用户名: 密码: 验证码:
氧化物纳米材料的合成、表征及光催化应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO、Zn_2SnO_4和TiO_2体系的纳米材料均为宽禁带半导体,具有原料丰富、价格便宜、制作简单、环保无毒和性能稳定等优点,可用于光催化和染料敏化太阳能电池等领域,受到人们的广泛关注。虽然人们已经开展了大量的工作并取得了长足的进步,但如何实现纳米材料在成份和微结构上可控制备,发掘纳米材料中新的物理化学现象,并使其获得实际应用依然面临着巨大的挑战。本论文以ZnO、Zn_2SnO_4和TiO_2体系的纳米材料为主要研究对象,系统地开展了一维和三维纳米结构的可控制备和表征工作;在此基础上,还研究了这些材料的光催化特性,初步探索了其在有机污染物光降解和染料敏化太阳能电池光电极方面的应用。通过大量的实验和分析,我们取得了一些有意义的结果,具体包括以下几个方面:
     1.ZnO和Zn_2SnO_4体系纳米线的合成及光催化研究
     (1)利用气相蒸发方法成功制备出Zn_2SnO_4纳米线、ZnO纳米线和ZnO-Zn_2SnO_4混合纳米线。实验表明,通过调节实验条件,可以在150~500 nm范围内可控地获得不同平均直径的纳米线。
     (2)对获得的纳米线进行了成分和结构表征,证明了Zn_2SnO_4纳米线为具有沿[111]长轴方向生长的尖晶石结构,其中存在大量Zn和O空位;ZnO纳米线为沿[01(?)0]长轴方向生长的纤锌矿结构;ZnO-Zn_2SnO_4纳米线为由Zn_2SnO_4纳米线和ZnO纳米线组成的混合物。实验获得的所有纳米线都具有较光滑的表面和均匀的直径。
     (3)利用MO为模拟污染物,评估了所制备的纳米线光降解有机物的催化活性。发现ZnO-Zn_2SnO_4混合纳米线具有较高的光催化性能。实验还证明了较小直径的纳米线具有更高的光催化活性。通过系统的对比实验,我们给出了最佳的光催化条件为ZnO-Zn_2SnO_4混合纳米线的混合比例为5∶1,催化剂浓度为0.5 g/L,这时的光催化降解常数可达到0.146 h~(-1)。
     (4)对纳米线的光催化活性机理进行了探讨。通过对实验结果进行综合分析,我们认为在ZnO-Zn_2SnO_4混合纳米线体系中,ZnO和Zn_2SnO_4之间可以通过异质结发生电荷转移,促进电子空穴的有效分离,从而增强光催化效率。另一方面,我们还认为减小纳米线的直径除了可以增大催化剂的比表面积外,还有利于降低e~-和h~+的复合几率,这同样对提高光催化效率有重要的促进作用。
     2.纳米结构蒲公英状TiO_2微球的制备及性能研究
     (1)利用简单的水热法成功地合成了具有纳米结构的三维蒲公英状TiO_2微球粉体,产率可达90%以上。这种三维蒲公英状TiO_2微球具有分级结构,整个球体的直径约为1.5~2微米。每个球体由截面为正方形,延[001]方向生长的纳米短棒呈放射状聚集而成;
     (2)分析了三维蒲公英状微球生长的机制,并提出了一种新的[Ti~(3+)]的氧化机理:我们认为在水热法合成过程中,除了高压釜内的少量O_2外,溶液中的部分[H~+]离子也充当了氧化剂角色,使得[Ti~(3+)]氧化并最终形成TiO_2。
     (3)利用MO为模拟污染物,对不同pH值溶液中获得的TiO_2的光催化活性进行了研究。发现蒲公英状TiO_2表现出与商品P25 TiO_2粉同样优异的光催化性能。我们认为,这种高的光催化效率来源于蒲公英状TiO_2的分级结构。这种分级结构在保留了纳米材料大的比表面积的同时,还能够为污染物分子的扩散提供分级通道。
     3.染料敏化太阳能电池光电极的制备和性能研究
     (1)用水热合成法获得的TiO_2纳米颗粒样品制备了染料敏化太阳能电池的光电极,所得到的光电极与用商品P25 TiO_2粉制得的光电极性能接近。研究了TiO_2光电极的厚度对太阳能电池性能的影响,发现光电极的TiO_2膜层厚度存在着一个最佳值。
     (2)研究了用一维TiO_2纳米线和三维蒲公英状TiO_2制备的染料敏化太阳能电池的光电极,发现其性能可以与由TiO_2纳米颗粒制备的光电极相比拟。我们认为,蒲公英状TiO_2的分级结构不仅保留了纳米材料大的比表面积,同时还能够为电解质分子的扩散提供通道:另一方面,电子能够在蒲公英状TiO_2的纳米棒中直接输运,降低了电子在颗粒间的跃迁损耗。
     (3)我们的结果为采用不同纳米结构增强光电极的性能、优化并提高染料敏化太阳能电池的光电转化效率提供了较为丰富的选择途径和新的思路。
ZnO, Zn_2SnO_4 and TiO_2 nanomaterials are wideband semiconductors. Thesematerials have the advantages of abundant, cheap, non-toxic, and stable. They can beused in many areas, including photocatalysis of pollutants and dye-sensitized solarcells. Although tremendous efforts have been paid in studying such kinds ofnanomaterials and remarkable progresses have been achieved in the past, there stillremain great challenges in fabricating the nanomaterials with controllablecompositions and microstructures, exploring new physical phenomena andapplications. In the present work, we focused on the controllable fabrication andcharacterization of ZnO, Zn_2SnO_4 and TiO_2 nanomaterials. The photocatalyticactivities, targeting on the degradation of pollutants and dye-sensitized solar cells,were also studied. Based on systematic experiments and analysis, we have thefollowing results:
     1. Synthesis and photocatalytic properties of ZnO and Zn_2SnO_4 nanowires
     (1) One dimensional Zn_2SnO_4 nanowires, ZnO nanowires and ZnO-Zn_2SnO_4mixed nanowires were prepared through thermal evaporation method. Theresults demonstrated that average diameters of the nanowires can beadjusted in the range of 150~500 nm by controlling the experimentconditions.
     (2) The Zn_2SnO_4 nanowires have single-crystalline spinel structure and [111]growth direction, and there are many Zn and O vacancies in these nanowires.The ZnO nanowires have single-crystalline wurzite structure and [01(?)0]growth direction. The synthesized ZnO-Zn_2SnO_4 nanowires are a mixture ofZnO and Zn_2SnO_4 nanowires. All of the nanowires are straight and have auniform diameter along its entire length.
