用户名: 密码: 验证码:
水稻冠层温度特性及基于冠层温度的水分胁迫指数研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
试验以2011-2012年辽宁省中熟组水稻区域试验品种、沈阳农业大学水稻研究所2011-2012年100个高代材料及本试验室己筛选的不同温度类型水稻品种为材料,通过两年冠层温度测定进行暖温型和冷温型水稻品种筛选,并对这两类品种进行生理性状和产量结构的研究。同时于2011年使用开粳1号和粳294进行盆栽和箱栽试验,在不同生育期进行24小时室外、白天7小时室内的叶温及气象指标测定,分析了不同土壤水势下水稻叶温与叶-气温差、气象因子、生理指标和产量结构的关系。2012年在田间设置不同水分处理,对开粳1号进行冠层温度和生理指标的测定。分析了田间不同土壤水势下冠层温度与气象因子和生理性状的关系。并对基于田间水稻冠层温度进行了水分胁迫指数模型的试验研究。研究结果表明:
     1.不同基因型水稻品种在各生育时期存在冠层温度分异现象,本试验通过各时期冠层平均温度的比较和分析,共筛选出较为突出的4个冷型材料和4个暖型材料。各品种间平均冠层温度差异在0.5-1.5℃范围,各品种冠层温度在白天随大气温度的升高而升高,但始终低于大气温度。13:00-15:00品种间冠层温度差异最为明显。夜间差异很小,并存在冷温型材料夜间冠层温度超过暖温型材料的现象。
     2.分蘖期与拔节期冷温型品种的净光合速率、胞间CO2浓度、气孔导度及蒸腾速率均明显高于暖温型品种。灌浆盛期暖温型品种净光和速率较孕穗期明显下降,但冷温型品种净光合速率仍维持在较高的水平。经分析不同温度类型品种冠层温度与光合速率及气孔导度均呈显著负相关。光合速率与气孔导度呈显著正相关。暖温型品种剑叶气孔密度和宽度均高于冷温型品种。各品种剑叶腹面和背面的气孔长度互有高低趋势不明显。
     3.不同生育时期冷温型品种干物质积累均高于暖温型,暖温型品种叶、鞘的输出率高于冷温型品种,贡献率低于冷温型品种。两类型品种茎的输出率与贡献率均为负值。暖温型品种茎、叶、鞘的总输出率较高,冷温型品种总贡献率较高。产量结构方面,冷温型品种在有效穗数、穗重、千粒重、结实率及产量均显著高于暖温型品种。
     4.水稻各器官温度与土壤水分关系密切,当土壤水分充足时,同一水分处理的稻株穗温、茎温、叶温差异不显著;当土壤水分不足时,同一水分处理的稻株穗温、茎温、叶温差异达到显著水平,即穗温>茎温>叶温,土壤水分越少,差异越大。
     5.水稻叶温受环境因素影响较大,在不同生育时期通过控水发现,水稻叶温与大气温度和太阳辐射多呈显著或极显著正相关,与空气湿度多呈显著或极显著负相关,与叶-气温差呈极显著正相关。辽粳294和开粳1号的叶水势和叶片相对含水量均随土壤水势的降低而降低,且各水分处理下叶水势和叶片相对含水量差异达到显著水平。两品种叶温在不同土壤水势下与光合速率、气孔导度、胞间二氧化碳浓度、蒸腾速率均呈显著或极显著负相关。
     6.田间不同土壤水势下的冠层温度呈一定规律性变化,水稻冠层在13:00-15:00达到最高。在凌晨2:00-4:00区间到达最低。冠-气温差幅度随水分胁迫时间的延长而逐渐加剧。在中午13:00-15:00通过冠-气温差观测水分胁迫程度效果最好,水稻在不同生育时期遭受水分胁迫的恢复能力不同。其中分蘖-拔节期复水后植株恢复较快,而在抽穗-齐穗期和灌浆-灌浆盛期复水处理后,植株恢复速度均相对较慢。
     7.在田间通过对分蘖-拔节期、抽穗-齐穗期、灌浆-灌浆盛期控水后的冠层温度与气象因子及冠-气温差的相关性分析发现,水稻冠层温度与太阳辐射、空气温度和冠-气温差多呈显著或极显著正相关,与空气湿度达到显著或极显著负相关。随着控水时间的延长,各胁迫处理的冠层温度与气象因子间的相关显著性均有所提高。
     8.田间水稻冠层温度与光合速率、气孔导度、胞间二氧化碳和蒸腾速率多呈负相关。在灌浆-灌浆盛期控水后,冠层温度与光和速率和蒸腾速率均达到显著负相关和极显著负相关。各胁迫处理在控水后可变荧光(Fv)、最大荧光(Fm)、PSII的潜在活性(Fv/Fo)和PSII光化学效率(Fv/Fm)方面均呈显著下降趋势。齐穗期不同水分处理下,开粳1号剑叶在气孔长度上没有明显差异,腹面和背面的气孔宽度均随水分胁迫程度的升高而降低。剑叶腹面气孔孔密度随胁迫程度升高而降低,但背面气孔密度随胁迫程度的升高而升高。
     9.随着水分胁迫的加剧,开粳1号在蛋白质、脂肪酸和直连淀粉含量方面均呈上升趋势,而食味值呈下降趋势。脂肪酸、蛋白质和直链淀粉含量与食味值呈负相关关系。在分蘖-拔节期控水后s1处理在千粒重和产量上均超过了CK1和CK2处理,说明开粳1号在分蘖-拔节期通过轻度胁迫可以实现节水增产的效果。抽穗-齐穗期水分胁迫直接影响了水稻穗分化,导致产量明显降低。灌浆-灌浆盛期水分胁迫造成空秕粒的大量形成,使结实率和穗粒数明显降低。
     10.试验将CWSI经验模型和理论模型同时应用在水稻水分胁迫试验中,研究获得了计算CWSI经验模型中冠-气温差和空气饱和水汽压差之间的关系,以及计算CWSI理论模型中冠层阻力与其他气象指标间的关系。进而对比了两种模型在应用上的差别,试验发现,经验模型在较为理想的天气条件下可以正常使用,一旦外界环境变化,会经常溢出0-1的范围,并且经验模型较理论模型波动大,理论模型则相对稳定,所以理论模型更适合反映作物水分亏缺状况,同时分析了理论模型与气孔阻力,净光和速率,蒸腾速率,土壤含水量之间的关系,分析结果表明理论模型可以很好的反映水稻水分胁迫状况。
It chose test varieties in middle mature group of rice region in Liaoning province in2011-2012, a hundred high-generation materials from the Rice Institute of Shengyang University in2011-2012and six different temperature types chosen by the test as the materials of the rice varieties in this test. According to a two-year canopy temperature testing, it toke a screening on warm temperature and cold temperature of rice varieties and also gave the studies on physiological properties and production structures of the two types. Meanwhile, it started the pot and box planted test on Kaijing1and Jing294from2011, and at different growth stages, it toke a24-hour outdoor, seven hours daytime interior measurements on leaf temperature and meteorological parameters. From the results, it showed the relationships about the rice leaf temperature with the leave temperature differences, meteorological factors, physiological indexes and production structures at different soil water potential.In2012, it set different water treatments in the field, and gave measurements on the canopy temperature and physiological indicators of Kaijing1, and then it got the relationship of canopy temperature with meteorological factors and physiological properties at different soil water potential. Simultaneously, a study on the water stress index model bases on rice canopy temperature in the field was also carried in the test. The results represented:
     1. There were some differentiation on different genotypes of rice at each growth stages. By comparing and analyzing the average temperature of each period, in this test, it selected the more prominent4cold-type materials and4warm-type materials. The average canopy temperature difference of all the varieties were at0.5-1.5℃, the canopy temperature at daytime of each variety went up with the air temperature went up, but it never exceeded the air temperature. The canopy temperature difference at13:00-15:00was most obvious, and it was insignificant at night, at same time, it existed a phenomenon that the canopy temperature of cold temperature material exceeded the warm one.
