用户名: 密码: 验证码:
光学参量啁啾脉冲放大技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自1992年提出光参量啁啾脉冲放大(OPCPA)技术以来,由于其具有高的单通增益,低的热效应影响,高的信噪比,低的B积分,宽的增益带宽,且在放大过程中克服了增益带宽窄化现象,故光参量啁啾脉冲技术已经广泛地应用到超强,超短激光脉冲产生技术中,同时也成为TW以及PW系统的一个好的前端源。
     本文的主要研究工作和创新有以下几个方面:
     1.理论研究了光参量放大的物理过程,重点对光参量放大过程中的耦合波方程、相位匹配方式、增益带宽等问题进行了理论分析,给出了相关的参数设计的理论计算公式。
     2.理论探讨了在抽运光为宽带的情况下的一种新颖的基于预啁啾控制的超宽带光参量放大技术,提出了对输入脉冲进行预啁啾控制新方法,使信号光的不同光谱分量和抽运光的相应光谱分量分别满足相位匹配条件,从而极大地扩展了相位匹配带宽。
     3.提出采用在抽运光脉冲所定义的时间窗口中,在有效非线性系数最大的平面内,信号光被同一抽运光两次放大的双通放大技术,并把该技术运用到了低重复了以钛宝石激光器为种子源和以自启动被动缩模光纤激光器为种子源的光参量啁啾脉冲放大系统中,有效地提高了信号光与抽运光在时域上的匹配,提高了抽运光的利用率,关键是有效地抑制了在参量放大过程中参量荧光的产生,提高了光参量放大系统的稳定性。
     4.进行了以钛宝石激光器为种子光源的OPCPA系统的理论和实验研究。首先为了实现飞秒信号光脉冲与纳秒抽运光脉冲在时域上的有效匹配,通过光线追迹法对影响?ffner展宽器输出脉宽的关键参数进行了理论分析,并进行了实验研究,把信号光展宽到了545ps。其次,在二级放大器中,采用新型的双通光参量放大技术,有效地提高了系统转换效率,抑制了参量荧光的出现,将0.1nJ的单脉冲放大到3mJ输出,增益达到了3×107,能量稳定性达到<3% rms,输出信号光增益谱宽达到了30 nm(FWHM);最后采用光栅对压缩器将放大后的信号光脉冲压缩成82 fs的脉冲输出。
     5.首次进行了以锁模光纤激光器为种子源的新型OPCPA系统的理论和实验研究。通过两级单通放大方式,将1.5 nJ放大到6 mJ,得到净增益为4.0×106,能量稳定性达到<2% rms,采用光栅压缩器将输出的放大信号光脉冲压缩成525 fs的脉冲输出。采用光纤激光器为种子源,使得整个系统稳定性高、效率高、结构紧凑。此外为了进一步简化系统结构,进行了单级双通OPA结构,有效提高了转换效率,并且很好地抑制了参量荧光的影响。放大输出能量为2mJ,总增益达2×106,能量稳定性为<2%rms,光谱带宽为8nm(FWHM)。
     6.首次采用堆积脉冲光纤激光器为种子源,进行两级光参量放大技术的研究,得到了1.1×107的两级放大总增益。该系统在无展宽器的情况下,不仅满足了信号光与抽运光在时域上的匹配,有效地抑制了参量放大过程参量荧光的出现,提高了放大器的稳定性,同时由于该激光器具有自启动、长时间稳定锁模、极少受外界环境变化的影响等特点,提高了整个系统的稳定性。
Optical parametric chirped pulse amplification (OPCPA) is widely used in intense field physics, high energy physics, which was originally proposed and demonstrated by Dubietis et al in 1992 The OPCPA technique has some significant advantages over other schemes such as high gain per single pass, a broad gain bandwidth, a high output beam quality, a low heat deposition and a small B integral. So the OPCPA is an alternation of the for-end source of the terawatt and peterwatt system.
     The main research works and innovations of this thesis are summarized as followed:
     1. A detailed basic theoretical study of the optical parametric amplification process was detailedly investigated. The theoretical treatment includes mainly coupled wave equation for OPCPA, phase-matching principles and phase-matching types, the bandwidth and gain of optical parametric amplifier.
     2. A novel ultra-broad bandwidth optical parametric amplification approach is investigated in this dissertation for the pump pulse with broadband. Using pre-chirp controlling,the phase-matching condition is satisfied in a ultra-broadband signal spectral range.
     3. A novel double-pass optical parametric chirped pulse amplifier is demonstrated.The signal is double-pass amplified in a nonlinear crystal by a long pump pulse and the signal and pump pulses of each pass were complete phase matched in the plane which has the maximum of the effective nonlinearity. By this system, the match of the signal and pump in the time is obviously increased and the superfluorescence is suppressed.
