用户名: 密码: 验证码:
硅基参量放大及射频宽带接入网光源技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着光传送网和光纤接入网的深入发展,高性能全光网络的实现对器件性能的要求越来越高,并且不断向交换、无线通信、光互连和传感器等领域扩展,光器件的研究对整个光通信网络的发展起着举足轻重的作用,是推动光纤通信进步的重要动力,其中放大器及光源作为关键器件一直受到了广泛关注。光参量放大器(optical parametric amplifier, OPA)可以在低噪声放大信号的同时,实现通信频段的全覆盖,被认为是下一代光网络中很有发展潜力的放大及全光信号处理器件。射频宽带接入(radio-on-fiber, ROF)技术则将光纤通信与无线通信有机的结合在了一起,实现了射频信号的大容量低损耗传输,是接入网中很有应用前景的技术。本论文主要研究了硅基OPA的性能与ROF系统(radio-on-fiber, ROF)中光源技术的实现,具体工作分为以下两个部分:
     (一)硅基OPA的研究
     本文在分析光传输经典量子理论的基础上,一方面研究了硅基中相位敏感参量放大器(phase sensitive optical parametric amplifier, PS-OPA)的增益、噪声及相位再生性能。另一方面研究了硅基微环谐振腔(Microring resonator, MR)中相位不敏感参量放大器(phase insensitive optical parametric amplifier, PI-OPA)的性能,并对其相关参数取值范围进行了优化。主要研究工作包括以下几个方面:
     (1)从光传输的经典量子理论出发,通过对光子数期望、方差的计算,建立了OPA系统中NF的理论模型并在高增益假设情况下进行深入分析。结果表明PI-OPA的量子极限噪声为3dB,而在PS-OPA中,通过选择合适的输入相位,可以获得最低0dB的量子噪声,进而对PS-OPA低噪声机理做出了理论解释。
     (2)研究了硅基简并型PS-OPA的增益及噪声性能,分析了硅基中固有的双光子吸收效应(Two photon absorption, TPA)及自由载流子吸收效应(Free earrier absorption, FCA)对FWM效率的影响,讨论了其对泵浦功率及硅基自由载流子寿命的依赖性。同时对相位再生性能进行了理论分析,仿真结果表明,通过选取合适的硅基色散、自由载流子寿命及输入相对相位等参数,可以实现相位再生性能的优化。
     (3)分析了硅基非简并型PS-OPA的增益及噪声性能,结果表明硅基波导中的PS-OPA性能与输入初始相对相位密切相关并随其发生周期性变化。同时指出硅基非简并型PS-OPA不仅可以直接降低线性PN的积累,而且可以对输入信号的相位波动进行抑制,当输入相位波动为0.05π时,输出信号相位波动被压缩到一半以下。另外,为了获得净增益及低噪声,自由载流子寿命应小于400ps。
     (4)建立了MR中OPA的理论模型并对其性能进行了分析。通过对介质、泵浦相关参数的仿真,为参数的取值范围作出了合理化建议,为了获得大的稳定净增益,自由载流子寿命需保持在100ps以内,耦合系数к值在0.25-0.5范围内取值。分析结果表明,MR的使用可以降低OPA所需的泵浦功率,减小非线性作用所需的波导尺寸。以上结果对于硅基微环中的OPA实现提出了有益的建议。
     (二)ROF光载毫米波的生成
     (1)提出了基于超连续谱切割的适用于波分复用(Wavelength division multiplexing,WDM) ROF系统的多通道光载毫米波生成方案并进行了实验验证。方案中采用飞秒超快激光器作为泵浦源,使用正负色散光子晶体光纤的级联结构产生超连续谱,并利用SFBG对超连续谱进行了切割,进而研究了WDM-ROF多通道毫米光载波的性能。详细分析了不同泵浦功率和波长的情况下超连续谱的演变过程,通过调节泵浦功率和泵浦波长,实现了通信波段平坦度在±0.15dBm的超连续谱。同时采用了实验室自行设计制作的SFBG进行了梳状滤波,制得的多路ROF光源功率波动不超过±0.3dBm,通道内峰值功率差最小为0.01dBm。
     (2)提出了利用高非线性光纤中的饱和OPA效应生成光载毫米波方案并对其性能进行了仿真分析。本方案有如下优点:首先,该方案中避免了高速外部调制器和高频射频源的使用,有效地降低了成本且提高了系统的稳定性。其次,参量放大深度饱和时,中心波长处的光功率会很大程度的传递给信号光及所产生的闲频光进而直接产生OCS调制格式的毫米波,在放大载波功率的同时避免了窄带滤波器的使用,简化了系统结构且降低了系统成本
Along with the development of optical transport network and optical access network, the the requirement of the devices quality increases and continues to expand to the areas of switching, wireless communication, optical interconnection and sensors, the research of the optical devices play an important role to influence and work as a driving force to promote the development of the whole optical communication network. Among all the optical devices, the amplifier and optical source gain a lot of interests. The optical parametric amplifier (OPA) can realize low noise amplification and full coverage of communication band, so it is considered as a potential device for amplification and signal processing in next generation optical network. Radio on fiber (ROF) technology can combine the merits of optical and wireless communication network and realize the wideband wireless access. It is a promising technology in access network. This article is mainly focused on silicon-based OPA and the optical source for ROF system.
     The main research work of this dissertation are classified as two aspects and listed as below:
     I Silicon-based OPA technologies
     Based on the quantum theory of optical transmission, on one hand, net gain, noise figure and phase regeneration of phase-sensitive optical parametric amplifier (PS-OPA) have been studied. On the other hand, the phase-insensitive optical parametric amplifier (PI-OPA) in silicon microring resonator has been investigated, several loss mechanisms involved and coupling coefficient have been discussed and optimized. The work mainly includes the following parts:
     (1)Based on the classical quantum theory, by calculating photon-number expectation and variance, the function of NF has been deduced and analyzed under the assumption of large photon number. The results show that the NF of phase insensitive (PI) OPA is 3dB, NF of the phase sensitive (PS) OPA is OdB. The reason of low noise for PS OPA is discovered and explained in detail.