     2. The net photosynthetic rate, intercellular CO2concentration, stomatal conductance and transpiration rate of the cold temperature variety were significantly higher than the warm temperature variety at tillering and jointing stage. The photosynthetic rate at full filling stage decreased more obviously than at booting stage of the warm temperature variety, but the net photosynthetic rate of the cold temperature variety can still keep at a high level. It got a significant negative correlation of canopy temperature with photosynthetic rate and stomatal conductance via analyzing different temperature-type varieties, and the photosynthetic rate and stomatal conductance showed a significant positive correlation. Also it showed the density and width of rice flag stomatal on warm temperature was higher than the cold temperature one. And the stomatal length of the ventral and back of the flag leaf existed high and low types and was not obvious on all varieties.
     3. The dry matter accumulation of the cold temperature variety in different growth stage was all higher than the warm temperature variety, and the leaf and sheath output of the warm temperature variety was higher than the cold one, but its contribution rate was lower than the cold one. The output rate and contribution rate of the two types varieties were both negative. The total output rate of the stems, leaves and sheath of the warm temperature type were all much higher, and the total contribution rate of the cold temperature type were much higher. At production structure, the effective panicle, panicle weight, grain weight, seed setting rate and yield of the cold temperature variety were significantly higher than warm temperature variety.
     4. The relationship between all organ temperature and soil moisture of the rice were much close, when the soil with sufficient water, the ear temperature, stem temperature and leaf temperature differences of rice plant under the same water treatment were not obvious; but when the soil with water deficient, the ear temperature, stem temperature and leaf temperature differences of rice plant under the same water treatment reached a significant level, that is, the ear temperature>stem temperature>leaf temperature, and the less the soil water was, the bigger the difference was.
     5. The environment affected rice leaf temperature much greater, during the water control at different growth stages, the relation of rice leaf temperature with air temperature and solar radiation showed mostly significant or extremely significant positive, but it had negative correlation to the air humidity, and it had positive correlation to the leaf-air temperature difference. The leaf water potential and leaf relative water content of Liaojing294and Kaijing1decreased with the soil potential, and the leaf water potential and leaf relative water content difference of each water treatment reached a significant level. These two varieties at different water treatments, their photosynthetic rate, stomatal conductance intercellular CO2concentration and transpiration rate showed a significant or extremely significant negative correlation.
     6. The canopy temperature under different soil water treatments in the field were changed regularly, and its temperature reached the highest value at13:00-15:00of the rice, the lowest temperature appeared at2:00-4:00morning. Canopy temperature amplitude increased with the extension of water stress time. The best time on measuring water stress via canopy temperature difference was at13:00-15:00, and the recovery capability of rice suffered from water stress in the different period was different. Such as, at tiller-jointing stage, the plant recovered quickly after re-water, but the plant recovered slowly after re-water at heading-full heading and filling-full filling.
     7. According to the analysis of the relativity of the canopy temperature with meteorological factors and canopy temperature differences after water control at tiller-jointing, earing-full earing and filling-full filling stages, it discovered that it showed significant or extremely significant positive correlation on rice canopy temperature with the solar radiation, air temperature and canopy temperature difference, and it had negative correlation to air humidity. With the extension of the water control time, the correlation of the canopy temperature under each water stress treatment with the meteorological factors improved obviously.
     8. Mostly, the relation of the rice canopy temperature with the photosynthetic rate, stomatal conductance, intercellular CO2and transpiration rate represented positive. After water control at filling-full filling, the canopy temperature with photosynthetic rate and transpiration rate reached significant negative correlation and extremely significant negative correlation. The variable fluorescence (Fv), maximum fluorescence (Fm), the potential activity of PSII (Fv/Fo) and photochemical efficiency of PSII (Fv/Fm) at each stress treatment all represented significant decline. At earing stage, under different water treatments, Kaijing1flag leaf had no obvious difference on stomatal length. The stomatal width at ventral and back decreased with the water stress increased. And the ventral stomatal density of the flag leaf decreased with the water stress increased, but its back stomatal density increased with the stress increased.
     9. As water stress intensified, Kaijing1on its protein, fatty acids and amylose content showed all went up, and its taste value fell. The fatty acids, protein and amylose were negatively correlated. After water control at tiller-jointing stage, the grain weight and yield of S1treatment all exceeded treatment CK1and CK2which explained that Kaijing1can bring about the effect of saving water and increasing yield by mild stress at tiller-jointing stage. At earing-full earing stage water stress directly influence the rice ears differentiation which led to the significant decline of yield. And then at filling-full filling stage, the water stress caused large number of empty blighted grain which make the seed rate and seed number decreased.
     10. It simultaneously applied the empirical model and theoretical model of the CWSI in the rice water stress. According to the observation in this experiment, the research got the calculating on the relationship between the differences of the canopy temperature and the differences of the air saturation vapor pressure in the CWSI empirical model, and also the calculating on the relationship between the canopy resistance and other meteorological indicators in the theoretical model. Then after comparing the differences of these two kinds of models, it founded that the empirical model can normally used at an ideal weather condition, once the external environment changed, the CWSI values would overflowed the range of0-1. And the theoretical model was much more stable than the empirical model, thus the theoretical model was much more suitable for reflecting the crop water deficit situation. In this paper, it analyzed the relationship of the theoretical model with the stomatal resistance, transpiration rate, net photosynthetic rate and soil moisture content. The results showed that the theoretical model can much better reflect the situation of the rice water stress.
