,2001,293:269-271
    [119]Chen D, Jiang Z, Geng J, et al. Carbon and Nitrogen Co-doped TiO2 Enhance Visible-Light Photocatalytic Activity. Ind. Eng. Chem. Res.,2007,46:2741
    [120]黄冬根,廖世军,党志.氟掺杂锐钛矿型Ti02的制备、表征及催化性能.化学学报,2006,64:1805.Huang D G, Liao S J, Dang Z. Preparation, Characterization and Photocatalytic Performance of Anatase F Doped TiO2 Sol. Acta Chim. Sinica,2006,64:1805.
    [121]龙绘锦,孟庆巨,元晶,杨文胜,曹亚安,B离子掺杂Ti02催化齐(?)(TiO2-xBx)光催化活性的研究.化学学报,2008,66:657Long H, Meng Q, Yuan J, et al. Study on Photocatalytic Activity of Boron Doped TiO2 Catalyst(TiO2-xBx). Acta Chim. Sinica,2008,66:657
    [122]Anderson C, Bard A J. An Improved Photocatalyst of TiO2/SiO2 Prepared by a Sol-Gel Synthesis. J. Phys. Chem.,1995,99:9882
    [123]Anderson C, Bard A J. Improved Photocatalytic Activity and Characerization of Mixed TiO2/SiO2 and TiO2/Al2O3 Materials. J. Phys. Chem. B,1997,101:2611-2616
    [124]Reddy B M, Mehdi S, Reddy E P. Dispersion and thermal stability of vanadium oxide catalysts supported on titania mixed oxide. Catal. Lett.,1993,20:317
    [125]Fu X, Clark L A, Yang Q. Anderson M A. Enhanced Photocatalytic Performance of Titania-Based Binary Metal Oxides:TiO2/SiO2 and TiO2/ZrO2. Environ. Sci. Technol., 1996,30:647-653
    [126]Shinji I, Seiu I, Masashi I. XANES and XPS Study of Silica-Modified Titanias Prepared by the Glycothermal Method. Chem. Mater.,2005,17:650-655
    [127]Li J, Hou B, Xu Y, et al. Hydrothernal synthesis, characterization, and photocatalytic performance of silica-modified titanium diox-ide nanoparticles. J. Colloids Interf. Sci., 2005,288:149-154
    [128]Zhang H, Banfield J F. Thermodynamic analysis of phase stability of nanocrystalline titania. J. Mater. Chem.,1998,8:2073-2076
    [129]Kumar S R, Suresh C, Vasudevan K A, et al. Phase transformation in sol-gel titania containing silica. Mater. Lett.,1999,38:161-166
    [130]Pabon E, Retuert J, Quijada R, et al. TiO2-SiO2 mixed oxides prepared by a combined sol-gel and polymer inclusion method. Micropor. Mesopor. Mater.,2004,67:195-203
    [131]Yu J G Yu H G Cheng B, et al. The Effect of Calcination Temperature on the Surface Microstucture and Photocatalytic Activity of TiO2 Thin Film Prepared by Liquid Phase Deposition. J. Phys. Chem. B,2003,107:13871
    [132]Hong X, Wang Z, Cai W, et al. Visible-Light-Activated Nanoparticle Photocatalyst of Iodine-Doped Titanium Dioxide. Chem.Mater.2005,17:1548-1552
    [133]Duran A, Serna C, Fomes V, et al. Structural considerations about SiO2 glasses prepared by sol-gel[J]. J. Non-Cryst. Solids,1986,82:69-77
    [134]Chung-Sung Y, Richard A B, Susan M K, et al. Synthesis of Alkyl-Terminated Silicon Nanoclusters by a Solution Route. J. Am. Chem. Soc,1999,121(22):5191-5195
    [135]Cao Y, Meng Q, Yang W, et al. Effect of plasma treatment on surface properties of TiO2 nanoparticulate films. Colloids Surf. A,2005,262:181
    [136]Hoffmann M R, Martin S T, Choi W, and Bahnemannt D W, Environmental Applications of Semiconductor Photocatalysis. Chem. Rev.,1995,95:69
    [137]Fujishima A, Zhang X T and Tryk D A. TiO2 Photocatalysis and related surface phenomena Surf. Sci. Rep.,2008,63:515