     (2) The net gain and NF of symmetric-pump (SP) PS-OPA have been analyzed in theory. Influence of inherent nonlinear effects in silicon like two photon absorption (TPA) and free carrier absorption (FCA) are discussed. In addition, the phase regeneration performance of SP-PS-OPA has been analyzed and optimized by choosing suitale dispersion, free carrier lifetime and input phase.
     (3)The net gain and noise of non-degenerate PS-OPA have been analyzed in detail. The results showed that the input relative phase plays an important role in silicon non-degenerate PS-OPA. The net gain, NF and output phase changed periodically along with the input phase. In silicon-based PS-OPA, while nonlinear phase noise (PN) can be declined directly, linear phase fluctuation can also be depressed. Assuming the linear phase fluctuation of input signal is 0.05Πthe fluctuation of output phase can be decreased to below the half of input fluctuation. For net gain and low noise, free carrier lifetime should be kept below 400ps.
     (4) OPA in a silicon-based microring resonator is proposed and modeled. Net gain can be achieved by properly adjusting pulse width, repetition rate of the pump and free carrier lifetime of material to reduce the nonlinear losses caused by TPA and FCA. For high steady net OPA in MRs, the carrier lifetimes should be kept below 100ps and coupling coefficientκshould be keep in the suitable range from 0.25 to 0.5. Furthermore, the MR with high enhancement factor can reduce the pump power and waveguide length. These capabilities enable the integration of OPA. These results make some useful suggestions to the practical use of integration OPA.
     ⅡThe source for ROF system
     (1)A millimeter-wave (mm-wave) multi-channel source generating method for wavelength division multiplexed (WDM) radio-on-fiber (ROF) systems is proposed and demonstrated experimentally. In this scheme, a femto-second semiconductor mode-locked laser is used as the source, two 5-m-long photonic crystal fibers (PCFs) with opposite dispersion are used to generate supercontinuum, then a sampled fiber Bragg grating (SFBG) is used to slice the generated supercontinuum. Based the supercontinuum with flatness of±0.15dBm, more than 10 channels millimeter-wave optical carriers have been generated with±0.3dBm Peak fluctuation for WDM-ROF system. These ten-channel carriers have some characteristics like small gain fluctuation, large modulation depth and narrow width, and so on. Besides, the whole system can be easily integrated due to simple structure and small insertion loss.
     (2)The optical carrier suppression (OCS) mm-wave generation based on saturated OPA effect in the high nonlinear fiber has been proposed and simulated. This proposed scheme can enhance the sensitivity of receiver and decline the penalty after long-haul transmission. Meanwhile, it can also simplify the system and reduce the cost of ROF system by avoiding the use of high rate external modulator, high-frequency RF sources and narrow-band filters.
引文
[1]M. E. Marhic, C. H. Hsia, and J. M. Jeong, "Optical amplification in a nonlinear fibre interferometer", Electronics letters,26,201-203 (1991)
    [2]Dmitry Levandovsky, Michael Vasilyev, and Prem Kumar, "Amplitude squeezing of light by means of a phase-sensitive fiber parametric amplifier", Optics Letter,24,984-986 (1999).
    [3]W. Imajuku, A. Takada. "In-line phase-sensitive amplifier with optical-PLL-controlled internal pump light source", Electronics letters,33,2155-2156(1997).
    [4]Kevin Croussore, Inwoong Kim, Cheolhwan Kim, et al. "Phase-and-amplitude regeneration of differential phase-shift keyed signals using a phase-sensitive amplifier," Opt. Express 14, 2085-2094 (2006).
    [5]5Kevin Croussore and Guifang Li. "Phase Regeneration of NRZ-DPSK Signals Based on Symmetric-Pump Phase-Sensitive Amplification", Photonics Technology Letters,19, 864-866 (2007).
    [6]Zheng Zheng, Lin An, Zheng Li, et al. " All-optical regeneration of DQPSK/QPSK signals based on phase-sensitive amplification," Opt. Communication,281,2755-2759 (2008).
    [7]Renyong Tang, Jacob Lasri, Preetpaul S. Devgan, et al. "Gain characteristics of a frequency nondegenerate phase-sensitive fiber-optic parametric amplifier with phase self-stabilized input," Opt. Express 13,10483-10493(2005).
    [8]Renyong Tang, Preetpaul S. Devgan, Vladimir S. Grigoryan, et al. " In-line phase-sensitive amplification of multi-channel CW signals based on frequency nondegenerate four-wave-mixing in fiber," Opt. Express 16,9046-9053(2008).
    [9]Joseph Kakande, Carl Lundstrom, Peter A. Andrekson, et al. "Detailed characterization of a fiber-optic parametric amplifier in phase-sensitive and phase-insensitive operation," Opt. Express 18,4130-4137(2010).
    [10]C. J. McKinstrie, M. Yu, M. G. Raymer, et al. "Quantum noise properties of parametric processes," Opt. Express 13,4986-5012 (2005).
    [11]Z. Tong, A. Bogris, C. Lundstrom, C. J. McKinstrie, et al. "Modeling and measurement of the noise figure of a cascaded non-degenerate phase-sensitive parametric amplifier", Opt. Express 18,14820-14835 (2010).
    [12]Z. Tong, C. J. McKinstrie, C. Lundstrom, M. Karlsson, et al. "Noise performance of optical fiber transmission links that use non-degenerate cascaded phase-sensitive amplifiers," Opt. Express 18,15426-15439 (2010).