引文
1.白莉萍,隋方功,孙朝晖,等.2004.土壤水分胁迫对玉米形态发育及产量的影响.生态学报,24(7):1556-1560.
    2.蔡焕杰,康绍杰.1997.棉花冠层温度的变化规律及其用于缺水诊断研究.灌溉排水,16(1):1-5.
    3.蔡昆争,吴学祝,骆世明.2008.不同生育期水分胁迫对水稻根叶渗透调节物质变化的影响.植物生态学报,32(2):491-500.
    4.蔡昆争,吴学祝,骆世明等.2008.不同生育期水分胁迫对水稻根系活力、叶片水势和保护酶活性的影响.华南农业大学学报,(29)4:7-10.
    5.蔡一霞,朱庆森,王志琴等.2002.结实期土壤水分对稻米品质的影响.作物学报,28(5):601-608.
    6.陈佳,张文忠,赵晓彤等.2009.水稻灌浆期冠一气温差与土壤水分和气象因子的关系.江苏农业科学,2:284-285.
    7.陈家宙,王石,张丽丽,等.2007.玉米对持续干旱的反应及红壤干旱阈值.中国农业科学,40(3):532-539.
    8.陈建明.2004.水稻品种对褐飞虱为害的耐性及其生理机制研究.杭州:浙江大学农业与生物科学学院博士学位论文.
    9.陈杰,马兴林,杨文钰,等.2005,玉米穗期水分胁迫对产量和水分利用效率的影响.作物杂志,(2):21-23.
    10.陈温福,徐正进,张龙步等.1990.水稻叶片气孔密度与气体扩散阻力和净光合速率关系的比较研究.水稻科学,4(4):163-168.
    11.陈温福主编.2007年.北方水稻生产技术问答[M].中国农业出版社.
    12.陈贻竹,李晓萍,夏雨,等.1995,叶绿素荧光技术在植物环境胁迫研究中的应用.热带亚热带植物学报,3(4):79-86.
    13.储长树,卢显富,青吉铭.1995,Penman-Monteith公式中冠层阻抗的合成方法.南京气象学院学报,18(4):494-499.
    14.储长树,卢显富,青吉铭.1995,Penman-Monteith公式中冠层阻抗的合成方法.南京气象学院学报,18(4):494-499.
    15.崔晓,许利霞,袁国富,等.2005,基于冠层温度的夏玉米水分胁迫指数模型的试验研究.农业工程学报,21(8):22-24.
    16.戴高兴,邓国富,周萌.2006.干旱胁迫对水稻生理生化的影响.广西农业科学,37(1):4-6.
    17.丁国华,马殿荣,马巍,等.2009杂草稻幼苗期耐旱性的初步筛选与评价.北方水稻,,40(1)11-14.
    18.董彩霞,田纪春,赵世杰.2002,不同形态氮素对高蛋白小麦幼苗叶绿素荧光特性的影响.西北植物学报,22(2):229-234.
    19.董振国,于沪宁.1994.农田作物层环境生态.北京:中国农业科技出版社,97-103.
    20.董振国.1996.作物冠层温度与土壤水分的关系.科学通报,31(8):608-610.
    21.樊廷录,宋尚有,徐银萍等.2007.旱地冬小麦灌浆期冠层温度与产量和水分利用效率的关系生态学报,27(11):4491-4497.
    22.冯佰利,高小丽,王长发等.2005.干旱条件下不同温型小麦叶片衰老与活性氧代谢特性的研究.中国生态农业学报,13(4):74-76.
    23.冯佰利,王长发,苗芳等.2002.抗旱小麦的冷温特性研究.西北农林科技大学学报(自然科学版),30(2):6-10.
    24.傅志强,黄磺,何保良等.2007.水稻叶片气孔特性及其相关性.湖南农业大学学报(自然科学版),33(6):646-650.
    25.高明超,杨伟光.2010.气候变化及其对农作物的影响.现代农业科技,4:291-293.
    26.高明超,张文忠,韩亚东等.2013基于红外线热成像技术的水稻水分胁迫指数试验研究.中国科技论文在线,201303-291.
    27.高士杰,张步龙,陈温福.2000.直立穗型水稻群体小气候环境研究.中国农业气象,21(3):23-26.
    28.高亚军,李生秀,田霄鸿,等.2006,不同供肥条件下水分分配对旱地玉米产量的影响.作物学报,32(3):415-422.
    29.高继平,韩亚东,王晓通.2011.水稻齐穗期冠层温度分异及其相关特性的研究.沈阳农业大学学报.55(4):399-405.
    30.葛体达,隋方功,白莉萍,等.2005,长期水分胁迫对夏玉米根叶保护酶活性及膜脂过氧化作用的影响.干旱地区农业研究,23(3):1-7.
    31.郭家选,梅旭荣,卢志光.2003.冬小麦冠层温度及其影响因素探析.中国生态农业学报,11(4):24-26.
    32.郭建平,高素华,刘玲.2001.气象条件对作物品质和产量影响的试验研究.气候与环境研究,6(3):361-367.
    33.郭相平,康绍忠,索丽生.2001,苗期调亏处理对玉米根系生长影响的试验研究.灌溉排水,20(1):25-27.
    34.郭相平,张君烈,王琴等.2006.拔节孕穗期水分胁迫对水稻生理特性的影响.干旱地区农业研究.24(2):125-128.
    35.郭小强,赵明,李少昆.1997,不同玉米自交系光合特性的研究.玉米科学,5(3):46-49.
    36.郭延平,周慧芬,曾光辉,等.2003,高温胁迫对柑橘光合速率和光系统Ⅱ活性的影响.应用生态学报,14(6):867-870.
    37.韩磊,王长发,王建等.2007.棉花冠层温度分异现象及其生理特性的研究.西北农业学报,16(3):85-88.
    38.韩松俊,胡和平,田富强.2009,三种通过常规气象变量估算实际蒸散量模型的适用性比较.水利学报,40(1):75-81.
    39.韩亚东,张文忠,徐正进等.2000.不同穗型不同行向水稻穗遮光问题理论研究.生态农业研究,8(1):14-17.
    40.韩亚东,张文忠,杨梅等.2006.孕穗期水稻叶温与水分状况关系的研究.中国农学通报,22(2):214-216.
    41.候玉虹,尹光华,刘作新,等.2007,土壤含水量对玉米出苗率及苗期生长的影响.安徽农学通报,13(1):70-73.