    [138]Chen X B, and Mao S S. Titanium Dioxide Nanomaterials:Synthesis, Properties, Modification, and Applications Chem. Rev.,2007,107:2891
    [139]Tsai C C, Nian J N, and Teng H. Mesoporous nanotube aggregates obtained from hydrothermally treating TiO2 with NaOH. Appl. Surf. Sci.,2006,253:1898-1902
    [140]Cao Y, He T, Chen Y, and Cao Y. Fabrication of Rutile TiO2-Sn/Anatase TiO2-N Heterostructure and Its Application in Visible-Light Photocatalysis J. Phys. Chem. C,2010, 114:3627-3633
    [141]Kim J Y, Kim C S, Chang H K, and Kim T O. Synthesis and characterization of N-doped TiO2/ZrO2 visible light photocatalysts. Advanced Powder Technology,2011,22:443-448
    [142]Wang E, Yang W, and Cao Y. Unique Surface Chemical Species on Indium Doped TiO2 and Their Effect on the Visible Light Photocatalytic Activity. J. Phys. Chem. C,2009,113: 20912-20917
    [143]Irie H, Watanabe Y, and Hashimoto K. Nitrogen-Concentration Dependence on Photocatalytic Activity of Ti02-xNxPowders. J. Phys. Chem. B,2003,107:5483
    [144]Diwald O, Thompson T L, Zubkov T, Goralski E G, Walck S D, and Yates J T J. Photochemical Activity of Nitrogen-Doped Rutile TiO2(110) in Visible Light. J. Phy. Chem. B,2004,108:6004
    [145]Burda C, Lou Y, Chen X, Samia A C S.Stout J, and Gole J M. Enhanced Nitrogen Doping in TiO2 Nanoparticles Nano Lett;,2003,3:1049
    [146]Rodriguez J, Jirsak T, Dvorak J, Samb'asivan S, and Fischer D. Reaction of NO2 with Zn and ZnO:Photoemission, Xanes, and Density Functional Studies on the Formation of NO3. J. Phy. Chem B,2000,104:319
    [147]Chang S, and Doong R. Characterization of Zr-Doped TiO2 Nanocrystals Prepared by a Nonhydrolytic Sol-Gel Method at High Temperatures. J. Phys. Chem. B,2006,110: 20808-208014
    [148]Lukac J, Klementova M, Bezdicka P, Bakardjieva S, Subrt J, Szatmary L, Bastl Z, Jirkovsky J. Influence of Zr as TiO2 doping iron on photocatalytic degradation of 4-chlorophenol Appl, Catal. B,2007,74:83-91
    [149]Hirano M, Nakahara C, Ota K, Tanaike O, Inagaki M. Photoactivity and phase stability of ZrO2-doped anatase-type TiO2 directly foemed as nanometer-sized particles by hydrolysis under hydrothermal conditions. J. Solid State Chem.,2003,170:39
    [150]Wang Y M, Liu S W, Lu M K, Wang S F, Gu F, Gai X Z, Cui X P, Pan J. Preparation and photocatalytic properties of Zr4+-doped TiO2 nanocrystals. J. Mol. Catal. A:Chem., 2004,215:137
    [151]Yu J M, Yu J G, Ho W, Jiang Z, and Zhang L. Effects of F- Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders. Chem. Mater.,2002,14: 3808
    [152]Ohno T, Mitsui T and Matsumura M. Photocatalytic Activity of S-doped TiO2 Phtocatalyst under Visible Light. Chemistry Letters,2003,32:364
    [153]Umebayashi T, Yamaki T, Itoh H, and Asai K. Band gap narrowing of titanium dioxide by sulfur doping. Appl. Phys. Lett.,2002,81:454
    [154]Sakthivel S, and Kisch H, Chem A. Daylight Photocatalysis by Carbon-Modified Titanium Dioxide. Int. Ed.,2003,42:4908
    [155]Lin L, Zheng R Y, Xie J L, Zhu Y X, and Xie Y C. Sythesis and characterization of phosphor and nitrogen co-doped titania. A ppl. Catal., B,2007,76:196-202