    [13]F. Fiedler, A. Schlachetzki, "Optical parameters of lnP-Based Waveguides," Solid-state Electronics,1987,30(1):73—83;
    [14]G. K. Celler, Sorin Cristoloveanu, "Frontiers of silicon-on-insulator"'Journal of Applied Physics,93(2003)4955
    [15]Sorin Cristoloveanu, "Silicon on insulator technologies devices:from Present to futurr" Solid-State Electronics,45(2001)1403
    [16]J. P. Collinge, SOI Technology:Materials to VLSI, Kluwer Acadmi Pub.1991;
    [17]L.Peters, "SOI takes over where silicon leaces off', Semiconduct. Int., vol.16, pp.48-51(1993)
    [18]B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina, F.Coppinger, "Adivances in silicon-on-insulator optoelectronics", IEE EJournal of Selected Topics in Quntaum Elecrtonics,4(1998)938
    [19]Sebania Libertino, Salvatore Coffa, Mario Saggio, "Design and fabricated of integrated Si based optoelectronic devices", Materials Seience in Semieonduetor processing,3(2000)375:
    [20]RiehaulA.Soref, "Silicon-basedoPtoelecrtonics", Poreeedings of the IEEEE,81(1993)1687;
    [21]B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I.Rendina, F.CoPPinger, "Adivancesinsilieon-on-insulatoroPtoeleeortnies", IEEE Journal of Seleeted Topics in Quantum Electronics,4(1998)938
    [22]A. C. Turner, C. Manolatou, B. S. Schmidt, et al. "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Opt. Express 14,4357-4362(2006).
    [23]Amy C. Turner-Foster, Mark A. Foster, Jacob S. Levy, et al. "Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides," Opt. Express 18,3582-3591(2010).
    [24]M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441,960-963 (2006).
    [25]Xinzhu Sang and Ozdal Boyraz. "Gain and noise characteristics of high-bit-rate silicon parametric amplifiers," Opt. Express 16,13122-13132(2008).
    [26]Xiaoping Liu, Richard M. Osgood, Jr, Yurii A. Vlasov, et al." Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides", Nature Photonics 4,557-560 (2010)
    [27]P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L.G. Joneckis, and P. T. Ho, "Wavelength conversion in GaAs micro-ring resonators," Opt. Lett.25,554-556(2000).
    [28]S. Mikroulis, A. Bogris, E. Roditi, and D. Syvridis, "Investigation of an all-optical wavelength converter with reshaping properties based on four-wave mixing in passive microring resonators," J. Lightw. Technol.22,2743-2748(2004).
    [29]Spiros Mikroulis, Hercules Simos, Eugenia Roditi, et al. "Ultrafast All-Optical AND Logic Operation Based on Four-Wave Mixing in a Passive InGaAsP-InP Microring Resonator", Photon. Technol. Lett.17,1878-1880(2005).
    [30]Amy C. Turner, Mark A. Foster, Alexander L. Gaeta, and Michal Lipson, "Ultra-low power parametric frequency conversion in a silicon microring resonator", Opt. Express 16, 4881-4887(2008).
    [31]M. Ferrera, D. Duchesne, L. Razzari, M. Peccianti, R. Morandotti, P. Cheben, S. Janz, D.-X. Xu, B. E. Little, S. Chu, and D. J. Mossl, "Low power four wave mixing in an integrated, micro-ring resonator with Q=1.2 million", Opt. Express 17,14098-14103 (2009).
    [32]Shijun Xiao, Maroof H. Khan, Hao Shen, et al, "Compact silicon microring resonators with ultra-low propagation loss in the C band," Opt. Express 15,14467-14475(2007).
    [33]Francesco De Leonardis and Vittorio M N Passaro. "Modelling of Raman amplification insilicon-on-insulator optical microcavities", New Journal of Physics 9,1-24 (2007).
    [34]T. Schneider, D. hannover, et al., "Investigation of Brillouin scattering in optical fibers for the generation of millimeter waves," J. Lightw. Technol., vol.24, no.1, pp.295-304, Jan. 2006.
    [35]Z. Jia, J. Yu and G. K. Chang, "All-optical 16×2.5Gbit/s WDM signal simultaneous up-conversion based on XPM in an NOLM in ROF systems," IEEE Photon. Technol. Lett., vol.17, no.12, pp.2724-2726, Dec.2005.
    [36]Z. Deng, J. Yao, "Photonic generation of microwave signal using a rational harmonic mode-locked fiber ring laser," IEEE Trans. Microw. Theory Tech., vol.54, no.2 pp.763-767, Feb. 2006.
    [37]Po-Tsung Shih, Jason Chen, Chun-Ting Lin, et al. "Optical Millimeter-Wave Signal Generation Via Frequency 12-Tupling," J. Lightw. Technol.,28,71-78(2010).
    [38]Jianjun Yu, Zhensheng Jia, Lei Xu, et al. "DWDM Optical Millimeter-Wave Generation for Radio-Over-Fiber Using an Optical Phase Modulator and an Optical Interleaver," Photon. Technol. Lett,18,1418-1420(2006).
    [39]W. W. Hu, K. Inagaki, T. Tanaka, et al. "Millimetre-wave band(50GHz) multi-carrier generation using injection-locking technique for radio-over-fibre WDM communication system", Electron. Lett.40,28-30 (2004)
    [40]H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett.,36, 2089-2090(2000).
    [41]H. Toda, T. Yamashita, T. Kuri, and K. Kitayama, "Demultiplexing using an arrayed-waveguide grating for frequency-interleaved DWDM millimeter-wave radio-on-fiber systems," J. Lightw. Technol.21,1735-1741(2003).
    [42]Toshiaki Kuri, Teppei Nakasyotani, Hiroyuki Toda, et al. "Characterizations of Supercontinuum Light Source for WDM Millimeter-Wave-Band Radio-on-Fiber Systems,' J. Lightw. Technol.21,1735-1741(2003).