     4. An OPCPA system based on the Ti:sapphire femtosecond oscillator has been theoretical and experimental study. Firstly, theoretical and experimental study of Large-ratio ?ffner stretcher for OPCPA laser system was presented. Through appropriate optimization of the four parameters, expansion of 30 fs pulses to 545 ps with free aberration and a stretching ratio of 18,167 have been experimentally demonstrated. Secondly, A new double-passed architecture of the second OPA stage was demonstrated. By use of the double-passed architecture, on the one hand, this scheme efficiently increases the conversion efficiency, on the other hand, it remarkably decreases the uncompressible background arose from the parametric fluorescence. The net total gain higher than 3×107, single pulse energy exceeding 3 mJ with fluctuations less than 3% rms, 30 nm(FWHM) amplified signal spectrum and recompressed pulse duration of 82 fs (FWHM)are achieved.
     5. An OPCPA system based on an Yb3+-doped passively mode-locked fiber laser has been theoretical and experimental study. Firstly, using two stage single-passed OPA arrangement, a gain higher than 4.0×106, single pulse energy exceeding 6 mJ with fluctuations less than 2% rms, recompressed pulse duration of 525 fs are achieved. This system is high stability, great conversion efficiency, compact. Secondly, single stage double-passed OPA architecture was utilized. This scheme efficiently increases the transfer efficiency, and remarkably decreases the parametric fluorescence. The net total gain higher than 2×106, single pulse energy exceeding 2 mJ with fluctuations less than 2% rms, parametric fluorescence less than 1% of the total output pulse energy, 8 nm (FWHM)amplified signal spectrum are achieved.
     6. An OPCPA system based on an Yb3+-doped passively mode-locked interference pulse fiber laser has been theoretical and experimental studied. The overall net gain of the two-stage OPA reached 1.1×107, corresponding to the final output energy of 11mJ with fluctuations less than 1%. The superfluorescence energy is suppressed to 1% of the total output pulse energy. This scheme efficiently increases the transfer efficiency, and remarkably decreases the parametric fluorescence. The fiber laser showed the excellent long term stability under the temperature stabilized ultra-clean environmental condition, and the mode-locking operation could be hardly influenced by the external environment. By which, the stablity of the OPCPA system is increased.
引文
1. J.L.Helfrich,“Faraday effect as a q-swith for ruby laser,”J.Appl.Phys., 1963, 34(1) 1000-1001.
    2. I.E.Hargrove, R.L.Fork,and M.A.Pollack,“Locking of He-Ne laser modes induced by synchronous intracavity modulation,”Appl. Phys.Lett., 1964,Vol.5,4-5.
    3. A.J.DeMaria and d.A.Stetser,“Laser pulse-shaping and mode-locking with acoustic waves,”Appl. Phys. Lett., 1965, Vol 7,71-73.
    4. W.Schmidt and F.P.Schafer,“Self-mode-locking of dye-lasers with saturable absorbers,”Phys.Lett., 1968,Vol26(11), 558-559.
    5. A.Yariv,"Internal modulation in multimode laser oscillators," J.Appl.Phys,1965,Vol.36(2),388-391.
    6. R.L.Fork, B.1.Greene, and C.VShank,“Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking,”Appl.Phys.Lett., 1981, Vol.38(5),671-674.
    7. D.E.Spence, P.N.Kean, and W.Sibbett,“60-fs pulse generation from a self-mode-locked Ti:sapphire laser,”Opt. Lett.,1991, , Vol.16(1),42-44.
    8. C.P.Huang, H.C. Kapteyn, J.W. McIntosh,et.al.,“Generation of transform-limited 32 fs pulse from a self-mode-locked Ti:sapphire laser”Opt. Lett., 1992,1,17(2), 139-141.
    9. C.P.Huang, M.T. Asaki, S.Backus,et.al.,“17-fs pulses from a self-modeolocked Ti:sapphire laser”Opt. Lett., 1992,9,17(18), 1289-1291.
    10. P.F.Curley, Ch. Spielmann, T. Brabec,et.al. , Operation of a femtosecond Ti:sapphire solitary laser in the vicinity of zero group-delay dispersionOpt. Lett., 1993,1,18(1), 54-56.
    11. M.T.Asaki, C-P Huang, D.Garvey, et.al.,“Generation of 11-fs pulses from a self-mode-locked Ti:sapphire laser”Opt. Lett., 1993, 18(12), 977-979.
    12. J.Zhou, G.Taft, C.P.Huang, et.al.,“Pulse evolution in a broad-bandwidth Ti:sapphire laser”, Opt. Lett., 1994, 19(16), 1149-1151.
    13. I.P.Christov, M.M.Murnane, H.C.Kapteyn, et.al.,“Fourth-order dispersion-limited solitary pulses”,Opt.Lett., 1994, 19(18), 1465-1467.