     (3) The photocatalytic activities of the ZnO-Zn_2SnO_4 nanowires were evaluatedby observing the photodegradation of MO aqueous solution under UV light.The ZnO-Zn_2SnO_4 mixed nanowires have best photocatalytic activity.Moreover, the photocatalytic activity can be enhanced by reducing theaverage diameter of the nanowires. The photodegradation constant k reaches the highest value of 0.146 h~(-1), when mixed ratio of ZnO:Zn_2SnO_4 is 5:1, andthe concentration of the mixed nanowires was 0.5 g/L.
     (4) The photocatalytic mechanisms were also discussed. Our study suggeststhat the improved photocatalytic activity of the ZnO-Zn_2SnO_4 mixednanowires may be attributed to the hetero-junction effect, which canefficiently separate the electron-hole pairs. Reducing the diameter of thenanowires can also promote the separation of electron-hole pairs, andenhance the photocatalytic efficiency.
     2. Novel three-dimensional dandelion-like TiO_2 structure with high photocatalyticactivity
     (1) Pure rutile phased TiO_2 powders with novel three dimensional (3D)dandelion-liked structures were synthesized by using a facile hydrothermalmethod with TiCl_3 as the main starting material with a yield of~90 mol%.The 3D dandelion structure has an average diameter of 1.5 to 2μm, and ispacked radially by nanorods with a [001] preference growth direction. Eachindividual nanorod is hundreds of nanometers in length, and tens ofnanometers in diameter.
     (2) The formation mechanisms of the dandelion-like structure were alsodiscussed. A new oxidation process of Ti(Ⅲ) to Ti(Ⅳ) was suggested:The Ti(Ⅲ) oxidizes to TiO_2 by oxygen inside the autoclave and [H~+] cationsin solution.
     (3) The obtained 3D dandelion-like TiO_2 powder has a high photocatalyticactivity, which is equivalent to the commercial available P25 titania powder.We attribute the improve photocatalytic activity of the 3D dandelion-likedTiO_2 to the hierarchical structures. The hierarchical structures have largespecific surface area, and provide diffusion channels for the molecules ofpollutants.
     3. Preparation and Characterization of the Electrodes for Dye-sensized Solar Cells
     (1) Electrodes of dye-sensitized solar cells were prepared by using the TiO_2nanoparticles obtained by hydrothermal method. The obtained electrode hasan equivalent efficiency with that prepared by the P25 TiO_2 powder. The influence of the film thickness on the performance of solar cells was alsodiscussed. There exists an optimum thickness of TiO_2 film.
     (2) The TiO_2 films prepared with the 3D dandelion-like TiO_2 and 1D TiO_2nanowires have comparable photovoltaic properties to that prepared by theTiO_2 nanoparticles. We think the 3D dandelion-liked hierarchical structurescan improve the photocatalytic activities of the solar cells. The hierarchicalstructure does not only have large specific surface area, but also provideschannels for the transportation of electrons.
     (3) We propose a new approach for the construction of the solar cell electrodes.By using novel nanomaterials, the photovoltaic performance of solar cellsmay be improved.
引文
[1] 朱静等.纳米材料和器件;清华大学出版社:北京,2003.
    [2] P. Moriarty, Rep. Prog. Phys. 2001, 64, 297.
    [3] 张立德,牟季美.纳米材料与纳米结构;第一版,科学出版社:北京,2001.
    [4] R.Rossetti, S.Nakahara, L.E.Brus, J.Chem.Phys. 1983, 79, 1086.
    [5] R.Kubo, A.Kawabata, S.Kobayshi, Annu. Rev. Mater. Sci. 1984, 14, 49
    [6] W.P. Halperin, Rev. Mod.Phys. 1986, 58, 532,
    [7] J. Lu, M. Tinkhan, 物理, 1998, 27, 137.
    [8] D. L. Feldhein, C. D. Keating, Chem. Soc. Rev. 1998, 27, 1.
    [9] X. J. Feng, J. Zhai, L. Jiang, Angew. Chem., Int. Ed. 2005, 44, 5115.
    [10] M. Law, J. Goldberge, P.D. Yang, Annu.Rev. Mater. Res. 2004, 34, 83
    [11] L.W. Zhong, W. P. Zheng, Inter. J. Nanoscience, 2002, 1, 41.
    [12] Y. Wu, P. Yang, J.Am. Chem. Soc. 2001,123, 3165.
    [13] S. S. Brenner, G. W. Sears, Acta Metall. 1956, 4, 268.