    42.胡继超,张佳宝,朱安宁.冬小麦冠层阻力日变化的估算.灌溉排水学报,2005,24(2):1-4.
    43.胡兴波,曹敏建,塚田利夫,2003,等.不同耕作措施对土壤含水量及玉米出苗率的影响.玉米科学,11(3):60-62.
    44.康绍忠,蔡焕杰,梁银丽等.1997.大气CO2浓度增加对春小麦冠层温度、蒸发蒸腾与土壤剖面水分动态影响的试验研究.生态学报,17(4):412-417.
    45.雷水玲,孙忠富,雷廷武.温室内作物茎秆直径变化对基质含水率的响应.农业工程学报,2005,21(7):116-119.
    46.李德福,李金才,魏凤珍.2005.拔节长穗期水分胁迫对旱作水稻若干生理特性和经济产量的影响.安徽农业科学,33(7):1166-1167.
    47.李林,沙国栋.1989.水稻灌浆结实期温度因子对稻米品质的影响.中国农业气象,(3):35-38.
    48.李临颖,吴元中,段项锁.1993.辐射增温效应对水稻叶片温度及光合速率是影响.应用气象学报,2(4):250-255
    49.李绍长,胡昌浩,龚江,等.低磷胁迫对磷不同利用效率玉米叶绿素荧光参数的影响.作物学报,2004,30(4):365-370.
    50.李向阳,朱云集,郭天财.2004.不同小麦基因型灌浆期冠层和叶面温度与产量和品质关系的初步分析.麦类作物学报,24(2):88-91.
    51.李永平,王长发,赵丽等.2007.不同基因型大豆冠层冷温现象的研究.西北农林科技大学学报(自然科学版),35(11):80-83.
    52.廖万有.试论茶树高光效育种的前景.广东茶业,1999,21:51-52.
    53.刘云,宇振荣,孙丹峰.2004.冬小麦冠-气温差及其相关影响因素关系研究.灌溉排水学报,23(1):30-35.
    54.刘庚山,郭安红,任三学,等.2004.夏玉米苗期有限水分胁迫拔节期复水的补偿效应.生态学杂志.23(3):24-29.
    55.刘丽霞,程红卫,陈温福.2000.水稻叶片气孔长度宽度和密度及其相关性的研究.沈阳农业大学学报,31(6):531-533.
    56.刘树堂,东先旺,孙朝辉,等.2003.水分胁迫对夏玉米生长发育和产量形成的影响.莱阳农学院学报.20(2):98-100.
    57.刘晓军,唐晓波,李春华.2008.不同绿茶品种秋季叶绿素与光合效率比较及相关性研究.121(4):975-978.
    58.刘学著.1995.冬小麦冠-气温差及其与叶水势的相关性实验研究.作物学报12(5):528-532.
    59.刘云等.2004.冬小麦冠-气温差及其影响因子研究.农工业工程学报,20(3):63-68.
    60.刘允芬,李家永.2000.亚热带红壤丘陵区水稻田净全辐射初探.生态农业研究.8(1)1:5-9.
    61.刘增进,柴红敏,蔡焕杰.2003.用冠层温度定量诊断作物根系活动层.中国农村水利水电,(4):3-4.
    62.刘祖贵,陈金平,段爱旺,等.2006.不同土壤水分处理对夏玉米叶片光合等生理特性的影响.干旱地区农业研究.24(1):90-95.
    63.龙明华,唐小付,于文进,等.2005.不同钙素水平对厚皮甜瓜叶片光合作用和保护酶活性的影响.广西植物,25(1):77-82.
    64.罗俊,张木清,林彦铨,等.2004,甘蔗苗期叶绿素荧光参数与抗旱性关系研究.中国农业科学,37(1):1718-1721.
    65.吕文彦,邵国军,曹萍等.1998.灌浆结实期日均温度对稻米品质影响的研究进展.辽宁农业科学,(4):1-6.
    66.马树华,王庆成,李亚藏.汽车尾气对四种北方阔叶树叶绿素荧光特性的影响.生态学杂志,2005,24(1):15-20.
    67.满为群,杜维广,张桂茹,等.高光效大豆几项光合生理指标的研究.作物学报,2002,29(5):697-700.
    68.苗芳,张嵩午,王长发等.2005.小麦低温种质的器官结构特征.西北植物学报,25(8):1499-1507.
    69.聂磊,李淑仪,廖新荣,等.1999.沙田柚叶绿素荧光特性及其与叶片矿质元素含量的关系.果树科学,24(4):123-126.
    70.彭致功,杨培岭,段爱旺等.2003.日光温室茄子冠-气温差与环境因子之间的关系研究.华北农学报.,18(4):111-113.
    71.蒲光兰,周兰英,胡学华,等.2005,干旱胁迫对金太阳杏叶绿素荧光动力学参数的影响.干旱地区农业研究,23(3):44-48.
    72.齐健,宋凤斌,刘胜群.2006,苗期玉米根叶对干旱胁迫的生理响应.生态环境,15(6):1264-1268.
    73.秦晓威,王长发,任学敏等.2008,谷子冠层温度分异现象及其生理特性研究.西北农业学报17(2):101-105
    74.邵玺文,张瑞珍,齐春艳等.2004.拔节孕穗期水分胁迫对水稻生长发育及产量的影响.吉林农业大学学报,26(3):237-241.
    75.申国安,王竹林,李万昌等.2000.小麦冠层温度的遗传和配合力分析.西北农业大学学报,28(6):43-47.
    76.宋凤斌,戴俊英.2000,干旱胁迫对玉米雌穗生长发育和产量的影响.吉林农业大学学报,22(1):18-22.
    77.宋凤斌,戴俊英.2005.玉米茎叶和根系的生长对干旱胁迫的反应和适应性.干旱区研究,b,22(2):256-258.
    78.宋凤斌,姚远生,戴俊英,等.1993.玉米对水分胁迫的反应及适应性.农业与技术,(6):16-19.
    79.唐登银,罗毅,于强.2000.农业节水的科学基础.灌溉排水,19(2):1-9.
    80.唐延林,王纪华,黄敬峰,王人潮.2004.利用水稻成熟期冠层高光谱数据进行估产研究.作物学报,30(8):739-744.
    81.唐永红,张嵩午,高如嵩等.1997.温度对稻米品质的时段效应分析.中国农业气象,18(1):9-12.
    82.陶世蓉,东先旺,刘海燕,等.2000,土壤水分胁迫对夏玉米植株性状整齐度的影响.西北植物学报,20(5):812-817.
    83.田华,王兰,段美洋等.2009.水稻抗旱机理的研究进展.安徽农学通报,15(11):65-66.