    [156]Yu Q, Jin L, and Zhou C. Ab into study of electronic structure and absorption properties of pure and Fe3+ doped anatase TiO2 Solar Energy Material & Solar Cells,2011,95, 2322-2326
    [154]Long R and English N J, Electronic properties of F/Zr co-doped anatase TiO2 photocatalysts from GGA+U calculations. Chemical Physics Letters,2010,498:338-344
    [158]Long R and English N J. First-principles calculation of nitrogen-tungsten codoping effects on the band structure of anatase-titania. Appl. Phys. Lett.,2009,94:132102
    [159]Kim S, Khan R, Kim T, andKorean W K B. Synthesis, Characterization, and Application of Zr, S Co-doped TiO2 as Visible-light. Active Photocatalyst Chemical Society, 2008,29:6
    [160]Li D, Hishita S, Kolodiazhnyi T, and Haneda H. Oringin of visible-lighe-driven photocatalysis:A comparative study on N/F-doped and N-F-codoped TiO2 Powders by means of experimental characterizations and theoretical calculations J. Solid State Chem., 2005,178:3293
    [161]Gombac V, Rogatis L, Gasparotto A, Vicarion G, Montini T, Barreca D, Balducci G, Fornasiero P, Tondello E, and Graziani M. TiO2 nanopowders doped with born and nitrogen for photocatalytic applications. Chemical Physics,2007,339:111
    [162]Wang E, He T, Zhao L, Chen Y, and Cao Y. Improved visible light photocatalytic activity of titania doped with tin and nitrogen. J. Mater. Chem.,2011,21:144-150
    [163]Wang E, Zhang P, Chen Y, Liu Z, He T, and Cao Y. Improved visible-light photocatalytic activity of titania activated by nitrogen and indium modification. J. Mater. Chem.,2012,22: 14443-14449
    [164]Liu H, Liu G, and Shi X. N/Zr-codoped TiO2 nanotube arrays:Fabrication, characterization, and enhanced photocatalytic activity Colloids and Surfaces A:Physicochem. Eng. Aspects, 2010,363:35-40
    [165]Gao B, Luo X, Fu H, Lin B, Chen Y, Gu Z. Visible-light-driven photocatalytic performance of nitrogen-doped Ti1-xZrxO2 solid solution Materials Research Bulletin,2013, 48,587-594.
    [166]Surolia P, Tayade R, Jasra R. Effect of Anions on the Photocatalytic Activity of Fe(III) Salts Impregnated TiO2. Ind. Eng. Chem. Res.,2007,46:6196
    [167]Kim Y K, Jang H M. Raman line-shape analysis of nano-structural evolution in cationordered ZrTiO4-based dielectrics Solid State Communications,2003,12:433-437
    [168]Lucovsky G and Rayner G B. Microscopic model for enhanced dielectric constants in low concentration SiO2-rich noncrystalline Zr and Hf sillicate alloys. Appl. Phys. Lett.,2000,18: 30
    [169]Vracar M, Kuzmin A, Merkle R, Purans J, Kotomin E A, Maier J, and Mathon O. Jahn-Teller distortion aroun Fe4+in Sr(FexTi1-x)O3-δ from x-ray absporption spectroscopy, x-ray diffraction, and vibrational spectroscopy. Phys. Rev. B.,2007,76:174107
    [170]Choudhury B, Borah B, Choudhury A. Ce-Nd codoping effect on the structural and optical properties of TiO2 nanoparticles. Materials Chemistry and Physics,2012,132:1112-1118
    [171]Saha N C, and Tomkins H C. Titanium nitride oxidation chemistry:An x-ray photoelectron spectroscopy study. J. Appl. Phys.,1992,72:3072