    [14] Z.W. Pan, Z. R. Dai, Z.L.Wang, Science 2001, 291, 1947.
    [15] B. Liu, H. C. Zeng, J. Am. Chem. Soc. 2003, 125, 4430.
    [16] 苏勉曾,谢高阳,申浮文等译,固体化学及其应用,复旦大学出版社:1989.
    [17] Q. W. Chen, Y. T. Qian, Appl. Phys. Lett. 1995, 66, 1608.
    [18] E. W. Shi, J. Mater. Rcs. 1994, 9, 2915.
    [19] R. L. Wclls, W. L. Gladfelter, J. Qustersd. 1997, 8, 217.
    [20] H. S. Nalwa, Handbook of Nanostructured Materials and Nanotechnology, Academic Press: 2000.
    [21] V. M. Shalaev, M. Moskovits, Nanostructured Materials: Clusters, Composites, and Thin Films, American Chemical Society, Washington, DC: 1997.
    [22] S. Edelstein, R. C. Cammarata, Nanomaterials: Synthesis, Properties, and Applications Institute of Physics, UK: 1996.
    [23] M. G. Bawendi, M. L. Steigerwald, L. E. Brus, Annu., Rev. Phys. Chem. 1990, 41, 477.
    [24] T. Rueckes, K. Kim, C. M. Lieber, et al., Science, 2000, 94, 289.
    [25] S. G. Louie, Op. Appl. Phys. 2001, 80, 113.
    [26] V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, et al., Science, 2000, 314, 290.
    [27] K. K. Likharev, T. Claeson, Sci. Am., June, 1992, 80.
    [28] K. K. Likharev, IBM J. Res. Develop. 1988, 32, 144.
    [29] S. G. Louie, Op. Appl. Phys. 2001, 80, 113.
    [30] J. Hu, C. M. Lieber, Acc. Chem. Res. 1999, 32, 435.
    [31] Mills A, LeHunte S, J Photoch. Photobio. A, 1997, 108, 1.
    [32] O. Legrini, E. Oliveros, Braun AM, Chem Rev, 1993, 93, 671.
    [33] E. W. Wong, P. E. Sheehan, C. M. Lieber, Science, 1997, 277, 1971.
    [34] X. F. Duan, Y. Huang, C. M. Lieber, et al., Nature, 2001, 409, 66.
    [35] Z. Zhang, X. Sun, M. S. Dresselhaus, et al., Phys. Rev. B, 2000, 61, 4850.
    [36] M. Huang, S. Mao, H. Feick, et al., Science 2001, 292, 1897.
    [37] Y. Wu, H.Yan, M. Huang, B. Messer, et al., Chem. Eur. J. 2002, 8, 1260.
    [38] Fujishima, K. Honda, Nature, 1972, 238, 37.
    [39] K. OHASHI, J. MCCANN, J. O. BOCKRIS, Nature, 1977, 266, 610.
    [40] S. N. Frank, A. J. Bard, J. Phys. Chem. 1977, 81, 1484.
    [41] M. R. Hoffman, S. T. Martin, W. Choi et al., Chem. Rev. 1995, 95, 69.
    [42] J. M. Herrmann, C. Guillatd, B. Pichat, Catalysis Today, 1993, 17, 7.
    [43] H .Yamashita, Y Ichihashi, M. Anpo, J. Phys. Chem. 1996, 100, 16041.
    [44] H. Yamashita, Ichihash, M. Harada, et al., J. Catal. 1996, 158, 97.
    [45] N. Serpone, Solar Energy Mater. Solar Cells, 1995, 38, 369.
    [46] A. J. Nozik, Appl. Phys. Lett. 1977, 70, 567.
    [47] Y. Bessekhouad, D. Robert, J. V. Weber, J. Photochem. Photobiol. A: Chem. 2004, 163, 569.
    [48] M. Gratzel. Nature, 2001, 414, 338.
    [49] A. L. Linsebigler, G. Q. Lu, J. T. Yates, Chem. Rev. 1995, 3, 735.
    [50] M. L. Zhang, T. An, G.Y. Sheng, J. M. Fu, Appl. Catal. A: Gen. 2004, 260, 215.
    [51] Hashimoto Kazuhito, et al., J. Phys. Chem. 1984, 88, 4083.
    [52] C. Kormannetai, Environ. Sci. Technol. 1991, 25, 494.
    [53] H. Kasturirangan, V Ramakrishan, J. C. Kuriacose, J. Catal. 1981, 69, 216.
    [54] L. Pruden, D. F. Ollis, Environ. Sci.Technol. 1983, 17, 628.
    [55] H. Harada, T. Ueda, T. J. Sakata, Phys. Chem. 1989, 93, 1542.
    [56] J. G. Yu, Y. R. Su, B. Cheng, et al., J. Molecular Catal. A: Chem. 2006, 258, 104.
    [57] J. Fernandez, J. Kiwi, J. Baeza, et al., Appl. Cata. B: Environ. 2004, 3, 205.
    [58] H. Yoneyama, Crit. Rev. Solid State Mater. Sci. 1993, 18, 69.
    [59] M. A. Fox, Nouv, J. Chem. 1987, 11, 129.
    [60] G. Rothenberger, J. Moser, M. Gratzel, J. Am. Chem. Soc. 1985, 107, 8054.
    [61] M. Tomkiewicz, Catalysis Today, 2000, 58, 115.
    [62] Y. Bessekhouad, D. Robert, J. V. Weber, J. Photochem. Photobiol. A: Chem. 2004, 163, 569.
    [63] C. Wang, J. C. Zhao, X. M. Wang, et al., Appl. Catal. B: Environ. 2002, 39,269.
    