    [43]Teppei Nakasyotani, Hiroyuki Toda, Toshiaki Kuri et al. "Wavelength Division Multiplexed Millimeter-Waveband Radio-on-Fiber System Using a Supercontinuum Light Source," J. Lightw. Technol.24,404-410(2006).
    [1]P. Kylemark, P. O. Hedekvist, H. Sunnerud, et al. "Noise characteristics of fiber-optic parametric amplifiers," J. Lightw. Technol., vol.22, no.2, pp.409-416, Feb.2004.
    [2]A. Bogris, D. Syvridis, P. Kylemark, et al. "Noise characteristics of dual-pump fiber-optic parametric amplifiers," J. Lightw.Technol, vol.23, no.9, pp.2788-2795, Sep.2005.
    [3]P. Kylemark, T. Torounidis, P. O. Hedekvist, et al. "Noise figure characterization of fiber optical parametric am-lifiers," in Proc. ECOC, Rimini, Italy, Sep.2003, Paper We 1.6.4.
    [4]A. Durecu-Legrand, C. Simonneau, D. Bayart, et al. "Impact of pump OSNR on noise figure for fiber-optical parametric amplifiers," IEEE Photon. Technol. Lett., vol.17, no.6, pp. 1178-1180, May 2005
    [5]P. L. Voss and P. Kumar, "Raman-noise-induced noise-figure limit for parametric amplifiers,' Opt. Lett., vol.29, pp.445-447, Mar.2004.
    [6]P. Kylemark, M. Karlsson, and P. A. Andrekson, "Impact of phase modulation and filter characteristics on dual-pumped fiber-optical parametric amplification," IEEE Photon. Technol. Lett., vol.18, no.2, pp.439-441, Jan.2006.
    [7]Renyong Tang, Paul L. Voss, Jacob Lasri, et al. "Noise-figure limit of fiber-optical parametric amplifiers and wavelength converters:experimental investigation", Opt. Lett. vol. 29, pp.2372-2374, October 2004.
    [8]M. E. Marhic, G. Kalogerakis, K. K. Y. Wong, et al. "Pump-to-signal transfer of low-frequency intensity modulation in fiber optical parametric amplifiers,"J. Lightwave Technol.23(3),1049-1055 (2005).
    [9]M. Movassaghi, M. K. Jackson, V. M. Smith, et al. "Noise figure of erbium-doped fiber amplifiers in saturated operation," J. Lightwave Technol.16(5),1461-1465 (1998).
    [10]P. Velanas, A. Bogris, and D. Syvridis, "Impact of dispersion fluctuations on the noise properties of fiber optical parametric amplifiers," J. Lightwave Technol.24(5),2171-2178 (2006).
    [11]C. J. McKinstrie, M. Yu, M. G. Raymer, et al. "Quantum noise properties of parametric processes," Opt. Express 13(13),4986-5012 (2005),.
    [12]L. Boivin, F. X. Kartner, and H. A. Haus, "Analytical solution to the quantum field theory of self-phase modulation with a finite response time," Phys. Rev. Lett.73(2),240-243 (1994).
    [13]P. Kylemark, P.-O. Hedekvist, H. Sunnerud, et al. "Noise characteristics of fiber optical parametric amplifiers," J. Lightwave Technol.22(2),409-416 (2004).
    [14]P. L. Voss, and P. Kumar, "Raman-noise-induced noise-figure limit for χ(3) parametric amplifiers," Opt. Lett.29(5),445-447 (2004).
    [15]P. L. Voss, and P. Kumar, "Raman-effect induced noise limits on χ(3) parametric amplifiers and wavelength converters," J. Opt. B Quantum Semiclassical Opt.6(8),762-770 (2004).
    [16]R. Tang, P. L. Voss, J. Lasri, et al. "Noise-figure limit of fiber-optical parametric amplifiers and wavelength converters:experimental investigation," Opt. Lett.29(20),2372-2374 (2004).
    [17]A. Durecu-Legrand, C. Simonneau, D. Bayart, et al. "Impact of pump OSNR on noise figure for fiber optical parametric amplifiers," IEEE Photon. Technol. Lett.17(6),1178-1180 (2005).
    [18]P. Kylemark, M. Karlsson, and P. A. Andrekson, "Gain and wavelength dependence of the noise-figure in fiber optical parametric amplifiers," IEEE Photon. Technol. Lett.18(11), 1255-1257(2006).
    [19]A. Bogris, D. Syvridis, P. Kylemark, and P. A. Andrekson, "Noise characteristics of dual-pump fiber-optic parametric amplifiers," J. Lightwave Technol.23(9),2788-2795 (2005).
    [20]J. L. Blows, and S. E. French, "Low-noise-figure optical parametric amplifier with a continuous-wave frequency-modulated pump," Opt. Lett.27(7),491-493 (2002).
    [21]D. Levandovsky, M. Vasilyev, and P. Kumar, "Amplitude squeezing of light by means of a phase-sensitive fiber parametric amplifier," Opt. Lett.24(14),984-986 (1999).
    [22]W. Imajuku, A. Takada, and Y. Yamabayashi, "Low-noise amplification under the 3dB noise figure in high-gain phase-sensitive fibre amplifier," Electron. Lett.35(22),1954-1955 (1999).
    [23]W. Imajuku, and A. Takada, "Error-free operation of in-line phase-sensitive amplifier,' Electron. Lett.34(17),1673-1674 (1998).