    [172]Joshi M M, Labhsetwar H K, Mangrulka P A, Tijare S N, Kamble S P, Rayalu S S, Visible light induced photoreduction of methyl orange by N-doped mesopotous titania Appl. Catal. A:General,2009,357:26-33
    [173]Sathish M, Viswanathan B, Viswanath R P and Gopinath C S. Synthesis, Characterization, Electronic Structure, and Photocatalytic Activity of Nitrogen-Doped TiO2 NanocatalystChem. Mater.,2005,17:6349
    [174]Rodriguez J A, Jirsak T, Dvorak J, Sambasivan S D. Reaction of NO2 with Zn and ZnO: Photoemission, XANES, and Density Functional Studies on the Formation of NO3 J. Phys. Chem. B.,2000,104:319
    [175]Sato S, Nakamura R, and Abe S. Visible-light sensitization of TiO2 Photocatalysts by wet-method N doping. Appl. Catal. A,2005,284:131
    [176]Sun H Q, Bai Y, Liu H J, Jin W Q, Xu N P, Chen G J and Xu B Q. Mechanism of Nitrogen-Concentration Dependence on pH Value:Experimental and Theoretical Studies on Nitrogen-Doped TiO2. J. Phys. Chem. C,2008,112:13304
    [177]Pandolfi L, Kaciulis S, Padeletti G, Cusma A, and Viticoli M, Deposition and characterization of ZrTiO4 thin films Suface and Interface Analysis.2004,36:1159-1162
    [178]Takano I, Isobe S, Sasaki T A, Baba Y. Nitrogention of various transition metal by N2+-ion implantation. Appl. Surf. Sci.,1989,37:25
    [179]Lavrentyev A A, Gabrelian B V, Shkumat P N, Nikiforov Y I, Bondarenko T N, Kopylova E I, Khyzhun O Y, Karpets M V, Rehr J J. Electronic atructure of ZrTiO4 and HfTiO4:Self-consistent cluster calculations and X-ray spectroscopy studies. Jouanal of Physics and Chemistry of Solids,2011,721:83-89
    [180]Yuan J X, Wu Q, Zhang P, Yao J H, He T, Cao Y A. Synthesis of Indium Borate and Its Application in Photodegradation of 4-Chlorophenol. Environ. Sci. Technol.,2012,46: 2330-2336.
    [181]Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972,238(5358):37-38
    [182]Gratzel M. Photoelectrochemical cells. Nature,2001,414:338-344
    [133]Khan S, Al-Shahry M, Ingler W. Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2, Science,2002,297:2243-2245
    [184]Yin W, Wei S, Al-Jassim M, Yan Y. Double-Hole-Mediated Coupling of Dopants and Its Impact on Band Gap Engineering in TiO2. Phys.Rev Lett.,2011,106:066801-066805
    [185]Yu H B, Chen S, Quan X, Zhao H M, and Zhang Y B. Fabrucation of a TiO2-BDD Heterojunction and its Application As a Photocatalyst for the Simultaneous Oxidation of an Azo Dye and Reduction of Cr(VI). Environ.Sci. Technol.,2008,42:3791. K
    [186]Naeem K and Ouyang F. Effect of Various Additives on Photocatalytic Degradation of 4-Nitrophenol. E-Journal of Chemistry,2009,6(S1):S422
    [187]Francioso L, Presicce D S, Siciliano P, Ficarella A. Combustion condition discrimination properties of Pt-doped TiO2 thin film oxygen sensor, Sensors and Actuators B,2007,123: 516-521
    [188]Bally A R, Korobeinikova E N, Schmid P E, Levy F, Bussy F. Structural and electrical properties of Fe-doped TiO2 thin films. J. Phys. D:Appl. Phys.,1998,31:1149-1154
    [189]Devi B L G, Murthy N. Characterization of Mo Doped TiO2 and its Enhanced Photo Catalytic ActivityUnder Visible Light. Catalysis Letters,2008,125:320-330