    [64] M. L. Zhang, T. An, G. Y. Sheng, J et al., Appl. Catal. A: Gen. 2004,260,215.
    
    [65] M. L. Zhang, G. Y. Sheng, J. M. Fu, T. C. An, et al., Mater. Letter 2005, 59, 3641.
    
    [66] C. Wang, X. M. Wang, J. Photochem. Photobiol. A: Chem. 2004, 168, 47.
    
    [67] C. Sampa, Dutta, K. Binay, J. Hazardous Mater. B 2004, 112,269.
    
    [68] G. Marci, V. Augugliaro, M. J. LopezMunoz, et al., J. Phys. Chem. B, 2001, 105, 1033.
    
    [69] N. Daneshvar, D. Salari, A. R. Khataee, J. Photochem. Photobiol. A: Chem. 2004, 162, 317.
    
    [70] D. L. Yang, X. Wang, X. J. Yang, et al., J. Solid State Chem. 2002, 165, 193.
    [71] K. Vinodgopal, P. V. Kamat, Environ. Sci. Techno. 1995, 29, 841.
    [72] L. Y. Shi, C. Z. Li, H. C. Gu, et al., Mater. Chem. Phys. 2000, 62, 62.
    [73] S. Pilkenton, D. Raftery, Solid State Nucl. Magn. Reson. 2003,24, 236.
    [74] Hernandez, L. Maya, E. Sanchez-Mora, et al., J. Sol-Gel Sci Technol. 2007,42, 7.
    [75] V. Iliev, D. Tomova, L. Bilyarska, et al., Appl. Catal. B: Environ. 2006, 270, 266.
    [76] W. Choi, J. Phys. Chem. 1994, 98,13669.
    
    [77] E. Evgenidou, K. Fytianos, I. Poulios, Appl. Catal. B: Environ. 2005, 59, 81.
    [78] J. W. Moon, C. Y. Yun, K. W. Chung, et al., Catal. Today, 2003, 87, 77.
    [79] J. Lobedank, E. Bellmann, J. Bendig, J. Photochem. Photobiol. A: Chem. 1997, 108, 89.
    [80] H. Spreitzer, M. Gratzel, Nature, 2000, 395, 583.
    