    [24]R. Tang, P. S. Devgan, V. S. Grigoryan, et al. "In-line phase-sensitive amplification of multi-channel CW signals based on frequency nondegenerate four-wave-mixing in fiber," Opt. Express 16(12),9046-9053 (2008),
    [25]R. Tang, J. Lasri, P. S. Devgan, et al. "Gain characteristics of a frequency nondegenerate phase-sensitive fiber-optic parametric amplifier with phase self-stabilized input," Opt. Express 13(26),10483-10493 (2005),
    [26]R. Tang, P. Devgan, V. S. Grigoryan, et al. "Inline frequency-non-degenerate phase-sensitive fibre parametric amplifier for fibre-optic communication," Electron. Lett.41(19),1072-1074 (2005).
    [27]Z. Tong, A. Bogris, C. Lundstrom, et al. "Noise figure measurements in phase-insensitive and phase-sensitive fiber parametric amplifier cascade," in Optical Fiber Communications Conference, paper OWT4 (2010).
    [28]M. V. Vasilyev, "Distributed phase-sensitive amplification," Opt. Express 13(19),7563-7571 (2005),
    [29]R. Loudon, "Theory of noise accumulation in linear optical-amplifier chains," IEEE J. Quantum Electron.21(7),766-773 (1985).
    [30]C. J. McKinstrie, M. Yu, M. G. Raymer, et al. "Quantum noise properties of parametric processes," Opt. Express 13(13),4986-5012 (2005),
    [31]C. J. McKinstrie, S. Radic, R. M. Jopscn, et al. "Quantum noise limits on optical monitoring with parametric devices," Opt. Commun.259(1),309-320 (2006).
    [32]C. J. McKinstrie, M. G. R.aymer, S. Radic, et al. "Quantum mechanics of phase-sensitive amplification in a fiber," Opt. Commun.257(1),146-163 (2006).
    [33]W. Imajuku, and A. Takada, "Theoretical analysis of system limitation for AM-DD/NRZ optical transmission systems using in-line phase-sensitive amplifiers," J. Lightwave Technol. 16(7),1158-1170(1998).
    [34]A. Takada, and W. Imajuku, "In-line optical phase-sensitive amplifier employing pump laser injection locked to input signal light," Electron. Lett.34(3),274-276 (1998).
    [35]R. Weerasuriya, S. Sygletos, S. K. Ibrahim, et al. "Generation of frequency symmetric signals from a BPSK input for phase sensitive amplification," in Optical Fiber Communications Conference, paper OWT6 (2010).
    [36]C. Lundstrom, J. Kakande, P. A. Andrekson, et al. "Experimental comparison of gain and saturation characteristics of a parametric amplifier in phase-sensitive and phase-insensitive mode," in European Conference on Optical Communications, paper Mo.1.1.1 (2009).
    [37]Z. Tong, A. Bogris, C. Lundstrom, et al. "Modeling and measurement of noise figure in a cascaded non-degenerate phase-sensitive parametric amplifier," Opt. Express.18(14), 14820-14835(2010)
    [38]Z. Tong, C. J. McKinstrie, Carl Lundstrom, et al. "Noise performance of optical fiber transmission links that use non-degenerate cascaded phase-sensitive amplifiers," Opt. Express. 18(15),15426-15439(2010)
    [1]C. Koos, L. Jacome, C. Poulton, et al. "Nonlinear silicon-on-insulator waveguides for all-optical signal processing," Opt. Express 15,5976-5990 (2007).
    [2]D. J. Lockwood and L. Pavesi, in Silicon Photonics, Topics in Applied Physics (Springer, New York,2004), p.1.
    [3]H. Rong, A. Liu, R. Jones, et al. Nature (London) 433,725 (2005);
    [4]M. A. Foster, A. C. Turner, J. E. Sharping, et al. Nature (London) 441,960 (2006).
    [5]Boyraz and B. Jalali."Demonstration of 11 dB fiber-to-fiber gain in a silicon waveguides," Electron. Express 1,429-434(2004).
    [6]Liu, H. Rong, R. Jones, et al. "Optical amplification and lasing by stimulated Raman scattering in silicon waveguides," J. Lightwave Technol.24,1440-1445 (2006).
    [7]Boyraz and B. Jalali, "Demonstration of a silicon Raman laser." Opt. Express 12,5269-5273 (2004).
    [8]H. Rong, R. Jones, A. Liu, et al. "A continuous Raman silicon laser," Nature 433, 725-728(2005).
    [9]X. Sang, E.-K. Tien, N.S. Yuksek, et al. "Dual-Wavelength Mode-Locked Fiber Laser with an Intracavity Silicon Waveguide," IEEE Photon. Technol. Lett.20,1184-1186 (2008).
    [10]R. S. Jacobsen, K. N. Andersen, P. I. Borel, et al. Nature (London) 441,199 (2006).
    [11]Q. Xu, B. Schmidt, S. Pradham, et al., Nature (London) 435,235 (2005).
    [12]A. Liu, Jones, L. Liu, L. Liao et al, "A high speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427,615-618 (2004).
    [13]Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, "High-speed optical modulation based on carrier depletion in a silicon waveguide," Opt. Express 15,660-668(2007).
    [14]M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, "Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides," Opt. Express 15,12949-12958 (2007).
    [15]K. K. Tsia, S. Fathpour, and B. Jalali, "Energy harvesting in silicon wavelength converters," Opt. Express 14,12327-12333 (2006).
    [16]Y.-H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, "Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides," Opt. Express 14, 11721-11726(2006).
    [17]S. W. Leonard, H. M. van Driel, J. Schilling, and R. B. Wehrspohn, Phys.Rev. B 66,161102 (2002)
    [18]T. G. Euser and W. L. Vos, J. Appl. Phys.97,043102 (2005)
    [19]Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, "All optical switching and continuum generation in silicon waveguides," Opt. Express 12,4094-4102 (2004).
    [20]V. R. Almeida, C. A. Barrios, R. R. Panepucci and M. Lipson, "All-optical control of light on a silicon chip," Nature 431,1081-1084 (2004).
    [21]V. R. Almeida, C. A. Barrios, R. R. Panepucci and M. Lipson et al, "All-optical switching on a silicon chip," Opt. Lett.29,2867-2869(2005).