    [190]Ohno T.; Tanigawa F, Fujihara K, Izumi S, Matsumura M. Photocatalytic oxidation of water by visible light using ruthrnium-doped titanium dioxide powder. Journal of Photochemistry and Photobiology A:Chemistry,1999,127:107-110
    [191]MahantyS, Roy S, Sen S. Effect of Sn doping on the structural and optical properties of sol-gel TiO2 thin films. Journal of Crystal Growth,2004,261:77-81
    [192]Zhao W, Ma W, Chen C, Zhao J, Shuai Z. Efficient Degradation of Toxic Organic Pollutants with Ni2O3/TiO2-xBx underVisible Irradiation. J. Am. Chem Soc.,2004,126:4782
    [193]Lindgren T, Mwabora J M, Avendanao E, Jonsson J, Hoel A C G.Photoelectrochemical and Optical Properties of Nitrogen Doped Titanium Dioxide Films Prepared by Reactive DC Magnetron Sputtering, J. Phys. Chem. B.,2003,107:5709
    [194]Khan S U M, Al-shahry M, InglerJr W B. Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2,Science,2002,297:2243
    [195]Ohno T, Mitsui T, and Matsumura M. Photocatalytic activity of S-doped TiO2 photocatalyst under visible light Chemistry Letters,2003,32:364
    [196]Yu J M, Yu J G, Ho W, Jiang Z, Zhang L. Effects of F- Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders. Chem. Mater.,2002,14: 3808
    [197]Wang E J, Yang E S, and Cao Y A. Unique Surface Chemical Special Species on Indium Doped TiO2 and Their Effect on the Visible Light Photocatalytic Activity. J. Phys. Chem. C 2009,113:20912-20917
    [198]Wang E, Zhang P, Chen Y M, Liu Z W, and Cao Y A. Improved visible-light photocatalytic activity titania activated by nitrogen and indium modification J. Mater. Chem.,2012, 22:1443
    [199]Tachikawa T, Takai Y, and Sachiko et.al. Visible Light-Induced Degradation of Ethlene Glycol on Nitrogen-Doped TiO2 Powders. J.Phys. Chem. B,2006,110:13158-13165
    [200]Shanmugasundaram Sakthivel, Marcin Janczarek, and Horst Kisch J.Phys. Visible Light Activity and Photoelectrochemical Properties of Nitrogen-Doped TiO2 Chem. B 2004,108, 19384-19387
    [201]Cao Y, Zhang X, Yang W, Du H, Bai Y, Li T. A Bicomponent TiO2/SnO2 Particulate Film for Photocatalysis. J. Chem. Mater.,2000,12:3445-3448
    [202]Gao B, Ma Y, Cao Y, Yang W, Yao J. Great Ehancement of Photocatalytic Activity of Nitrogen-Doped Titania by Coupling with Tungsten Oxide. J. phys. Chem. B,2006,110: 14391-14397
    [203]Cao. Y, He T, ChenY, Cao Y. Fabrication of Rutile TiO2-Sn/Anatase TiO2-N Heterostructure and Its Application in Visible-Light Photocatalysis. J. phys. Chem. C,2010,114:3627-3633
    [204]Fu X, Clark L, Yang Q, Anderson M. Enhanced Photocatalytic Performance of Titania-Based Binary Metal Oxides:TiO2/SiO2 and TiO2/ZrO2, Environ. Sci. Technol.,1996, 30:647-653
    [205]Wang X, Yu J, Chen Y, Wu L, Fu X. ZrO2-Modified Mesoporous Nanocrystalline TiO2-xNx as Efficient Visible Light Photocatalysts. Environ. Sci. Technol.,2006,40:2369-2374.
    [206]Batzill M, Morales E H, and Diebold U. Influence of Nitrogen Doping on the Defect Formation and Surface Properties of TiO2 Rutile and Anatase Phys. Rev. L,2006.96: 026103-026107
    [207]Thompson T L, Yates J T. Surface Science Studies of the Photoactivation of TiO2-New Photochemical Processes. Chem. Rev.,2006,106:4428-4453.