    [81] A. J. Frank., N. Kopidakis, Lagemaat, J. V. D. Coord. Chem. Rev. 2004, 248, 1165.
    [82] I. Zumeta, R. Espinosaa, J. A. Ayllonb, et al., Solar Energy Mater. Solar Cells 2003, 76,15.
    [83] Y. C. Lee, Y. J. Jung, J. Colloid Interface Science, 2005,283,482.
    [84] M. Farland, J. Tang, Nature, 2003,421,616.
    
    [85] Cagen David, Hodes Gary, Ricss Ilan, et al., J. Phys.Chem. B, 2000, 104,2053.
    [86] Zaban Arie, Ferrere Suzanne, Gregg Brian, J. Phys.Chem. B, 1998,452.
    [87] A. Hagfeldt, M. Gratzel, Chem.Rev.1995, 95,49.
    [88] G. C. Graziani, N. A. Kaoru, I. N. Y. Murakami, et al., J. Photochem. Photobiol. A: Chem. 2002, 151, 165.
    
    [89] S. A Haque, T. Yasuhiro, D. James, et al., J. Phys. Chem. B, 2000, 104, 538547.
    [90] W. Dufyn, M. PeterL, Rajapakser, et al., Electrochem. Commun. 2000, 2, 658.
    [91] D. J. R.Modulating, J. Photochem Photobiol A: Chem. 2002, 148, 5.
    [1] Y. Xia, P. Yang, Y. Sun, et Al., Adv. Mater. 2003, 15,353.
    
    [2] X. J. Feng, J. Zhai, L. Jiang, Angew. Chem., Int. Ed. 2005,44, 5115.
    
    [3] M.Law, J. Goldberge, P. D.Yang, Annu.Rev. Mater. Res. 2004, 34, 83.
    
    [4] L. Greene, M. Law, J. Goldberger, et Al., Angew. Chem. Int. Ed. 2003,42, 3031.
    
    [5] P. L. McEuen, Phys. Word, 2000,13,31.
    
    [6] C. M. Lieber, Sci. Am. 2001,58.
    
    [7] D. L. Young, D. L. Williamson, T. J. Coutts, Appl. Phys. Lett. 2002, 91, 1464.
    
    [8] A. Wang, J. Dai, J. Cheng, et al., Appl. Phys. Lett. 1998, 73, 327.
    
    [9] M. Gratzel, Nature, 2001,414,338.
    
    [10] C. M. LEE, K. YIM, Youngjoon CHO, et al., Rare Metals, 2006,25, 105.
    
    [11] K. L. Chopra, S. Major, D.K. Pandya, Thin Solid Films, 1983,102, 1.
    
    [12] N. J. Dayan, S. R. Sainkar, R. N. Karekar, et al., Thin Solid Films, 1998, 325,254.
    
    [13] P. Mitra, A. P. Chatterjee, H. S. Maiti, J. Mater. Sci. 1998, 9, 441.
    
    [14] T. L. Yang, D. H. Zhang, J. Ma, et al., Thin Solid Films 1998, 326, 60.
    
    [15] W. W. Coffeen, Ceramic, J. Am. Ceram. Soc. 1953,36, 207.
    
    [16] N. Nikolic, T. Sreckovic, M. M. Ristic, J. Eur. Ceram. Soc. 2001,21, 2071.
    
    [17] H. Y. Chen, J. X. Wang, H. C. Yu, et al, J. Phys. Chem. B. 2005, 109,2573.
    
    [18] J. H. Yu, G M. Choi, Sensors Actuators B, 2001, 72, 141.
    
    [19] X. Wu, S. Asher, D. H. Levi, et al., Appl. Phys., 2001,89,45.
    
    [20] Stambolova, K. Konstantinov, M. Khristova, et al., Phys. Stat. Sol. 1998, 167, R11.
    
    [21] C. Wang, X. M. Wang, B. Q. Xu, et al., J. Photochem. Photobiol. A, 2004, 168,47.
    
    [22] F. Belliard, P. A. Connor, J. T. S. Irine, Solid State Ionics, 2000, 135, 163.
    
    [23] R. C. Hoffmann, S. J. Jia, J. C. Bartolome, et al., J. Eur. Ceram. Soc. 2003, 23, 2119.
    
    [24] S. T. Changa, I. C. Leub, M. H. Hona, J. Alloys Comp. 2005, 403,335.
    
    [25] C. Wang, J. C. Zhao, X. M. Wang, et al., J. M. Fu, Appl. Catal. B: Environ. 2002,39, 269.
    
    [26] H.Q. Yan, R. R. He, P. D. Yang, et al., Adv. Mater. 2003, 15,402.
    