    14. A.Stingl, M. Lenzner, Ch. Spielmann, et.al.,“Sub-10-fs mirror-dispersion-controlled Ti:sapphire laser”Opt. Lett.,1995,3, 20(6), 602-604.
    15. M.Nisoli, S. Stagira, S. De Silvestri,et.al.,“A novel-high energy pulse compression system: generation of multigigawatt sub-5-fs pulses”Appl. Phys. B, 1997, 65(2), 189-196.
    16. V. Petrioevic, S. K. Gayen, R. R. Alfano, et.al.,“Laser action in chromium-doped forsterite,”Appl. Phys. Lett., 1988,52, 1040-1042.
    17. I. T. Sorokina, E. Sorokin, E. Wintner,et.al.,“14-fs pulse generation in Kerr-lens mode-locked prismless Cr:LiSGaF and Cr:LiSAF lasers: observation of pulse self-frequency shift”Opt. Lett., 1997,22(22), 1716-1718.
    18. A. Baltuska,Z. Wei,M.Pshenichnikov et.al.,“Optical pulse compression to 5 fs at a 1-MHz repetition rate”, Opt. Lett., 1997, 22(2): 102 -104.
    19. M. Nisoli, S. De Silvestri, O. Svelto,et.al.,“Compression of high-energy laser pulses below 5 fs”, Opt. Lett.,1997, 22 (8): 522 -524.
    20. S. Sartania, Z. Cheng, M. Lenzner, et.al.,“Generation of 0.1-TW 5-fs optical pulses at a 1-kHz repetition rate”, Opt. Lett., 1997,22 (20): 1562-1564.
    21. Z.Cheng,G.Tempea, T.Brabec et al.,“Generation of intense diffraction-limited white light and 4-fs pulses”In Ultrafast Phenomena XI, pringer-Verlag, Berlin, 1998,8.
    22. A.Baltuska, M.S.Pshenichnikov, D.A.Weiersma,“Second-harmonic generation frequency-resolved optical gating in the single-cycle regime”IEEE J.Quantum Electron., 1999,35 (4): 459-478.
    23. G.Cerullo, S.D.Silvestri, M.Nisoli et.al.,“Few-Optical-Cycle Laser Puises: From High Peak Power to Frequency Tunabilityto frequency tunability”IEEE J. Sel. Top. Quantum Electron., 2000,6(6): 948-958.
    24. N. Karasawa, L. Li, A. Suguro et al.,“Optical pulse compression to 5.0 fs by use of only a spatial light modulator for phase compensation.”J. Opt. Soc. Am.B, 2001,18 (11), 1742-1746.
    25. B. Schenkel, J. Biegert, U. Keller, et.al.,“Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum”Opt. Lett., 2003,28 (20):1987-1989.
    26. Y.Keisaku, Z.G.Zhang, O.Kazuhiko, et.al.,“Optical pulse compression to 3.4fs in the monocycle region by feedback phase compensation”,Opt. Lett., 2003,11, 28 (22): 2258-2260.
    27. K. Yamane, T Kito, R. Morita et al., et.al., in OSA Trends in Optics and Photonics Series (TOPS), vol. 96,Conference on Lasers and Electro-Optics (CLEO),(Optical Society of America, Washington, DC, 2004.
    28. D.Strickl and G. Mourou,“Compression of amplified chirped optical pulses”,Opt.Comm. 1985,56(3), 219-221.
    29. P. Maine, D. Strickland, P.Bado, et.al.,“Generation of ultrahigh peak power pulses by chirped pulse amplification”. IEEE J. Quantum Electron., 1988, 24(2):398~403.
    30. J.R.Klauder, A.C.Price, S.Darlington, et al.,“The theory and design of chirp radars”, Bell Sys. Tech. J., 1960,39,745-808.
    31. A .Sullivan, H .H amster,H .C .K apteyn et.al.,“Multiterawatt, 100-fs laser”Opt.Lett. 1991,16 (18), 1406-1408.
    32. C .P. J. B arty, T. Guo, C. Le Blanc, et.al.,“Generation of 18-fs, multiterawatt pulses by regenerative pulse shaping and chirped-pulse amplification”, Opt.Lett. 1996,21 (9), 668-670.
    33. B. C. Stuart, M. D. Perry, J. Miller, et.al.,“125-TW Ti:sapphire/Nd:glass laser system”, Opt. Lett., 1997, 22 (4), 242-244.
    34. K .Y amakawa, M. Aoyama, S. Matsuoka,et.al.“100-TW sub-20-fs Ti:sapphire laser system operating at a 10-Hz repetition rate”,Opt.Lett. 1998, 23 (18), 1468-1470.