    [22]E.-K. Tien, N. S. Yuksek, F. Qian, and O. Boyraz, "Pulse compression and modelocking by using TPA in silicon waveguides," Opt. Express 15,6500-6506 (2007).
    [23]E. Tien, F. Qian, N. S. Yuksek and O. Boyraz, "Influence of nonlinear loss competition on pulse compression and nonlinear optics in silicon," Appl. Phys. Lett.91, art.201115 (2007).
    [24]R. Salem, M.A. Foster, and A.C. Turner et al, "Signal regeneration using low-power four-wave mixing on silicon chip," Nat. Photonics 2,35-38 (2008).
    [25]Boyraz, "Nanoscale signal regeneration," Nat. Photonics 2,12-13 (2008).
    [26]Richard L. Sutherland, "Handbook of Nonliear Optics, Marcel Dekker, New York,1996
    [27]H. K. Tsang, R. S. Grant, R. V. Penty, I. H. White, J. B.D. Soole, H. P. Leblanc, N. C. Andreadakis, E. Colas, and M. S. Kim, "GaAs/GaAlAs multi-quantum well waveguide for all-optical switching at 1550nm", Elect. Lett.27,1993-1995,1991
    [28]J. F. Reintjes and J. C. McGroddy, Phys. Rev. Lett.30,901(1973).
    [29]T. F. Boggess, K. M. Bohnert, K. Mansour, S. C. Moss, I. W. Boyd, and A. L. mirl, IEEE J. Quantum Electron. QE-22,360(1986).
    [30]H. Reitze, T. R. Zhang, W. M. Wood, and M. C. Downer, J. Opt. Soc. Am. B 7,84(1990).
    [31]H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, Appl. Phys. Lett.80,416(2002).
    [32]A. R. Cowan, G. W. Rieger, and J. F. Young, Opt. Express 12,1611(2004).
    [33]M. Dinu, F. Quochi, and H. Garcia, Appl. Phys. Lett.82,2954(2003).
    [34]Boyraz, P. Koonath, V. Raghunathan, et al. "All optical switching and continuum generation in silicon waveguides," Opt. Express 12,4094-4102 (2004).
    [35]R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon", IEEE J. Quanrum Electron, 23,123,1987
    [36]Claps, R., Dimitropoulos, D., Raghunathan, et al. "Observation of stimulated Raman amplification in silicon waveguides," Opt. Express 11,1731-1739 (2003).
    [37]Richard L. Espinola, Jerry I. Dadap, et al. "Raman amplification in ultrasmall silicon-on-insulator wire waveguides", Opt. Express 12,3713-3718 (2004)
    [38]Dimitrios Dimitropoulos, Daniel R. Solli, Ricardo Claps, et al. "Noise Figure of Silicon Raman Amplifiers," Journal of Lightwave Technology 26,847-852(2008)
    [39]Mark A. Foster, Amy C. Turner, Jay E. Sharping, et al. "Broad-band optical parametric gain on a silicon photonic chip," Nature 441,960-963(2006).
    [40]Xinzhu Sang and Ozdal Boyraz, "Gain and noise characteristics of high-bit-rate silicon parametric amplifiers," Opt. Express 16,13122-13132 (2008).
    [41]Yi Zhang, Xinzhu Sang, Shuyu Yang, et al. "Performance Analysis of Dual-Pump Optical Parametric Amplifiers in Silicon Waveguide," Opt. Communication 16,13122-13132 (2010).
    [42]S. F. Preble, Q. Xu, B. S. Schmidt, et al. "Ultrafast all-optical modulation on a silicon chip," Opt. Lett.30,2891-2893 (2005).
    [43]Renyong Tang, Preetpaul Devgan, Paul L. Voss, et al. "In-Line Frequency-Nondegenerate Phase-Sensitive Fiber-Optical Parametric Amplifier," Photonics Technology Letters 17, 1845-1847(2005)
    [44]Renyong Tang, Jacob Lasri, Preetpaul S. Devgan, et al. "Gain characteristics of a frequency nondegenerate phase-sensitive fiber-optic parametric amplifier with phase self-stabilized input," Opt. Express 13,10483-10493 (2004).
    [45]A.Takada and W. Imajuku, "Amplitude noise suppression using a high gain phase sensitive amplifier as a limiting amplifier," Electronics Letters 32,677-678(1996).
    [46]R. Tang, P. Devgan, V.S. Grigoryan, et al. "Inline frequency-non-degenerate phasesensitive fibre parametric amplifier for fibre-optic communication," Electronics Letters 41, 677-678(2005).
    [47]Renyong Tang, Preetpaul S. Devgan, Vladimir S. Grigoryan,1 Prem Kumar, and Michael Vasilyev, "In-line phase-sensitive amplification of multichannel CW signals based on requency nondegenerate four-wave-mixing in fiber," Opt. Express 16,9046-9053 (2008).
    [48]
    [49]Adonis Bogris and Dimitris Syvridis, "RZ-DPSK Signal Regeneration Based on Dual-Pump Phase-Sensitive Amplification in Fibers," Photonics technology Letters 18,2144-2146(2006)
    [50]C.J. McKinstrie, M.G. Raymer, S. Radic and M.V. Vasilyev, "Quantum mechanics of phase-sensitive amplification in a fiber," Optics Communications 257,146-163(2006).
    [51]Kevin Croussore, Cheolhwan Kim, and Guifang Li, "All-optical regeneration of differential phase-shift keying signals based on phase-sensitive amplification," Optics Letters 29, 2357-2359(2004).
    [52]Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, "Ultrabroadband parametric generation and wavelength conversion in silicon waveguides," Opt. Express 14,4786-4799 (2006).
    [53]C. J. McKinstrie and S. Radic, "Phase-sensitive amplification in a fiber," Opt. Express 12, 4973-4979 (2004).