    [27] J. Q. Hu, Y. Bando, D. Golberg, Chem. Phys. Lett. 2003, 372,758.
    
    [28] Chris G., Van de Walle, Physic B, 2001, 308, 899.
    
    [29] N. Pan, X. P. Wang, J. G. Hou, et al., J. Phys. Chem. C, 2007, accepted.
    
    [30] M. S. Moreno, R. C. Mercader, A. G. Bibiloni, J. Phys. Condens. Matter 1992,4, 351.
    
    [31] M. Nagano, J. Cryst. Growth 1984, 66, 377.
    
    [32] Z. R. Dai, Z. W. Pan, Z. L. Wang, J. Am. Chem. Soc. 2002, 134, 8673.
    
    [33] 陈翌庆,中国科学技术大学,博士论文:2003.
    [34] 揭建胜,中国科学技术大学,博士论文:2004.
    [35] P. Gao, Z. L. Wang, J. Phys. Chem. 2002, 106, 12653.
    [36] K. Konstantinou, T. Sakellarides, V. Sakkas, et al., Environ. Sci.Teehnol. 2001, 35, 398.
    [37] I. Sopyan, M. Watanabe, S. Murasawa, et al., J. Photochem. Photobiology A: Chem. 1996, 98, 79.
    [38] L. Zang, C. Y. Liu, X. M. Ren, J. Photochem. Photobioi. A: Chem. 1995, 85, 239.
    [39] K. Konstantinou, T..Sakellarides, V. Sakkas, et al., Environ. Sci. Technol. 2001, 35, 398.
    [40] M. R. Hoffmann, S. T. Martin, W. Choi, et al., Chem. Rev. 1995, 95, 69.
    [41] L. Y. Shi, C. Z. Li, H. C. Gu, et al., Mater. Chem. Phys. 2000, 62, 62.
    [42] A. Hernandez, L. Maya, E. Sanchez-Mora, et al., J. Sol-Gel Sci Technol, 2007, 42, 71.
    [43] A. Hagfeldt, M. Graetzel, Chem. Rev. 1995, 95, 49.
    [44] M. L. Zhang, T. An, G.Y. Sheng, et al., Appl. Catal. A: Gen. 2004, 260, 215. 44
    [45] Y. Bessekhouad, D. Robert; J. V. Weber, J. Photochem. Photobiol. A: Chem. 2004, 163, 569.
    [46] N. Daneshvar, D. Salari, A. R. Khataee, J. Photochem. Photobiol. A: Chem. 2004, 162, 317.
    [47] J. Yang, D. Li, X. Wang, et al., J. Solid State Chem. 2002,165, 193.
    [48] K. Vinodgopal, P. V. Kamat., Environ. Sci. Techno. 1995, 29, 841.
    [49] Y. Bessekhouad, D. Robert, J. V. Weber, J. Photochem. Photobiol. A: Chem. 2004,163, 569.
    [50] J. Wanga, T. Maa, Z. H. Zhang, et al., Desalination, 2006, 195, 294.
    [51] J. Grzechulska, A.W.Morawski, Appl. Catal. B. Environ. 2002, 36, 45.
    [52] Rachel, Sarakha, Subrahmanyam, et al., Appi. Catal. B. Environ. 2002, 37, 293.
    [53] M. Hilgendroff, M. Higendroff, D. Bahnemann, J. Adv. Oxid. Technol, 1996, 1, 35.
    [54] S. AI-Qaradawi, S. R. Salman, J. Phoochem. Photobiol. A: Chem. 2002, 148,161.
    [55] V. Augugliaro, C. Baiocchi, A. B. Prevot, et. al., Chemospere, 2002, 49, 1223.
    [56] S. Chakrabarti, B.K. Dutta, J. Hazardous Mater. B, 2004, 112, 269.
    [1] 化学工业部图书编辑室编辑,二氧化钛译文集,中国工业出版社:1965.
    [2] 高濂,郑珊,张青红著,纳米氧化钛光催化材料及应用,化学工业出版社:2002.
    [3] Capule MFV, T. Hisanaga, Chem Phys Let, 1991, 187, 73.
    [4] J. Grzechulska, A. W. Morawski, Appl. Catal. B: Environ. 2002, 36, 45.
    [5] C. Lettmanna, K. Hildenbrand, et al., Appl. Cataly. B: Environ. 2001, 32, 215.
    [6] A. Kenji, H. Teruaki, et al., WaterRes, 1990, 24, 1415.
    [7] T. B. Ghosha, S. Dhabal, A. K. Datta., J. Appl. Phys. 2003, 94, 4577.
    [8] M. Sixto, B. Julian, V. Alfonso, R. Christoph, Appl. Catal. B, 2002, 37, 1.
    [9] R. I. Bickley, T. Gonzalezcarreno, J. S. Lees, et al., J. Solid State Chem, 1991, 92, 178.
    [10] M. R. Hoffmann, S. T. Martin, W. Y. Choi, et al., Chem. Rev. 1995, 95, 69.
    [11] H. Yamashita, Y Ichihashi, M. Anpo, J. Phys. Chem. 1996, 100, 16041.
    [12] N. Serpone,Solar Energy Mater. Solar Cells, 1995, 38, 369.
    [13] A. Fujishima, K. Honda, Nature, 1972, 238, 37.
    [14] B. O'Regan, M. Gratzel, Nature, 1991, 353, 737.
    [15] Y. C. Lee, J. Colloid Interface Science, 2005, 283, 482.
    [16] A. Bozzi, T. Yuranova, I. Guasaquillo, et al., J. Photochem. Photobiol. A: Chem. 2005, 174, 156.