    [208]Kralik B, Chang E K, and Louie S G Structure properties and quasiparticle band structure of zirconia. Phys. Rev. B,1998,57:7027-7036
    [209]Mommer N, Lee T, and Gardner J A. Stability of monoclinic and tetragonal zirconia at low oxygen partial pressure. J. Mater. Res.,2000,15:2
    [210]Marquea A M, Plata J J, Ortega Y, Sanz J F. Structural Defects in W-Doped TiO2(101) Anatase Surface:Density Functional Study Journal of Physical Chemistry C,2011,115: 16970-16976
    [211]Hofmann A, Clark S J, Oppel M, and Hahndorf I. Hydrogen adsorption on the tetragonal ZrO2(101) surface:a theoretical study of an important catalytic reactant Phys. Chem. Chem Phys.,2002,4:3500-3508
    [212]Chevalier J, Gremillard L, Virkar A V and Clark D R. The Tetragonal-Monoclinic Transformation in Zirconia:Lessons Learned and Future Trends. J. Am. Ceram. Soc.,2009, 92(9):1901-1920
    [213]Guo X. Property Degradation of Tetragonal Zirconia Induced by Loe-Temperature Defect Reaction with Water Molecules. Chem. Mater.,2004,16:3988-3994
    [214]Wang E, He T, Zhao L, Chen Y M, Cao Y A. Improved visible light photocatalytic activity of titania doped with tin and nitrogen. Journal of Materials Chemistry,2011,21:144-150
    [215]Nakamura R, Tanaka T, Nakato Y. Mechanism for Visible Light Responses in Anodic Photocurrents at N-Doped TiO2 Film Electrodes. J. Phys. Chem. B,2004,108:10617
    [216]Bacsa R, Kiwi J, Ohno T, Albers P, adtochenko V N, Preparation J. Testing and Characterization of Doped TiO2 Active in the Peroxidation of Biomolecules under Visible Light. Phys. Chem. B,2005,109:5994
    [217]Linsebigler A L, Lu G, Yates Jr J T. Potocatalysis on TiO2 Surface:Principles, Mechanisms, and Selected Results. Chem. Rev.,1995,95:735
    [218]Pietro P, Galan L, Sanz J. Electronic structure of insulating zirconium nitride. Phys Rev B, 1993,47(3):1613-1615
    [219]Soto G, De La, Cruz W, Farias M. XPS, AES, and EELS characterization of nitrogen-containing thin films. Electron Spectrose and Related Ohenomena,2004,135: 27-39
    [220]Milosev I, Strehblow H. H, Navinsek B, Comparision of TiN, ZrN and CrN hard nitride coatings:electrochemical and thermal oxidation. Thin Solid Film,1997,303:246
    [221]Lindgren T, Mwabora J M, Avendano M, Jonsson J, et. Al. Photoelectrochemical and Optical Properties of Nitrogen Doped Titanium Dioxide Films Prepared by Reactive DC Magnetron Sputtering J. Phys. Chem. B,2003,107:5709
    [222]Sun H Q, Bai Y, Jin W Q, and Xu N P. Visible-Light-Driven TiO2 Catalysts Doped with Low-Concentration Nitrogen Species. Sol. Energy Mater. Sol. Cells,2008,92:76
    [223]Gao B F, Ma Y, Gao Y A, Yang W S, and Yao J N. Great Enhancement of Photocatalytic Activity of Nitrogen-Doped Titania by Coupling with Tungsten Oxide. J. Phys. Chem. B, 2006,110:14391
    [224]Chang S, and Dong R. Interband Transition in Sol-Gel-Derived ZrO2 Film under Different Calcination Conditions Chem. Mater.,2007,19:4804-4810
    [225]Foster A S, Sulimov V B, Lopez Gejo F, Shluger A L, and Nieminen R M. Structure and electrical levels of point defects in monoclinic zirconia. Phys. Rev. B,2001,64:224108
    [226]Chen X, Mao S S. Titanium Dioxide Nanomaterials:Synthesis, Properties, Modifacations, and Applications. Chem. Rev.,2007,107:2891-2959
    [227]Cong Y, Zhang J, Chen F, Anopo M. Synthesis and Characterization of Nitrogen-Doped TiO2 Nanophotocatalyst with High Visible Light Activity. J. Phys. Chem. C,2007,111: 6976-6982
    [228]Li D, Haneda H, Hishita D, Ohashi N, Visible-Light-Driven N-F-Codoped TiO Photocataltsts.2. Optical Characterization, Photocatalysis, and Potential Application to Air Purification. Chem. Mater.,2005,17:2596-2602