    35. M. D. Perry, D. Pennington, B. C. Stuart, et.al.,“Patawatt laser pulses”, Opt. Lett., 1999, 24 (3), 160-162.
    36. R. Danielius, A. Piskarskas, A. Stabinis,et.al.,“Traveling-wave parametric generation of widely tunable, highly coherent femtosecond light pulses,”J. Opt. Soc. Amer. B, Opt. Phys., 1993,10(11), 2222–2232.
    37. R. Byer and A. Piskarskas, Eds.,“Feature issue on optical parametric oscillation and amplification,”J. Opt. Soc. Amer. B, Opt. Phys., 9, 1656–1791(1993) and 10, 2148–2243. (1993)
    38. G. Cerullo and S. De Silvestri,“Ultrafast optical parametric amplifiers,”Rev. Sci. Instrum., 2003,74(1), 1–18.
    39. A. Piskarskas,“Optical parametric generators: Tunable, powerful, ultrafast,”Opt. Photon. News, 1997, 7(7), 25–28.
    40. A. Dubietis, G. Jonuˇsauskas, and A. Piskarskas,“Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal,”Opt. Commun., 1992,88(4-6), 437–440.
    41. L. J. Waxer , L. J. Waxer, V. Bagnoud,et.al.,“High-conversion-efficiency optical parametric chirped-pulse amplification system using spatiotemporally shaped pump pulses”Opt. Lett. 2003, 28(15), 1245-1247.
    42. H. Yoshida , E. Ishii, R. Kodama,et.al.,“High-power and high-contrast optical parametric chirped pulse amplification inβ-BaB2O4 crystal”, Opt. Lett. 2003,28(4), 257-259.
    43. V. Bagnoud,I.A.Begishev, M.J.Guardalben, et.al.,“5 Hz, >250 mJ optical parametric chirped-pulse amplifier at 1053 nm”,Opt. Lett.2005, 30(15), 1843-1845.
    44. I. N. Ross, P. Matousek, M. Towrie et.al.,“The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers”, Opt. Commun., 1997,144(3-4), 125-133.
    45. http://www.iaea.org/programmes/ripc/physics/fec1998/pdf/ifp_09.pdf
    46. Y.Kitagawa, H.Fujita, R.Kodama,et.al.,“Petawatt laser for fast ignitor andlaser matter interactionresearch,”Lasers and Electro-Optics, 2001. CLEO/Pacific Rim 2001. The 4th Pacific Rim Conference onVolume1(1), 2001:I-70 - I-71.
    47. K.Hiromitsu, I.Norihiro, A.Yutaka, et.al.,“Prepulse-free, multi-terawatt, sub-30-fs laser system”Optics Express, 2006,7,Vol. 14(1), 438-445.
    48. http://www.laserfocusworld.com/display_article/219807/12/none/none/Feat/Petawatt-lasers-aim-for-relativistic-phenomena.
    49. I. Jovanovic, J. R. Schmidt, and C. A. Ebbers, Appl. Phys. Lett. 83, 4125 (2003).
    50. D. A. Pepler,C.Hernandez-Gomez, andK.Osvay,“Generation of terawatt pulses by use of optical parametric chirped pulse amplification,”Appl. Opt., 2000, 39(15), 2422–2427.
    51. K Osvay, G Kurdi, J Klebniczki, M Csatári, et.al.,“Femtosecond OPCPA in the UV,”Central Laser Facility Annual Report 2000/2001, 2002, 487-489.
    52. S. Witte, R. Th. Zinkstok, A. L. Wolf, et.al.,“A source of 2 terawatt, 2.7 cycle laser pulses based on noncollinear optical parametric chirped pulse amplification”, Optics Express 2006,9,Vol. 14(18), 8168–8177.
    53. X. Yang, Z. Xu, Y. Leng, et.al.,“Multiterawatt laser system based on optical parametric chirped pulse amplification,”Opt. Lett., 2002,27(13), 1135–1137.
    54. Y. X. Leng, Z. Z. Xu, X. D. Yang, et.al,“16.7-TW laser system based on optical parametric chirped pulse amplifi- cation,”presented at the Conf. Lasers and Electro-Optics, Baltimore, MD, 2003.
    55. C. P. Hauri, P. Schlup, G. Arisholm, et.al.,“Phase-preserving chirpedpulse optical parametric amplification to 17.3 fs directly from a Ti:sapphire oscillator,”Opt. Lett. 2004, 29(12), 1369–1371.
    56. V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, et al.,“200 TW 45 fs laser based on optical parametric chirped pulse amplification,”Opt. Express, 2006,14(1), 446–454.
    57. V.V. Lozhkarev, G.I. Freidman, V.N. Ginzburg, et.al.,“Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,”Laser Physics Letters, 2007,4(6), 421-427.
    58. O. Chekhlov, J. L. Collier, I. N. Ross, et.al.,“High energy optical parametric chirped pulse amplification system,”presented at the Conf. Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications, Systems and Technologies, Washington, DC, 2005.