    [17] R. Alexandrescu, F. Dumitrache, I. Morjan, et al., Nanotechnology, 2004, 15, 537.
    [18] J. Tang, F. Redl, Y. M. Zhu, et al., Nano Lett. 2005, 5, 543.
    [19] W. Li, Y. Wang, H. Lin, et al., Appl. Phys. Lett. 2003, 83, 4143.
    [20] H. M. Cheng, J. M. Ma, Z. G. Zhao, et al., Chem. Mater. 1995, 7, 663.
    [21] Y. Lei, L. D. Zhang, G. W. Meng, G. H. Li, et al., Appl. Phys. Lett. 2001,78,1145.
    [22] Z. Miao, D. S. Xu, J. H. Ouyang, et al., Nano Lett. 2002, 2, 717.
    [23] B. Xiang, Y. Zhang, Z. Wang, et al., J. Phys. D, 2005, 38, 1152.
    [24] Y. Lin, G. SWu, X. Y Yuan, et al., J. Phys. 2003, 15, 2917.
    [25] T. Kasuga, M. Hiramatsu, A. Hoson, et al., Adv. Mater. 1999, 11, 1307.
    [26] G. H. Du, Q. Chen, R. C. Che, et al., Appl. Phys. Lett. 2001, 79, 3702.
    [27] W. L. Yang, C. L. A., Wolden Thin Solid Films, 2006, 515, 1708.
    [28] Y. J. Chen, D. D. Dionysiou, Appl. Catal. B: Environ. 2006, 69, 24.
    [29] H. G. Yang, H. C. Zeng, J. Phys. Chem. B, 2004, 108, 3492.
    [30] X. X. Li, Y. J. Xiong, Y. Xie, et al., Inorg. Chem. 2006, 45, 3493.
    [31] M. H. Huang, S. Mao, H. Feick, et al., Science, 2001, 292, 1897.
    [32] O. C. Biel, B. J. Ravoo, D. N. Reinhoudta, et al., J. Mater. Chem. 2006, 16, 3997.
    [33] T. N. Hou, J. Li, M. K. Smith, et al., Science, 2003, 300, 1249.
    [34] E. Hosono, S. Fujihara,K. Kakiuchi, et al., J. Am. Chem. Soc. 2004, 126, 7790.
    [35] X. J. Feng, J. Zhai, L. Jiang, Angew. Chem., Int. Ed. 2005, 44, 5115.
    [36] J. M. Wu, B. Huang, M. Wang, et al., J. Am. Ceram. Soc. 2006, 89, 2660.
    [37] U. Balachandran, N.G. Eror, J. Solid State Chem. 1982, 42, 276.
    [38] Y. Hara, M.Nicol, Phys. Status. Solid B, 1979, 94, 317.
    [39] J. C. Paker, R. W. Siegel, Appl, Phys. Lett, 1990, 5, 943.
    [40] J. G. Traylor, H. G. Smith, Phys. Solids, 1988, 47,607.
    [41] N. Krishnamurthy, Pure J. Appl. Phys. 1979, 17, 67.
    [42] S. D. Deb, Solid State Communications, 1972, 11, 713.
    [43] H. Nakajima, T. Mori, Q. Shen, et al., Chem. Phys. Lett. 2005, 409, 81.
    [44] N. D. Abazovic, M. I. Cyomor, M. D. Dramic'anin, et al., J. Phys. Chem. B, 2006, 110, 25366.
    [45] L. Q. Jing, Y.C. Qu, B. Q. wang, et al., Sol. Energy Mater. Sol. C, 2006, 90, 1.
    [46] D. C. Sayle, C. R. A. Cataw, Phys. Chem. Solids, 1995, 56, 799.
    [47] H. Y. Zhu, Y. Lan, X. P. Gao, et al., J. Am. Chem. Soc. 2005, 127, 6730.
    [48] H. G. Yang, H. C. Zeng, Angew. Chem. Int. Ed. 2004, 43, 5930.
    [49] 陈丹之,氢能,西安交通大学出版社:1990.
    [50] 徐雅琴,张金桐,大学化学,中国农业出版社,大学化学:2004.
    [51] J. G. Jia, T Ohno, M.Matsumura, Chem. Lett. 2000, 908.
    [52] X. C. Wang, J.C. Yu, C. Ho, et al., Langmuir, 2005, 21, 2552.
    [53] D. R. Rolison, science, 2003, 299, 1698.
    [54] L. S. Zhang, W. Z. Wang, Z. G. Chen, et al., J. Mater. Chem. 2007, 17, 2526.
    [55] Y. Z. Wang, X. Hong, G. Z. Wang, et al., Chinese J. Chem. Phys. 2006, 19, 559.
    [56] M. H. Huang, S. Mao, H. Feick, et aI., Science, 2001, 292, 1897.
    [57] C. Wang, J. Zhao, X. Wang, B. Mai, et al., Appl. Catal. B: Environ. 2002, 39, 269.
    [58] S. Al-Qaradawi, S. R. Salman, J. Phochem. Photobiol. A: Chem. 2002, 148, 161.
    [59] K. Young, C. B. Hsich, Water Res. 1992, 26, 443.
    [60] J. Wang, T. Ma, Z. H. Zhang, et al,, Desalination, 2006, 195, 294.
    [61] Morrison SR著,吴辉煌译,半导体与金属氧化膜的电化学,科学出版社:1988.
    [62] D. Robert, S. Parra, J. V. Weber, et al., Appl. Surf. Sci. 2000, 167, 51.
    [63] J. L. Zhao, X. H. Wang, T. Y. Sun, et al., Alloys. Compounds, 2007, 434, 792.
    [64] N. Guettai, H. Ait Amar, Desalination, 2005, 185,427.
    