    [229]Serpone N, Lawless D, Khairutdinov R. Size Effects on the Photophysical Properties of Colloidal Anatase TiO2 Paticles:Size Quantization versus Direct Transition in This Indirect Semiconductor? J. Phys. Chem.,1995,99:16646-16654
    [230]Lei Y, Zhang L D, Meng G W et.al. Preparation and photoluminescence of highly ordered TiO2 nanowire arrays. Appl. Phys. Lett.,2001,78:1125-1127
    [231]Lee S, Kim J, Jonsson L and Wilkins J M. Many-body levels of optically excited and multiply charged InAs nanocrystals modeled by semiempirical tight binding. Phys. Rev. B,2002,66:235307
    [232]Franceschetti A, Fu H, Wang L W and Zunger A. Many-body preudopotential theory of excitions in InP and CdSe quantum dots. Rhys. Rev. B,1999,60:1819
    [233]Williamson A J, Wang L W and Zunger A. Theoretical interpretation of the experimental electronic structure of lens-shaped self-assembled InAs/GaAs quantum dots. Phys. Rev. B, 2000,62:12963
    [234]Jiang H, and Singh J. Strain distribution and electronic spectra of InAs/GaAs self-assembled dots:An eight-band study. Phys. Rev. B,1997,56:4696
    [235]Hawrylak P. Excitonic artificial atoms:Engineering optical properties of quantum dots. Phys. Rev. B,1999,60:5597
    [236]Landin L, Pettersson H, KlevermanH, Borgstrom M, Zhang X, Seifert W, Samuelson L, Interband transition in InAs quantum dots in InPstudies by photoconductivity and photoluminescence techniques. J. Appl. Phys.,2004,95:8007
    [237]Krishna S, Raghavav S and Winckel G. Two color InAs/InGaAs dots-in-a-well detector with background-limited performance at 91K. Appl. Phys. Lett.,2003,82:2574
    [238]Popescu D P, Eliseev P G and Malloy K J. Temperature dependence of the ambipolar carrier migration in a structure with InAs quantum dots grown in a strained GalnAs quantum well.J. Appl. Phys.,2005,97:093702
    [239]Attaluri R S, Annarnala S, Poani K T, Stintz A and Krishna S. Effects of Si doping on normal incidence InAs/In0.15Ga0.85As dots-in-well quantum dot infrared photodetectors J. Appl. Phys.,2006,99:083105
    [240]Torchynska T V, Casas Espinola J L, and Borkovska L V. Thermal activation of excitions in asymmetric InAs dots-in-a-well InxGa1-xAs/GaAs structures. J. Appl. Phys.,2007,101: 024323
    [241]Kim E, Chen Z, and Madhukar A. Tailoring detection bands of InAs quantum-dot infrared photodetectors using InxGal-xAs strain-relieving quantum wells. Appl. Phys. Lett,2001,79:3341
    [242]Stintz A, Liu G T, and Gray A L. Characterization of InAs quantum dots in strained InxGa1-xAs quantum wells. J. Vac. Sci. Technol. B,2000,18:3
    [243]Melezhik E and Korotchenkov O. Elastic fields of quantum dots in semi-infinite matrices:Green's function analytical analysis. J. Appl. Phys.,2009,105:023525
    [244]Hoglund L, Karlsson K F and Holtz P O. Energy level scheme of InAs/InxGa1-xAs/GaAs quantum-dots-in-a-well infrared photodetector structures. Phys. Pev. B,2010,82:035314
    [245]Lin S D, and Lee C P. Tunneling through InAs quantum dots in AlGaAs/GaAs double barrier resonant tunneling diodes with InGaAs quantum well emitters. J. Appl. Phys., 2003,93:2952
    [246]Naser M A, Deen M J, and Thompson D A. Spectral function of InAs/InGaAs quantum dots in a well detector using Green's function. J. Appl. Phys.,2006,100:093102
    [247]Nojima S. Intraband optical absorption in semiconductor superlattices Phys. Rev. B,1990, 41:10214
    [248]Amtout A, Raghavav S, and Rotella P. Theoretical modeling and experimental characterization of InAs/InGaAs quantum dots in a well detector. J. Appl. Phys.,2004,96: 3784