    59. A. J. Campillo, R. C. Hyer, and S. Shapiro,“Picosecond infrared continuum generation by three-photon parametric amplification in LiNbO3,”Opt. Lett., 1979,4(11), 357–359.
    60. B. Bareika, A. Birmontas, A. Piskarskas, et.al.,“Parametric generation of picosecond continuum in near-infrared and visible ranges on the basis of a quadratic nonlinearity,”Sov. J. Quantum Electron., 1982,12(12), 1654–1656.
    61. R. Danelyus, V. Kabelka, A. Piskarskas, et.al.,“Parametric excitation of continuously tunable visible picosecond pulses,”Sov. J. Quantum Electron., 1978,8(3), 398–400.
    62. M. Nisoli, S. Stagira, S. De Silvestri, et.al.,“Parametric generation of high-energy 14.5 fs light pulses at 1.5μm,”Opt. Lett., 1998, 23(8), 630–632.
    63. T. S. Sosnowski, P. B. Stephens, and T. B. Norris,“A new technique in optical parametric amplification for the production of 30-fs pulses tunable throughout the visible spectral region,”Opt. Lett., 1996,21(2), 140–142.
    64. E. eromskis, A. Dubietis, G. Tamoˇsauskas, et.al.,“Gain bandwidth broadening of the continuum-seeded optical parametric amplifier by use of two pump beams,”Opt. Commun., 2002, 203(3-6), 435–440.
    65. P. Di Trapani, A. Agnesi, G. P. Banfi, et.al.,“Off-axis parametric generation in the femtosecond regime,”Lithuanian J. Phys., 1993, 33(), 324–327.
    66. V. Krylov, A.Kalintsev, A.Rebane,et.al.,“Non-collinear parametricgeneration in LiIO3 andβ-barium borate by frequencydoubled femtosecond Ti:Sapphire laser pulses,”Opt. Lett., 1995,20(2), 151–153.
    67. P. Di Trapani, A. Andreoni, G. P. Banfi,et.al.,“Groupvelocity self-matcing of femtosecond pulses in noncollinear parametric generation,”Phys. Rev. A, Gen. Phys., 1995, 51(4), 3164–3168.
    68. P. Di Trapani, A. Andreoni, C. Solcia, et.al.,“Matching of group velocities in three wave parametric interaction with femtosecond pulses and application to traveling-wave generators,”J. Opt. Soc. Amer. B, Opt. Phys., 1995, 12(11), 2237–2244.
    69. G. M. Gale, M. Cavaliari, T. J. Driscoll,et.al.,“Sub-20-fs tunable pulses in the visible from an 82-MHz optical parametric oscillator,”Opt. Lett., 1995, 20(14), 1562–1564.
    70. O. E. Martinez,“Achromatic phase matching for second harmonic generation of femtosecond pulses,”IEEE J. Quantum Electron., 1989, 25(12),2464–2468.
    71. V. D. Volosov, S. G. Karpenko, N. E. Kornienko, et.al.,“Method for compensating the phasematching dispersion in nonlinear optics,”Sov. J. Quantum Electron., 1975, 4(9), 1090–1098.
    72. R. Danielius, A. Piskarskas, P. Di Trapani,et.al.,“Matching of group velocities by spatial walk-off in collinear three-wave interaction with tilted pulses,”Opt. Lett., 1996, 21(13), 973–975.
    73. R. Danielius, A.Piskarskas, P.Di Trapani, et.al.,“A collinearly phase-matched parametric generator/amplifier of visible femtosecond pulses,”IEEE J. Quantum Electron., 1998, 34(3), 459–464.
    74. T.Wilhelm, J. Piel, and E. Riedle,“Sub-20-fs pulses tunable across the visible from a blue-pumped single-pass noncollinear parametric converter,”Opt. Lett., 1997, 22(19), 1494–1496.
    75. G. Cerullo, M. Nisoli, and S. De Silvestri,“Generation of 11 fs pulses tunable across the visible by optical parametric amplification,”Appl. Phys. Lett., 1997, 71(25), 3616–1318.
    76. G. Cerullo, M. Nisoli, S. Stagira, et.al.,“Sub-8-fs pulses from an ultra-broadband optical parametric amplifier in the visible,”Opt. Lett., 1998, 23(16), 1283–1285.
    77. A. Shirakawa, I. Sakane, and T. Kobayashi,“Pulse-front-matched optical parametric amplification for sub-10-fs pulse generation tunable in the visible and near infrared,”Opt. Lett., 1998, 23(16), 1292–1294.
    78. A. Shirakawa, I. Sakane, M. Takasaka, and T. Kobayashi,“Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification,”Appl. Phys. Lett., 1999, 74(16), 2268–2270.
    79. A. Baltu ka, T. Fuji, and T. Kobayashi,“Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control,”Opt. Lett., 2002, 27(5), 306–308.