    [65] R. Comparelli, E. Fanizza, M. L. Curri, et al., Appl. Catal. B: Environ. 2005, 55, 81.
    [66] V. Augugliaro, C. Baiocchi, A. B. Prevot, et al., Chemosphere, 2002,49,1223.
    [67] I. Poulios, M. Kositzi, A. Kouras, J. hotochem. Photobiol. A: Chem. 1998, 115,175.
    [1] Brian O'Regan, Michael Gratzel, Nature, 1991, 353, 737.
    [2] M. Gratzel, Chem. Lett. 2005, 8, 34.
    [3] N. G. Park, J. van de Lagement, A. J. Frank, J. Phys. Chem. B, 2000,104,8989.
    [4] M. Zukalova, A. Zukal, M. Graltzel, et al., Nano Lett., 2005, 5, 1789.
    [5] U. Wulrfel, J. Wagner, A. Hinsch, J. Phys. Chem. B, 2005, 109, 20444.
    [6] J. Bisquert, D. Cahen, G. Hodes, et al., J. Phys. Chem. B, 2004, 108, 8106.
    [7] K. D. Benkstein, N. Kopidakis, J. van de Lagemaat, et al., J. Phys. Chem. B, 2003,107, 7759.
    [8] M. Lawi, L. E. Greene, P. D. Yang, et al., nature mater. 2005, 4, 455.
    [9] J. B. Baxter, E. S. Aydila, Appl. Phys. Lett. 2005, 86, 053114.
    [10] 戴松元,染料敏化纳米薄膜太阳电池的研究,中国科学院等离子体物理研究所:2000.
    [11] 越富鑫,魏彦章编,太阳电池及其应用,国防工业出版社:1985.
    [12] 姜勇,丁恩勇,黎国康,纤维素科学与技术,2000,8,8.
    [13] T. L. Wang, F. J. Huang, S. W. Lee, Polym. Int. 2002, 51, 1348.
    [14] U. Balachandran, N.G. Eror, J. Solid State Chem. 1982, 42, 276.
    [15] W. U. Huynh, J. J. Dittmer; A. P. Alivisatos, Science, 2002, 295, 2425.
    [16] M. Adachi, Y. Murata, J. Takao, et al., J. Am. Chem. Soc. 2004 126, 14943.
    [17] K. Zhu, N. R. Neale, A. Miedaner, et al., Nano Lett. 2007, 7, 69.
    [18] G. K. Mor, S. Karthik, M. Paulose, et al., Nano Lett. 2006, 6, 215.
    [19] Y. Ohsaki, N. Masaki, T. Kitamura, et al., Phys. Chem. Chem. Phys. 2005, 7, 4157.
    [20] X. C. Wang, J. C. Yu, C. Ho, et al., Langmuir, 2005, 21, 2552
    [21] D. R. Rolison, Science, 2003, 299, 1698.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700