    84.汪炳良,徐敏,史庆华,等.2004,高温胁迫对早熟花椰菜叶片抗氧化系统和叶绿素及其荧光参数的 影响.中国农业科学,37(8):1245-1250
    85.王北洪,黄木易,马智宏,等.条锈病对冬小麦叶绿素荧光、光合及蒸腾作用的影响.华北农学报,2004,19(2):92-94.
    86.王成瑷,王伯伦,张文香等.2007.不同生育时期干旱胁迫对水稻产量与碾米品质的影响.中国水稻科学,21(6):643-649.
    87.王纯枝,宇振荣,孙丹峰等.2006.夏玉米冠-气温差及其影响因素探析.土壤通报,37(4):651-657.
    88.王国宇,宋尚有,樊廷录等.2009.不同基因型玉米冠层温度与产量和水分利用效率的关系.玉米科学,17(1):92-95.
    89.王建程,严昌荣,卜玉山.2005.不同水分与养分水平对玉米叶绿素荧光特性的影响.中国农业气象,26(2):95-98.
    90.王建林,徐正进.2005.穗型和行距对水稻冠层受光态势的影响.中国水稻科学,19(5):422-426.
    91.王可玢,赵福洪,王孝宣,等.1996用体内叶绿素a荧光动力学鉴定番茄的抗冷性.植物学通报,13(2):29-33.
    92.王丽燕,赵可夫.2005.玉米幼苗对盐胁迫的生理响应.作物学报,31(2):264-266.
    93.王少先,李再军,王雪云,等.不同烟草品种光合特性比较研究初报.中国农学通报,2005,21(5):245-257.
    94.王守海,李泽宫.1989.水稻成熟期气候生态条件对早籼稻米品质的影响.中国农业气象,(3):35-38.
    95.王伟东,王璞,王启现.灌浆期温度和水分对玉米籽粒建成及粒重的影响.黑龙江八一农垦大学学报,2001,13(2):19-24.
    96.王一,王长发,邹燕等.2009.豌豆冠层温度分异现象及其生理特性.西北农业学报,18(4):133-136.
    97.王镇恒,王广智主编.中国名茶志.北京:中国农业出版社,2001:431-452.
    98.王志琴,杨建昌,朱庆森.1996.土壤水分对水稻光合速率与物质转运的影响.中国水稻科学,10(4):235-240.
    99.吴学祝,蔡昆争,骆世明.2008.抽穗期土壤干旱对水稻根系和叶片生理特性的影响.植物生理科学,24(7):202-207.
    100.武志海,杨美英,吴春胜等.2001.玉米群体冠层内蒸腾速率与气孔导度的变化特性.吉林农业大学学报,23(4):18-20,24
    101.项艳,龚道枝,白清俊等.2009.冬小麦拔节期冠层温度与产量的关系研究.灌溉排水学报,28(1):45-64.
    102.徐俊增,彭世彰,丁加丽等.2006.控制灌溉.的水稻气孔限制值变化规律试验研究.水利学报,37(4):486-491.
    103.徐世昌,戴俊英,沈秀瑛,等.1995.水分胁迫对玉米光合性能及产量的影响.作物学报.21(3):356-363.
    104.徐银萍,宋尚有,樊廷录等.2007.旱地冬小麦灌浆期冠层温度与产量设水分利用效率的关系.麦类作物学报,27(3):528-532.
    105.徐正进,陈温福,张龙步等.1990.水稻不同穗型群体冠层光分布的比较研究.中国农业科学,23(4):10-16.
    106.杨联松,孙明,张培江等.1998.温度、光照对杂交中粳中优121稻米品质的影响.杂交水稻,13(6):23-28.
    107.杨晓青,张岁歧,梁宗锁,等.2004,水分胁迫对不同抗早类型冬小麦幼苗叶绿素荧光参数的影响.西北植物学报,24(5):812-816.
    108.杨勇,蒋德安,孙骏威,等.2005,不同供镁水平对水稻叶片叶绿素荧光特性和能量耗散的影响.植物营养和肥料学报,11(1):79-86.
    109.杨长明,杨林章,韦朝领,丁超尘.2006.不同品种水稻群体冠层光谱特性比较研究.应用生态学报,13(6):689-692.
    110.于沪宁.2000.农业生态系统的水热耗散过程与节水调控.地理科学进展,19(1):1-8.
    111.袁国富,罗毅,孙晓敏,等.2002,作物冠层表面温度诊断冬小麦水分胁迫的试验研究.农业工程学报,18(6):13-17.
    112.袁国富,唐登银,罗毅,等.2001,基于冠层温度的作物缺水研究进展.地球科学进展,16(1):49-54.
    113.翟虎渠,曹树青,唐运来,等.2002,籼型杂交水稻光合性状的配合力及遗传力分析.作物学报,28(2):154-160.
    114.张崇午,冯佰利,周春菊等.2000.冠层温度中间型小麦及其性状特征.麦类作物学报,20(3):40-45.
    115.张崇午,刘党校.2007.小麦冠层温度的多态性及其与品质变异的相关性.中国农业科学,40(8):1630-1637.
    116.张蒿午,周德益.1993.温度对稻米整精米率的影响.中国水稻学,7(4):211-216.
    117.张其得,卢从明,刘丽娜.1997.CO2倍增对不同基因型大豆光合色素含量和荧光诱导动力学参数的影响.植物学报.39(10):946-950.
    118.张秋英,李发东,高克昌,等.2005.水分胁迫对冬小麦光合特性及产量的影响.西北植物学报,25(6):1184-1190.
    119.张仁华.1991.土壤含水的热惯模型及其应用.科学通报,12:924-927.
    120.张守仁.1999,叶绿素荧光动力学参数的意义及讨论.植物学通报,16(4):444-448.
    121.张嵩午,王长发,冯佰利等.2002.冠层温度多态性小麦的性状特征.生态学报,22(9):1414-1419.
    122.张嵩午,张宾,冯佰利等.2006.不同基因型小麦与绿豆冠层冷温现象研究.中国生态农业学报,14(1):45-48.
    123.张嵩午.1997.小麦温型现象.应用生态学报,8(5):471-474.
    124.张维强,沈秀瑛.1994,水分胁迫和复水对玉米叶片光合速率的影响.华北农学报,9(3):44-47.
    125.张文忠,韩亚东,杜宏绢等.2007.水稻开花期冠层温度与土壤水分及产量结构的关系.中国水稻科学,21(1):99-102.
    126.张宪政主编.1990.作物生理研究法.农业出版社.