    80. C. P. Hauri, P. Schlup, G. Arisholm, et.al.,“Phase-preserving chirped-pulse optical parametric amplification to 17.3 fs directly from a Ti:sapphire oscillator,”Opt. Lett., 2004, 29(12), 1369-1371.
    81. N. Ishii, L. Turi, V. S. Yakovlev, et.al.,“Multimillijoule chirped parametric amplification of few-cycle pulses,”Opt. Lett., 2005, 30(5), 567-569.
    82. S. Adachi, H. Ishii, T. Kanai, et.al.,“1.5 mJ, 6.4 fs parametric chirped-pulse amplification system at 1 kHz,”Opt. Lett., 2007, 32(17), 2487-2489.
    83. A. Galvanauskas, A. Hariharan, D. Harter, et.al.,“High-energy femtosecond pulse amplification in a quasiphase-matched parametric amplifier,”Opt. Lett., 1998, 23(3), 210–212.
    84. A. Galvanauskas, D. Harter, M. A. Arbore, et.al.,“Chirped-pulse-amplification circuits for fiber amplifiers, based on chirped-period quasi-phase-matching gratings,”Opt. Lett., 1998, 23(21), 1695–1697.
    85. F. Rotermund, V. Petrov, F. Noack, et.al.,“Compact all-soliddiode-pumped femtosecond laser source based on chirped pulse optical parametric amplification in periodically poled KTiOPO4,”Electron. Lett., 2002, 38(12), 561–563.
    86. V. Petrov, F. Noack, F. Rotermund, et.al.,“Efficient all-diodepumped double stage femtosecond optical parametric chirped pulse amplification at 1-kHz with periodically poled KTiOPO4,”Jpn. J. Appl. Phys., 2003, 42(10), L1327–L1329.
    87. I. Jovanovic, J. R. Schmidt, and C.A. Ebbers,“Optical parametric chirpedpulse amplification in periodically poled KTiOPO4 at 1053 nm,”Appl. Phys. Lett., 2003, 83(20), 4125–4127.
    88. F. Rotermund, C. J. Yoon, V. Petrov, et.al.,“Application of periodically poled stoichiometric LiTaO3 for efficient optical parametric chirped pulse amplification,”Opt. Express, 2004, 12(26), 6421–6427.
    89. I. Jovanovic, C. G. Brown, C. A. Ebbers,et.al.,“Generation of high-contrast milijoule pulses by optical parametric chirped-pulse amplification in periodically poled KTiOPO4,”Opt. Lett., 2005, 30(9), 1036–1038.
    90. A. Fragemann, V. Pasiskevicius, and F. Laurell,“Broadband nondegenerate optical parametric amplification in the mid infrared with periodically poled KTiOPO4,”Opt. Lett., 2005, 30(17), 2296–2298.
    91. N.M.kroll.“Parametric amplification in spatily extended media and the apploiaiotn to the design of tunable oscillatioes at optical frequencies . Phys.Rev.,1962,127,1207-1211.
    92. R.H.Kinston.“parametric amplification and oscillation at optical frequencies . Proc.IRE,1962,50,252.
    93. R.b.Zhang, D.q.Pang, and Q.y. Wang,“Theoretical analysis of a noncollinear phase-matched optical parametric amplifier seeded by an optical parametric generation,”APPLIED OPTICS. 2002, 41(6), 1108-1112.
    94. S.A.Akhmanov and N.Bloembergen.J.Ducuing,“Interaction between light waves in nonlinear dielectric.Phys.Rev.,1963,127,1918.
    95. C.C.Wang and G.W.Racette.“measurement of parametric ginaccompanying opotical difference frequency generation.”Phys.Rev., 1965, 6(8),169-171.
    96. J.A.Giordmaine and R.C.Miller.“Tunable coherent parametric oscillation in LiNbO3at optical frequencies.”Phys.Rev.,1965,Vol14(24),973-976
    97. J. M. Manley, H. E. Rowe.“General energy relations in nonlinear elements”Proc.IRI, 44, 904(1956)
    98. A.Richard, B.Robert,L.Byer et al., IEEE J.Quantum Electron, QE-15(16), 1979,432-444.
    99.石顺祥,陈国夫,赵卫,等.非线性光学,西安,西安电子科技大学出版社,2002,91~92.
    100.A.B.RICHARD AND L.B.ROBERT,“Optical Parametric Amplification,”IEEE JOURNAL OF QUANTUM ELECTRONICS. QE-15(6), 1979, 432-444.
    101.刘红军.光参量啁啾脉冲放大的理论与实验研究(学位论文)(2002).
    102.刘军,魏晓峰,黄小军,等, BBO,LBO,KDP晶体光参量啁啾脉冲放大特性的比较研究,强激光与粒子束,2003,15(6),555-558.