    [54]Y. Liu and H. K. Tsang, "Time dependent density of free carriers generated by two photon absorption in silicon waveguides," Appl. Phys. Lett.90, art.211105 (2007).
    [55]R. Loudon, "Theory of noise accumulation in linear optical-amplifier chains," J. Quantum Electron.21,766-773(1985).
    [56]H. P. Yuen, "Reduction of quantum fluctuation and suppression of the Gordon-Haus effect with phase-sensitive linear amplifiers," Opt. Lett.17,73-75 (1992).
    [57]Y. Mu and C. M. Savage, "Parametric amplifiers in phase-noise-limited optical communications," J. Opt. Soc. Am. B 9,65-70 (1992).
    [58]Z. Tong, C. J. McKinstrie, C. Lundstrom, et al. "Noise performance of optical fiber transmission links that use non-degenerate cascaded phase-sensitive amplifiers," Opt. Express 18,15426-15439(2010).
    [59]Z. Tong, A. Bogris, C. Lundstrom, et al. "Modeling and measurement of the noise figure of a cascaded non-degenerate phase-sensitive parametric amplifier", Opt. Express 18, 14820-14835(2010)
    [60]R. D. Li, P. Kumar, W. L. Kath, et al. "Combating dispersion with parametric amplifers,' IEEE Photon.Technol. Lett.5,669-672 (1993).
    [61]W. Imajuku and A. Takada, "Reduction of fiber-nonlinearity-enhanced amplifier noise by means of phase sensitive amplifiers," Opt. Lett.22,31-33 (1997).
    [62]T. Shoji, T. Tsuchizawa, T.Watanabe, et al. "Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibers," Electron. Lett.38,1669-1670 (2002).
    [63]K. Yamada, T. Shoji, T. Tsuchizawa, et al. "Silicon-wire-based ultrasmall lattice filters with wide free spectral ranges," Opt. Lett.28,1663-1664 (2003).
    [64]H. Rong, A. Liu, R. Jones, et al. "An all-silicon Raman laser," Nature 433,292-294 (2005).
    [65]Xinzhu Sang and Ozdal Boyraz, "Gain and noise characteristics of high-bit-rate silicon parametric amplifiers," Opt. Express 16,13122-13132(2008).
    [66]C. A. Barrios, V. R. de Almeida and M. Lipson, "Low-Power-Consumption Short-Length and High-Modulation-Depth Silicon Electrooptic Modulator," J. Lightwave Thechnol.21, 1089-1098 (2003).
    [67]R. Claps, V. Raghunathan, D. Dimitropoulos, et al. "Anti-Stokes Raman conversion in silicon waveguides," Opt. Express 11,2862-2872 (2003).
    [68]A.C. Turner, C. Manolatou, B. S. Schmidt, et al. "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Opt. Express 14,4357-4362(2006).
    [69]K. K. Tsia, S. Fathpour, and B. Jalali, "Energy harvesting in silicon wavelength converters,' Opt. Express 14,12327-12333 (2006).
    [70]Q. Lin, J. Zhang, P. M. Fauchet, et al "Ultrabrcadband parametric generation and wavelength conversion in silicon waveguides," Opt. Express 14,4786-4799 (2006).
    [71]J. McKinstrie, S. Radic and M. G. Raymer, "Quantum noise properties of parametric amplifiers driven by two pump waves," Opt. Express 12,5037-5066(2004).
    [72]M. A. Foster, A. C. Turner, J. E. Sharping, et al. "Broad-band optical parametric gain on a silicon photonic chip," Nature 441,960-963 (2006).
    [73]Michael Vasilyev, "Distributed phase-sensitive amplification," Opt. Express 13, 7563-7571(2005).
    [74]Joseph Kakande, Carl Lundstrom, Peter A. Andrekson, et al. "Detailed characterization of a fiber-optic parametric amplifier in phase-sensitive and phase-insensitive operation," Opt. Express 18,4130-4137(2010).
    [75]Dimitropoulos, S. Fathpour, and B. Jalali, "Limitations of active carrier removal in silicon Raman amplifiers and lasers," Appl. Phys. Lett.87,261108-261110 (2005).
    [76]Preble, Q. Xu, B. S. Schmidt, et al. "Ultrafast all-optical modulation on a silicon chip," Opt. Lett.30,2891-2893(2005).
    [1]P. P. Absil, J. V. Hryniewicz, B. E. Little, et al. "Wavelength conversion in GaAs micro-ring resonators," Opt. Lett.25,554-556(2000).
    [2]Amy C. Turner, Mark A. Foster, Alexander L. Gaeta, et al. "Ultra-low power parametric frequency conversion in a silicon microring resonator", Opt. Express 16,4881-4887(2008).
    [3]M. Ferrera, D. Duchesne, L. Razzari, et al. "Low power four wave mixing in an integrated, micro-ring resonator with Q=1.2 million", Opt. Express 17,14098-14103 (2009).
    [4]Spiros Mikroulis, Hercules Simos, Eugenia Roditi, et al. "Ultrafast All-Optical AND Logic Operation Based on Four-Wave Mixing in a Passive InGaAsP-InP Microring Resonator", Photon. Technol. Lett.17,1878-1880(2005).
    [5]T. A. Ibrahim, R. Grover, L. C. Kuo, et al. "All-optical AND/NAND logic gates using semiconductor microresonators," Photon. Technol. Lett.15,1422-1424 (2003).
    [6]S. Mikroulis, A. Bogris, E. Roditi, et al. "Investigation of an all-optical wavelength converter with reshaping properties based on four-wave mixing in passive microring resonators," J. Lightw. Technol. 22,2743-2748(2004).
    [7]Xinzhu Sang and Ozdal Boyraz, "Gain and noise characteristics of high-bit-rate silicon parametric amplifiers,"Opt. Express 16,13122-13132(2008).