    127.张英普,何武权,韩健.1999,水分胁迫对玉米生理生态特性的影响.西北水资源与水工程,10(3):18-21.
    128.赵春江,黄文江,王之杰等.2002.不同水肥处理下冬小麦冠层含水率与温度关系的研究.农业工程学报,18(2):25-28.
    129.赵刚,樊廷录,李尚中等.2008.不同基因型冬小麦冠层温度与产量和水分利用效率的关系.核农学报,22(5):701-705.
    130.赵丽英,邓西平,山仑.2004.水分亏缺下作物补偿效应类型及机制研究概述.应用生态学报,15(3):523-526.
    131.赵天宏,沈秀瑛,杨德光,等.水分胁迫及复水对玉米叶片叶绿素含量和光合作用的影响.杂粮作物,2003,23(1):33-35.
    132.郑桂萍,李金峰,钱永德等.2006.土壤水分对水稻产量与品质的影响.作物学报,32(8):1261-1264.
    133.郑国华.2001.炭疽病侵染对枇杷叶片H202含量和叶绿素荧光参数的影响.福建农业大学学报,30(3):353-356.
    134.蒲光兰,周兰英,胡学华,等.2005.干旱胁迫对金太阳杏叶绿素荧光动力学参数的影响.干旱地区农业研究,23(3):44-48.
    135.张秋英,李发东,高克昌,等.2005.水分胁迫对冬小麦光合特性及产量的影响.西北植物学报,25(6):1184-1190
    136.王建程,严昌荣,卜玉山.2005.不同水分与养分水平对玉米叶绿素荧光特性的影响.中国农业气象,26(2):95-98.
    137.杨晓青,张岁歧,梁宗锁,等.2004.水分胁迫对不同抗旱类型冬小麦幼苗叶绿素荧光参数的影响.西 北植物学报,24(5):812-816.
    138.罗俊,张木清,林彦铨,等.2004.甘蔗苗期叶绿素荧光参数与抗旱性关系研究.中国农业科学,37(11):1718-1721.
    139.郑江平,王春乙.2006.低温、干旱并发对玉米苗期生理过程的影像.应用气象学报,17(1):119-123.
    140.周艳虹,黄黎锋,喻景权.2004.持续低温弱光对黄瓜叶片气体交换、叶绿素荧光猝灭和吸收光能分配的影响.植物生理与分子生物学学报,30(2):153-160.
    141.朱德峰,林贤青,曹卫星.2000超高产水稻品种的根系分布特点.南京农业大学学报,23(4):5-8.
    142.邹桂花,梅捍卫,余新桥等.2006.不同灌水量对水、旱稻营养生长和光合特性及其产量的影响.作物学报,32(8):1179-1183.
    143. Alchanatis, V,Cohen Y,Cohen S,et al.2010.Evaluationof different approaches for estimating and mapping crop water status in cotton with thermal imaging. Precision Agriculture.11:27-41.
    144. Alderfasi Ale Sbdullah, Nielsen David C.2001.Use of crop water stress index formonitoringwater status and scheduling irriga-tion in wheat. Agricultural Water Management.(47):69-75.
    145. Alderfasi, A.A., Nielsen, D.C.2001. Use of crop water stress index for monitoring water status and scheduling irrigations in wheat. Agricultural Water Management,47,69-75.
    146. Alves I, Pereira L S.2000. Modelling surface resistance fromclimate variables. Agricultural Water Management,42(4):371-385.
    147. Alves, I., Pereira, L.S.,2000.Non-water-stressed baselines for irrigation scheduling with infrared thermometers:a new approach. Irrigation Science.19,101-106
    148. Amani I,Fischer RA,Reynolds MP.1996.Canopy temperature depression association with yield of irrigated spring wheat cultivars in a hot climate. Agricluture Crop Science,17(6),119-129.
    149. Aroca R, Irigoyen J J, Sanchez-diaz M.2003,Drought enhances maize chilling tolerance II. Photosynthetic traits and protective mechanisms against oxidative stress. Physiologia plantarum, 117:540-549.
    150. Arora V K, Gajri P R.2000,Assessment of a crop growth-water balance model for predicting maize growth and yield in a subtropical environment. Agricultural Water Management,46:157-166.
    151. Bai L P, Sui F G, Ge T D, et al.2006,Effect of Soil Drought Stress on Leaf Water Status, Membrane Permeability and Enzymatic Antioxidant System of Maize. Pedosphere,16(3):326-332.
    152. Bai L P, Sui F G, Ge T D, et al.2006,Effect of soil drought stress on leaf water status, membrane permeability and enzymatic antioxidant system of maize. Pedosphere,16(3):326-332.
    153. Bailey WG, Davies JA.1981, Bulk stomatal resistance control on evaporation. Boundary-Layer Meteorol,20:401415.
    154. Bassetti P, Westgate ME.1993, Water deficit affects receptivity of maize silks. Crop Sci,33:279-282.
    155. Cabelguenne M, Debaeke P, Bouniols A.1999, EPICphase, a version of the EPIC model simulating the effects of water and nitrogen stress on biomass and yield, taking account of developmental stages: validation on maize, sunflower, sorghum, soybean and winter wheat. Agricultural Systems, 60:175-196.
    156. Campos H, Cooper M, Habben J E, et al.2004, Improving drought tolerance in maize:a view from industry. Field Crops Res,90:19-34.
    157. Conaflonieri,R.,Marinai,L.,Facchetti,M.,etc.2002.Analysis of temperature Porfiles in flooded rice
    158. Demmig-Adams,Adams III WW.1992,Photoprotection and other responses of plants to high light stress. Annual Review of PlantPhysiology and Plant Morecular Biology,43:599-626.
    159. Ding Guohua,Liu Xiaoliang,MA Dianrong et al,2013.Responses of weedy rice to drought stress at germination and seeding stages.Applied Mechanics and Materials.(316-317):451-459.
    160. Du,V.P.1995.Sheath blight dynamics as affected by changes in microclimate and nitrogen application in dieffrent rice plnat types.PhD dissertation of UPLB.Los Bnaos.
    161. Dwyer L M, Tollenaar M.1989,Genetic improvement in photosynthetic response of hybrid maize cultivars,1959 to 1988. Can J Plant Sci,69:81-91.
    162. Farrar T J, Nicholson S E, Lare A R.1994,The influence of soil type on the relationships between NDVI, rainfall and soil moisture in semiarid Botswana II:NDVI response to soil moisture. Remote Sensing Environ,50:121-133.
    163. Fracheboud Y,Haldimann P,Leipner J,et al.1999,Chlorophyll fluorescence as a selection tool for cold tolerance of photosynthesis in maize. Journal of Experimental Botany,50(338):1533-1540.