    103.姚建铨.非线性频率变换及激光调谐技术.北京:科学出版社,1995,1~15.
    104.夏江帆,魏志义,张杰, BBO晶体中非共线参量过程的带宽与增益特性研究,物理学报,2000, 49(2),256~261.
    105.冷雨欣,金石琦,彭家晖,等BBO晶体Ⅰ型非共线相位匹配参量放大研究,中国激光, 2001,28(11),977-980.
    106.H.J Liu, W.Zhao, Y.L. Yang, et.al.,“Matching of both group-velocity and pulse-front for ultrabroadband three-wave-mixing with noncollinear angularly dispersed geometry,”Applied Physics B, 2006, 82(4), 585-594.
    107.H.J Liu, W.Zhao, H.Y. Wang et.al.,“Ultra-broadband optical parametric chirped-pulse amplification by matching of both group-velocity and pulse-front,”Optics Communications, 2005, 261(1),163-168.
    108.W.Zhao, H.J.Liu, Y.S.Wang et.al.“Pulse-front matched ultra-broadbandoptical parametric chirped pulse amplifier for sub-12fs pulse,”Chinese Physics, 2005, 14(2) , 359-365.
    109.刘红军,陈国夫,赵卫,等,三波非共线作用参变过程的相位匹配研究,光学学报,2002, 22(2),129-133.
    110.刘红军,赵卫,王红英,等,相位失配补偿的超宽带OPCPA,第五届全国夜视技术交流会暨2005年全国瞬态光学与光子技术交流会会议论文集,2005, 370-376.
    111.Arlee V. Smith,“Bandwidth and group-velocity effects in nanosecond optical parametric amplifiers and oscillators,”J. Opt. Soc. Am. B, 22(9), 1953-1965(2005).
    112.Akira Shirakawa and Takayoshi Kobayashi,“Noncollinearly phase-matched femtosecond optical parametric amplification with a 2000 cm-1 bandwidth,”Appl. Phys. Lett. 1998, 72 (2), 147-149.
    113.刘红军,陈国夫,赵卫,等,三波混频光参量放大器中带宽的研究,中国激光,2002, 29(8),680-686.
    114.石顺祥,陈国夫,赵卫,等.非线性光学.西安:西安电子科技大学出版社,2003. 389~390.
    115.黄小军,张树葵,袁晓东,等,光参量啁啾脉冲放大增益特性研究,强激光与粒子束,2002, 14(4),516-520.
    116.H. Yoshida, E. Ishii, R. Kodama, et.al.,“High-power and high-contrast optical parametric chirped pulse amplification inβ-BaB2O4 crystal,”OPTICS LETTERS, 2003, 15(4), 257-259.
    117.I.N.Ross, P.Matousek, G.H.C. New, et.al.,“Analysis and optimization of optical parametric chirped pulse amplification,”JOSA B, 2002, 19(12), 2945-2956.
    118.马晶,高重复率啁啾脉冲放大及飞秒光参量放大的研究(学位论文)(2005).
    119.R. Butkus, R. Danielius, A. Dubietis,et.al.,“Progress in chirped pulse optical parametric amplifiers,”Appl. Phys. B 79(6),693-700 (2004).
    120.C. P. Hauri, P. Schlup, G. Arisholm, et.al.,“Phase-preserving chirped-pulseoptical parametric amplification to 17.3 fs directly from a Ti:sapphire oscillator,”Opt. Lett. 29(12), 1369-1371 (2004).
    121.R. T. Zinkstok, S. Witte, W. Hogervorst, et.al.,“High-power parametric amplification of 11.8-fs laser pulses with carrier-envelope phase control,”Opt. Lett. 2005, 30(1), 78-80.
    122.N. Ishii, L. Turi, V. S. Yakovlev, et.al.,“Multimillijoule chirped parametric amplification of few-cycle pulses,”Opt. Lett. 2005, 30(5), 567-569.
    123.Y. Stepanenko and C. Radzewicz,“High-gain multipass noncollinear optical parametric chirped pulse amplifier,”Appl. Phys. Lett. 2005, 86, 211120-211123.
    124.Y. Stepanenko and C. Radzewicz,“Multipass non-collinear optical parametric amplifier for femtosecond pulses,”Opt.Express 2006, 14(2), 779-785.
    125. I.N. Ross,P. Matousek, G.H.C. New et.al.,“Analysis and optimization of optical parametric chirped pulse amplification”, J.Opt.Soc.Am.B, 2002,19(12), 2945-2956.
    126. H.J.Liu,G.F. Chen,W.Zhao, et.al.,“Phase matching analysis of noncollinear optical parametric process in nonlinear anisotropic crystals”,Opt.Commun., 2001,197(4-6),507-514.