    [249]Chen R, Liu H Y, and Sun H D. Interband optical transitions of an InAs/InGaAs dots-in-a-well strcture. Solid State Communications,2010,150:707
    [250]Krishna S, Raghavan S, and Winckel Von G.Two color InAs/InGaAs dots-in-a-well detector with backdround-limited performance at 91K. Appl. Phys. Lett.,2003,82:2574
    [251]Zhu H, and Lian T. Wavefunction engineering in quantum confined semiconductor nanoheterostructures for efficient charge separation and solar energy conversion. Energy&Environmental Science,2012,5:9406-9418
    [252]Yu B, and Kwak S. Carbon quantum dots embedded with mesoporous hematite nanospheres as efficient visible light-active photocatalysts. J. Mater. Chem.,2012,22: 8345-8353
    [253]Kershaw S, Susha A, and Rogach A. Narrow bandgap colloidal metal chalcogenide quantum dots:synthstic methods, heterostructures, assembies, electronic and infrared optical properties. Chem. Soc. Rev.,2013,42:3033-3087
    [254]Walter M, Warren E, McKone J, Boettcher S, Mi Q, Santori E, and Lewis N. Solar Water Splitting Cells. Chem. Rev.,2010,110:6446-6473
    [255]Antoniadou M, Kondarides D, Dionysiou D, and Lianos P. Quantum Dot Sensitized Titania Applicable as Photoanode in Photoactivated Fuel Cells. The Jounal of Physical Chemistry C,2012,116:16901-16909
    [256]Hou J, Yang C, Wang Z, Jiao S, Hongmin Z. Bi2O3 quantum dots decorated anatase TiO2 nanocrystals with exposed {001} facets on graphene sheets for enhanced visible-light photocatalytic per fonnance. Applied Catalysis B:Environmental,2013, 129:333-341
    [257]Hong E, Choi J, and Kim J. Monolithic film photocatalyst and its application for hydrogen production with repeated unit structures. Thin Solid Films,2013,527:363-368
    [258]Li Y, Jiang F, Xiao Q, Li R, Li K, Zhang M, Zhang A, Sun S, Liu Y. Enhanced photocatalytic activities of TiO2 nanocomposites doped with water-soluble mercapto-capped CdTe quantum dots. Applied Catalysis B:Environmental,2010,101: 118-129
    [259]Guo Y, Shi X, Zhang J, Fang Q, Yang L, Dong F, Wang K. Facile one-pot preparation of cadmium sulfide quantum dots with good photocatalytic activities under stabilization of polar amino acids. Materials Letters,2012,86:146-149
    [260]Senevirathna M, Pitigala P, and Tennakone K. Water photoreduction with Cu2O quantum dots on TiO2 nano-particles. Jouanal of Photochemistry and Photobiology A: Chemistry,2005,171:257-259
    [261]Hou J, Wang Z, Jiao S, and Zhu H. Bi2O3 quantum-dot decorated nitrogen-doped Bi3NbO7 nanosheets:in situ synthesis and enhanced visible-light photocatalytic activity. CrystEngComm,2012,14:5923-5928
    [262]Cao S, Yuan Y, Fang J, Shahjamali M, Boey F, Barber J, Loo S, and Xue C. In-situ growth of CdS quantum dots on g-C3N4 nanosheets for highly efficient photocatalytic hydrogen generation under visible light irradiation. International. Journal of Hydrogen Energy,2013,38:1258-1266
    [263]Jacobsson T, and Edcinsson T. Antireflective coating of ZnO quantum dots and their photocatalytic activity. RSC Advances,2012,2:10298-10305
    [264]Li s, Xia j, Yuan Z L, and Xu Z Y. Effective-mass theory for InAs/GaAs strained coupled quantum dots. Phys. Rev. B,1996,54:16
    [265]Li S and Bai J. Intraband optical absorption in semiconductor coupled quantum dots. Phys. Rev. B,1997,55:23
    [266]Han X, Li J, and Wu W. Intersubband optical absorption in quantum dots-in-well heterostructures. J. Appl. Phys.,2005,98:053703

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700