    164. Gambin B L, Lucas B L, Mara E O.2007,Kernel water relations and duration of grain filling in maize temperate hybrids. Field Crops Research,101:1-9.
    165. Gardner, B.R., Nielsen, D.C.,Shock, C.C.,1992.Infrared thermometry and the crop water stress index. I. History, theory, and baselines. Journal of Production Agriculture. a5,462-466.
    166. Goldhamer D A, Fereres E.2004, Irrigation scheduling of almond trees with trunk diameter sensors. Irrigation Sci,23:11-19.
    167. Gong Lebing, Xu Chongyu, Chen Deliang, et al.2006, Sensitivity of the Penman-Monteith reference evapotranspiration to key climatic variables in the Changjiang (Yangtze River) basin. Journal of Hydrology,329(4):620-629.
    168. Grant R E, Jackson B S, Kiniry J R.1989,Water deficit timing effects on yield components in maize. Argon,81:61-65.
    169. He J.1993,Effect of supplementary ultraviolet-B on rice and peaplants. Australia Journal of Plant Physiology,20(2):124-129.
    170. Hillel D, Rosenzweig C.2002,Desertification in relation to climate variability and change. Adv Agron, 77:1-38.
    171. Idso, S.B.,1982.Non-water-stressed baselines:a key to measuring and interpreting plant water stress. Agriculture Meteorology.27,59-70.
    172. Jackson R D.1982,Canopy temperature and crop water stress. In:Hillel D ed. Advances in Irrigation. Academic Press, New York,1:43-85.
    173. Jackson, R.D., Kustas, W.P., Choudhury, B.J.,1988.A reexamination of the crop water stress index. Irrigation Science.9,309-317
    174. Jarvis PG. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field.
    175. Ji L, Peters A J.2003,Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices.Remote Sensing Environ,87:85-98.
    176. Jones J W, Zur B, Bennett J M.1986, Interactive effects of water and nitrogen stresses on carbon and water vapor exchange of corn canopies. Agric For Meteorol,38:113-126.
    177. Katerji N, Rana G.2006, Modelling evapotranspiration of six irrigated crops under Mediterranean climate conditions. Agricultural and Forest Meteorology,138(2):142-155.
    178. Kogan F N.2001, Operational space technology for global vegetation assessment. Remote Sensing Environ,82:1949-1964.
    179. Kozlowski T T, Winget C H.1964,Diumal and seasonal variation in radio of tree stems. Ecology, 45:149-155.
    180. Krause GH,Wei E.1991, Chlorophyll fluorescence and photosysthesis:The basis. Ann Rev Plant Physiol Plant Mol Biol,42:313-349.
    181. Kuchenbuch R O, Keith T I, Uwe B.2006, Effects of decreasing soil water content on seminal and lateral roots of young maize plants. J Plant Nutr Soil Sci,169:841-848.
    182. Lecina S, Martinez-cob A, Perez P J.2003. Fixed versus variable bulk canopy resistance for reference evapotranspiration estimation using the Penman-Monteith equation under semiarid conditions. Agricultural Water Management,60(3):181-198.
    183. Li X,Jiao DM,Liu YL,et al.2002. Chlorophyll fluorescence and membrane lipid peroxidation in the flag leaves of different high yield rice variety at late stage of development under national condition. Acta Botanica Sinica,44(4):413-421.
    184. Luquet, D., Vidal, A., Dauzat, J., Begue, A., Olioso, A., Clouvel, P.2004.Using directional TIR measurements and 3D simulations to assess the limitations and opportunities of water stress indices. Remote Sensing of Environment,90(1):53-62.
    185. Mahan, J.R., Burke, J.J., Wanjura, D.F., Upchurch, D.R.2005. Determination of temperature and time thresholds for BIOTIC irrigation of peanut on the southern high plains of Texas. Irrigation Science, 23(4):145-152.
    186. Malek E, Bingham GE, McCurdy GD.1992.Continuous measurement of aerodynamic and alfalfa canopy resistances using the Bowen ratio-energy balance and Penman-Monteith methods. Boundary-Layer Meteorol,59:187 194.
    187. Maxwell K,Johnson GN.2000.Chlorophyll fluorescence-a practical guide. Journal of Experimental Botany,51(345):659-668.
    188. Mc Vicar T R., Jupp D L B. The current and potential operational uses of remote sensing to aid decisions on drought exceptional circumstances in Australia:a review. Agric Syst,1998,57:399-468.
    189. Mihailovic N, Jelic G, Filipovic R, et al.1992.Effect of nitrogen form on maize response to drought stress. Plant and Soil,144:191-197.
    190. Moller M,Alchanatis V,Cohen Y,et al.2007.Use of ther-mal and visible imagery for estimating crop water status of irrigated grapevine. Journal of Experimental Botany,58(4):827-838.
    191. Moran, M.S.,Clarke, T.R., Inoue, Y., Vidal, A.,1994. Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sensing of Environment.49 2-6-263.
    192. Mingchao Gao,Wenzhong Zhang,Chen Yao et al,2013. A Theoretical Model Research of Rice Water Stress Index bases on Automated Infrared Thermal Imaging. Advanced Materials Research.Vols. (712-715).433-438.
    193. Moser S B, Boy F, Sansern J, et al.2006.Effects of pre-anthesis drought,nitrogen fertilizer rate, and variety on grain yield, yield components, and harvest index of tropical maize. Agricultural Water Management,81:41-58.
    194. Naidu C V, Swamy P M.1995. Seasonal pattern of photosynthetic rate and its relationship with chlorophyll content, ribulose-1,5-bisphosphate carboxylase activity and biomass production. Biologia Plantarum,37(3):349-354.
    195. Nielsen D C, Vigil M F, Benjamin J G 2009.The variable response of dry land corn yield to soil water content at planting. Agricultural water management,96:330-336.
    196. Nielsen,D.C.,1990. Scheduling irrigations for soybeans with the Crop Water Stress Index (CWSI). Field Crops Research.23,103-116.
    197. Nouna B B, Katerji N, Mastrorilli M.2003. Using the CERES-Maize model in a semi-arid Mediterranean environment. New modeling of leaf area and water stress functions. Europ J Agronomy, 19:115-123.
    198. Orta, A.H., Baser, I., Sehirali, S., Erdem, T., Erdem, Y.2004. Use of infrared thermometry for developing baseline equations and scheduling irrigation in wheat.Cereal Research Communications, 32(3):363-370.