    127.H.J.Liu,W.Zhao,Y.L.Yang,et.al.,“Matching of both group-velocity and pulse-front for ultrabroadband three-wave-mixing with noncollinear angularly dispersed geometry”, Appl.Phys.B, 2006, 82(4), 585-594.
    128. G. M. Gale, M. Cavallari, T. J. Driscoll et.al.,“Sub-20-fs tunable pulses in the visible from an 82-MHz optical parametric oscillator”,Opt. Lett. 1995,20 (14),1562-1564.
    129.T. Wilhelm, J. Piel and E. Riedle,“Sub-20-fs pulses tunable across the visible from a blue-pumped single-pass noncollinear parametric converter”Opt. Lett., 1997, 22(19) 1494-1496。
    130.成纯富,王晓方,鲁波,“飞秒光脉冲在光子晶体光纤中的非线性传输和超连续谱产生”, 2004物理学报53(6), 1826-1830
    131.栗岩锋,胡明列,王清月,“800 nm处为零色散的光子晶体光纤的计算与设计”,中国激光, 2003, 30(5), 427-430.
    132. P. M. W. French,“the generation of ultrashort laser pulses”, Rep. Prog. Phys. 1995, 58(2), 169-262.
    133.R. L. Fork , O.E. Martinez, ,and J. P Gordon,“Negative dispersion using pairs of prisms”Opt.Lett. 1984, 9(5),150-152.
    134.P. Maine, D. Strickland, P. Bado,et.al.,“Generation of ultrahigh peak power pulses by chirped pulse amplification”IEEE J. Quantum Electron. 1988,24(2), 398-403.
    135.C. Sauteret, D. Husson, G. Thiell, et.al.,“Generation of 20-TW pulses of picosecond duration using chirped-pulse amplification in a Nd:glass power chain”Opt. Lett. 1991, 16(4), 238-240.
    136.O. E. Martinez,“3000 times grating compressor with positive group velocity dispersion: application to fiber compensation in 1.3-1.6 um region”IEEE J. Quantum Electron. 1987, 23(1), 59-64.
    137.B. E. Lemoff and C. P. J. Barty,“Quintic-phase-limited, spatially uniform expansion and recompression of ultrashort optical pulses”Opt. Lett. 1993,18(19), 1651 -1653.
    138.A. ?ffner,“Unit power imaging catoptric anastigmat”U.S. patent 3748015 1971.
    139.G. Cheriaux, P. Rousseau, F. Salin, et.al.,“Aberration-free stretcher design for ultrashort-pulse amplification”Opt. Lett. 21(6), 414 (1996).
    140.宋晏蓉,张志刚,王清月,使用马丁内兹展宽器的啁啾脉冲放大器特性研究物理学报,2003,52(3),581-586.
    141.孙大睿,宋晏蓉,张志刚,等,用于飞秒脉冲放大器的马丁内兹展宽器与欧浮纳展宽器性能比较物理学报,2003,52(4),870-874.
    142.J.Jiang, Z.G.Zhang,T.Husama. Evaluation of chirped-pulse-amplification systems with Offner triplet telescope stretchers , J. Opt. Soc. Am. B., 2002, 19(4): 678~683.
    143.E.B. Treacy. Optical pulse compression with diffraction gratings [J]. IEEEJ. Quantum electron., 1969, QE-5 (9): 454~458.
    144.L.S.Ma, R.K.Shelton, H.C.Kapteyn,“Sub-l0 femtosecond active synchronization of two passively mode-locked Ti:sapphire oscillators”, Phys.Rev.A,2001, 64(2) ,021802-.021805.
    145.R.K .Shelton,S.M .Foreman, L.S. Ma,“Subfemtosecond timing jitter between two independent, actively synchronized, mode-locked lasers,”Opt.Let. 2002,27(5), 312-314.
    146.Z.Wei,Y. Kaboyashi, K. Torizuka,“Passive synchronization between femtosecond Ti: sapphire and Cr:forsterite lasers,”Appl.Phys.B. 2002,74(6),s171-s176.
    147.A.Leitenstorfer, C.Furst, and A.Laubereau,“Widely tunable two-color mode-locked Ti: sapphire laser with pulse jiter of less than 2fs,”Opt.Let., 1995, 20(8), 916-918.
    148.丁广雷.博士学位论文,中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室, 52-53.
    149. J.J.Wang, H.H.Lin, Z.Sui, M.Z.Li,“Temporal pulse shaping by chirped pulse stacking in fiber time delay lines”Proc. SPIE, 2006,6287, 62870G1-62870G.7.
    150.林宏奂,隋展,王建军,等,啁啾脉冲堆积用于光脉冲整形光学学报,2007, 27(3),466~470.
    151.王红英,刘红军,李晓莉,等.宽带光学参变啁啾脉冲放大系统的色散控制光学学报, 2007,27(7), 1338-1343..

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700