    [8]Yi Zhang, Xinzhu Sang, Shuyu Yang, et al. "Performance analysis of dual-pump optical parametric amplifiers in silicon waveguide," Opt. Communication 15,3043-3048(2010).
    [9]R. L. Espinola, J. I. Dadap, R. M. Osgood, et al. "Raman amplification in ultrasmall silicon-on-insulator wire waveguides," Opt. Express 12(16),3713-3718 (2004).
    [10]Y. Liu, and H. K. Tsang, "Nonlinear absorption and Raman gain in helium-ion-implanted silicon waveguides," Opt. Lett.31(11),1714-1716 (2006)
    [11]Y.-H. Kuo, H. Rong, V. Sih, et al. "Demonstration of wavelength conversion at 40Gb/s data rate in silicon waveguides," Opt. Express 14(24),11721-11726 (2006).
    [12]Amy C. Turner-Foster, Mark A. Foster, Jacob S. Levy, et al. "Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides," Opt. Express 18(4),3582-3591 (2010).
    [13]D. Dimitropoulos, D. R. Solli, R. Claps, et al."Noise figure of silicon Raman amplifiers," J. Lightwave Technol.26,847-852 (2008).
    [14]D. Rafizadeh, J. P. Zhang, R. C. Tiberio, et al. "Propagation Loss Measurements in Semiconductor Microcavity Ring and Disk Resonators," J. Lightw. Technol.16,1308-1314(1998).
    [15]V. Van, Philippe P. Absil, J. V. Hryniewicz, et al. "Propagation Loss in Single-Mode GaAs-AlGaAs Microring Resonators:Measurement and Model," J. Lightw. Technol.19, 1734-1739(2001).
    [16]Payam Rabiei, "Calculation of Losses in Micro-Ring Resonators With Arbitrary Refractive Index or Shape Profile and Its Applications," J. Lightw. Technol.23,1295-1301(2005).
    [17]Shijun Xiao, Maroof H. Khan, Hao Shen, et al. "Modeling and measurement of losses in silicon-on-insulator resonators and bends," Opt. Express 15,10553-10561(2007).
    [18]Shijun Xiao, Maroof H. Khan, Hao Shen, et al. "Compact silicon microring resonators with ultra-low propagation loss in the C band," Opt. Express 15,14467-14475 (2007).
    [1]Z.Dong, Z. Cao and J. Lu, "All-optical up-conversion of millimeter-wave signals for ROF system using optical carrier suppression-based dual-pump FWM in an SO A,"OFC 2009(JWA59).
    [2]J. Kani, M. Teshima, "1000-channel SD-WDM light source employing optical multicarrier generation scheme using sinusoidal amplitude-phase hybrid modulation," J. Lightw. Technol.,24(1),404-410(2006). Electronics Letters,38(12),575-576(2002).
    [3]Toshiaki Kuri, Teppei Nakasyotani, "Characterizations of Supercontinuum Light Source for WDM Millimeter-Wave-Band Radio-on-Fiber Systems", Photonics Technology Letters, 17(6),1274-1276(2005)
    [4]H. S. Moonl, S. E. Park, and E. B. Kim, "Coherent multi-frequency optical source generation using a femto-second laser and its application for coherent population trapping" Optics Express,15(6),3265-3270(2007)
    [5]W.W. Hu, K. Inagaki, T. Tanaka, et al. "Millimetre-wave band (50 GHz) multi-carrier generation using injection-locking technique for radio-over-fibre WDM communication system", Electronics Letters,40(23),2004
    [6]Y. Kim, S. Doucet, M. E. Mousa Pasandi, et al. "Optical multicarrier generator for radio-overfiber systems", Optics Express,16(2),1068-1076(2008)
    [7]Rakesh Sambaraju, Valentin Polo, Juan Luis Corral, et al. "Ten gigabits per second 16-level quadrature amplitude modulated millimeter-wave carrier generation using dual-drive Mach-Zehnder modulators incorporated photonicvectormodulator," Optics Letters,33(16), 1833-1835(2008)
    [8]T. Kuri, K. Kitayama, Y. Takahashi. "A single light-source configuration for full-duplex 60-GHz-band radio-on-fiber system". Microwave Theory and Techniques.51, 431-439(2003).
    [9]Jun-Hyuk Seo, Chang-Soon Choi, Young-Shik Kang, et al. "SOA-EAM Frequency Up/Down-Converters for 60-GHz Bi-Directional Radio-on-Fiber Systems", Microwave Theory and Techniques.54,959-966(2006).
    [10]Jia Zhensheng, Yu Jianjun, and Chang Gee-Kung. "A full-duplex radio-over-fiber system based on optical carrier suppression and reuse", Photonics Technology Letters.18, 1726-1728(2006).
    [11]T. Nakasyotani, H. Toda, T. Kuri, et al. "Wavelength-division-multiplexed millimeter-waveband radio-on-fiber system using a supercontinuuin light source", Journal of Lightwave Technology.24,404-410(2006).
    [12]Chen Lin, Wen Hong, and Wen Shuangchun. "A Radio-Over-Fiber System with a Novel Scheme for Millimeter-Wave Generation and Wavelength Reuse for Up-Link Connection", Photonics Technology Letters.18,2056-2058(2006).
    [13]M. Ogusu, K. Inagaki, Y. Mizuguchi, et al. "Carrier Generation and data Transmission on Millimeter-wave Bands using Two-mode Locked Fabry-Perot Slave Lasers", Microwave Theory and Techniques 51,382-391(2003).
    [14]Yu Jianjun, Huang Mingfang, Jia Zhensheng, et al. "All-Optical Up-Conversion for 30×7.5 Gb/s WDM Signals in a 60GHz ROF System". OFC 2009, OYuB4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700