    199. Orta,A.H.,Erdem,Y.Erdem,T,2003.Crop water stress index for watermelon. Scientia Horticulturae. 98,121-130.
    200. Otegui M E, Andrade F H, Suero E E.1995. Growth, water use, and kernel abortion of maize subjected to drought at silking. Field Crops Research,40:87-94.
    201. Parry M L, Canziani O F, Palutikof J P, et al. IPCC, Summary for Policymakers. In:Climate Change 2007:Impacts, Adaptation and Vulnerability [M]. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK,2007:7-22.
    202. Peters A J, Rundquist D C, Wilhite D A.1991,Satellite detection of the geographic core of the 1988 Nebraska drought. Agric Forest Meteorol,57:35-47.
    203. Philosophical Transactions of the Royal Society of London, Series B:Biological Sciences,1976,273: 596610.
    204. Poshtmasari H K, Pirdashti H, et al. Chlorophyll Content and Biological Yield of Modern and Old Rice cultivars in different urea fertilizer rates and applications. Asian Journal of Plant Sciences,2007, 6(1):117-180.
    205. Qiu, G.Y., Miyamoto, K., Sase, S., Okushima, L.,2000. Detection of crop transpiration and water stress by temperature-related approach under field and greenhouse conditions. Japan Agricultural Research Quarterly 34,29-37.
    206. Raes D, Geerts S, Kipkorir E, et al.2006.Simulation of yield decline as a result of water stress with a robust soil water balance model. Agricultural Water Management,81:335-357.
    207. Rana G, Katerji N, Perniola M.2000.Evapotranspiration of Sweet Sorghum:A general model and multilocal validity in semiarid environmental conditions. Water Resources Research,37(12): 3237-3240.
    208. Rashid A, Stark JC, Tanveer A, et al.1999.Use of canopy temperature measurements as a screening tool for drought tolerance in spring wheat. Journal of Agronomy and Crop Science,18(2):231-237.
    209. Recep C.2004.Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field crop research,89:1-16.
    210. Reynolds MP, Balota M, Delgado MB, et al.1994.Physiological and morphological traits associated with spring wheat yield under hot irrigated conditions. Australian Journal of Plant Physiology,21: 717-730.
    211. Schussler J R,1991.Westgate M E. Maize kernel set at low water potential:I. Sensitivity to reduced assimilates during early kernel growth. Crop Sci,31:1189-1195.
    212. Sepheri A,Modarres Sanavy SAM.2003. Water and nitrogen stress on maize photosynthesis. Journal of Biological Sciences,3(6):578-584.
    213. Sergi M B, Lenonor A.2003. Drought-induced changes in the redox state of alpha-tocopherol, ascorbate and the diterpene carnosic acid in chloroplasts of labiatae species differing in carnosic acid contents. Plant physiol,131:1816-1825.
    214. Silva,B.B.D.,Rao,T.V.R.,2005.The CWSI variations of a cotton crop in a semi-arid region of Northeast Brazil. Journal of Arid Environments.62,649-659.
    215. Smith RCG, Barra HD, Meyer WS.1989.Evaporation from irrigated wheat estimated using radiative surface temperature:an operational approach.Agricultural and Forest Meteorology,48:331-344.
    216. Smith RCG, Barra HD, Meyer WS.1989.Evaporation from irrigated wheat estimated using radiative surface temperature:an operational approach. Agric and Forest Meteorol,48:331344.
    217. Stewart J B.1988.Modling surface conductance of pine forest. Agricultural and Forest Meteorology, 43(1):19-35.
    218. Stone P J, Wilson D R, Reid J B,et al.2001.Water deficit effects on sweet corn:I. Water use, radiation use efficiency,growth, and yield. Aust J Agric Res,52:103-113.
    219. Susan A. O'Shaughnessy., Steven R. Evett, Paul D. Colaizzi, Terry A.2012. Howell A crop water stress index and time threshold for automatic irrigation scheduling of grain sorghum. Agricultural Water Management.107,122-132
    220. Tanner C.B.1963.Plant temperature.Agron.55(2):10-11.
    221. Thom AS, Oliver HR.1977.0n Penman's equation for estimating regional evaporation. Quarterly Journal of Royal Meteorology Society,103:345-357.
    222. Thom AS, Oliver HR.1977.0n Penman's equation for estimating regional evaporation. Quarterly Journal of Royal Meteorology Society,103:345 357.
    223. Toshiyuki Takai,Masahiro Yano,Toshio Yamamoto.2010.Canopy temperature on clear and cloudy days can be used to estimate varietal differences in stomatal conductance in rice.Field Crops Research,11(5), 165-170.
    224. Valentijn R, Pauwels N, Roeland S.2006. Comparison of different methods to measure and model actual evapotranspiration rates for a wet sloping grassland. Agricultural Water Management,82(1): 1-24.
    225. Van Kooten O,Snel JFH.1990.The use of chorophyll fluorescence momenclature in plant stress physiology. PhotosynthesisResearch,25:147-150.
    226. Vicente-serrano S M.2007.Evaluating the impact of drought using remote sensing in a Mediterranean, semi-arid region. Natural Hazards,40:173-208.
    227. Watson R T. The Core Writing Team (Eds.), IPCC, Summary for Policymakers. In:Climate Change 2001:Synthesis Report[M].IPCC. Geneva, Switzerland,2001:1-34.
    228. Westgate M E.1994. Water status and development of the maize endosperm and embryo during drought. Crop Sci,34:76-83.
    229. Wolfe D W, Henderson D W, Hsiao T C, et al.1988, Interactive water and nitrogen effects on senescence of maize:I. leaf area duration,nitrogen distribution and yield. Agron J,80:859-864.
    230. Xianshi G, Sinclair T R, Ray J D.1998.Effect of drought history on recovery of transpiration, photosynthesis, and leaf area development in maize. Soil Crop Sci Soc Fla Proc,57:83-87.
    231. Yazar, A., Howell, T.A., Dusek, D.A., Copeland, K.S.,1999. Evaluation of crop water stress index for LEPA irrigated corn. Irrigation Science.18,171-180.
    232. Yoo Y.K.Yun I.J.2001.Using synoptic data to predict air temperature within rice Canopies across geographic area.Korean J.agricultural and forest meterology.3(4):199-205.
    233. Zhang L X, Li S X, Zhang H, et al.2007, Nitrogen Rates and Water Stress Effects on Production, Lipid Peroxidation and Antioxidative Enzyme Activities in Two Maize (Zea mays L.) Genotypes.Agronomy & Crop Science,193:387-397.
    234. Zinselmeier C, Westgate M E, Jeffrey R, et al.1995,Low water potential disrupts carbobydrates metabolism in maize (Zea mays L.)ovaries. Plant Phsiol,107:385-391.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700