用户名: 密码: 验证码:
河西绿洲农业区不同水氮条件对酿酒葡萄水分利用的影响及水碳耦合模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石羊河流域是甘肃省河西走廊三大内陆河流域之一,该流域有限的水资源承载了过多的人口与经济活动,造成了水资源的严重匮乏。酿酒葡萄种植产业是石羊河流域乃至整个河西走廊地区重点发展产业。作为典型的内陆干旱地区,水资源匮乏、土壤盐碱化等环境条件与当地不合理的灌溉、施肥管理制度之间的矛盾严重制约了当地酿酒葡萄产业的健康发展。
     本文以当地酿酒葡萄“梅鹿辄”为研究对象,通过利用热平衡原理的茎流计对不同水氮条件下的酿酒葡萄在2010-2012年间进行了连续三年的茎流观测,并通过对葡萄植株叶片生长、生理,果实性状及产量和耗水的监测与测量,研究荒漠绿洲区不同水氮条件下酿酒葡萄耗水机制、生理特征及干物质积累规律,在此基础上,对不同氮素条件下的水碳耦合模拟进行了深入研究和探索。具体的研究结果如下:
     (1)酿酒葡萄植株对不同水分、氮素条件表现出不同的响应特征。施氮量的增加会促进植株叶面积的生长和叶绿素含量的升高,但会降低作物根系的生长量,而一定程度上的水分亏缺会导致葡萄的细根向深层方向增长;在传统灌溉方式下,一定程度上施氮量的增加会提高作物的产量,并降低作物耗水,但同时会有限降低酿酒葡萄可溶性固形物含量;水分亏缺会在降低作物产量的同时提高浆果可溶性固形物含量,而小管出流灌溉会在一定范围内提高高氮条件下的可溶性固形物含量。
     (2)酿酒葡萄液流在生育初期与叶面积呈很强的线性关系,而在中后期,各环境因子成为影响液流的主要因素。通过区分晴天(日照百分率>60%)和阴天(日照百分率<60%)后发现,在生育中后期,葡萄植株液流对净辐射、大气温湿度和土壤水分在不同天气下的响应形式存在显著差异:阴天液流与辐射和大气温湿度的相关性明显高于晴天,而液流与土壤水分的相关性则明显低于晴天;不同天气条件下影响液流的主要气象因子亦有所不同:晴天主要为净辐射,阴天则主要为空气相对湿度。
     (3)在全生育期内,酿酒葡萄茎液流量的日变化都表现出明显的呈单峰或双峰曲线而变化的规律;酿酒葡萄生育期内的日茎液流量呈现明显的季节变化特征,生育前期和后期液流较低,中期液流较高。适量的提高施氮量会提高茎液流速率,而当年总施氮量达到260kg/ha以上时,土壤氮素过多导致的土壤基质势降低会降低酿酒葡萄的茎液流速率,如2011年,全生育期高(HN)、中(MN)、低氮(LN)的单位茎干截面积累加量分别为:20.30L/cm~2、30.94L/cm~2和34.70L/cm~2,中氮和低氮处理的液流量累加值分别是高氮的1.52倍和1.71倍。
     (4)土壤水分亏缺会导致叶片光合速率的降低,但适度水分亏缺会提高酿酒葡萄的叶片水分利用效率。在果实生长前期,高氮条件下水分亏缺会有限降低光合速率,但叶片水分利用效率提高1.7%,而在果实生长中后期,土壤含水量在55%θf条件下光合速率不仅略有提升,且水分利用效率达到1.70μmol·CO2·(mmol·H2O)-1,高于其他各处理。通过光合、气孔导度、蒸腾速率以及叶片水分利用效率对光强响应曲线的研究可以看出,氮素通过控制气孔的开度,调节蒸腾速率,并在改善植株生理特性的基础上提高植株的最大净光合速率、表观量子效率等光合指标,从而达到提高叶片水分利用效率的目的。
     (5)通过对西北旱区不同氮素条件下的酿酒葡萄采用MAESTRA模型模拟蒸腾速率和净同化速率后发现,对不同氮素条件下的酿酒葡萄参数化后会得到不同的模型参数,氮素的提升改变了植株的叶面积、光合行为及气孔行为,因此,本文在对不同氮素条件下酿酒葡萄的模型模拟过程中,考虑了氮素对模型生理参数和物理参数两方面的影响,且在酿酒葡萄全生育期内不同的时间采用不同的生理参数可以提高模型精度。从模拟结果可以看出,不同氮素条件下的全生育期净光合速率在初期并无太大差别,从7月开始,由于氮素对植物生理指标和物理指标的影响, HN净光合速率逐渐高于其它处理,直至生育期末,施氮量的不同也影响了植株干物质量的积累。
Shiyang River Basin is one of three continental river basins in the Hexi Corridor in Gansuprovince in China, the limited water resources in the basin carries too much population andeconomic activity, and resulting in a serious shortage of water resources. Wine grape industryis a key industry of the Shiyang River Basin and the whole region of the Hexi Corridor. As atypical inland arid region, the contradiction between water scarcity, soil salinization andunreasonable irrigation, fertilization management had seriously hampered the healthydevelopment of the grape industry.
     This study use wine grapes Merlot as the research object. Wine grapes sap flow wasobserved in2010-2012under the different water and nitrogen conditions, and thought themeasured of leaf area, berry diameter, chlorophyll content, soluble solid, yield and leafphysical signs, we studied wine grape transpiration mechanism, physiological feature andregularity of dry matter accumulation under different moisture, nitrogen condition in desertoasis. And base on it, we studied water-carbon model under different nitrogen condition. Thespecific research results are as follows:
     Wine grapes on different moisture and nitrogen conditions showed different responsecharacteristics, the increased amount of nitrogen will promote the growth of the plant leaf areaand chlorophyll content, but it will reduce the crop root growth. And limited moisture deficitwill make grape fine root growth to the soil depth direction; under the traditional irrigationmethod, nitrogen can increase the yield of vine grape, and decrease water consumption, butnitrogen will reduce soluble solid content of wine grape. water deficit could decrease the yieldof wine grape, meanwhile it can also increase soluble solid content of grape berry, on the otherhand, small tube flow irrigation can increase the soluble solid content under high nitrogensupply.
     Vinetree sap flow was mainly controlled by the leaf area indexat initial growth stage,while by radiation, air temperature and humidity and soil moisture at the mid and latergrowthstage. But the response patterns of vine-tree sap flow to these environmental factors werenotably differentunder different weather conditions. The agreement between sap flow and such meteorological factors, such asradiation, air temperature and humidity in the cloudy days wassignificantly higher than that in the clear days, while the agreement between sap flow and soilmoisture in cloudy days was notably lower than that clear days. Inaddition, the sap flow waspredominantly affected by radiation in clear days, while by air humidity in the cloudydays.
     At the whole growing season, diurnal variations of vine grape sap flow all shows assignificant unimodal or bimodal curves. The daily sap flow values of the vine grape showedobvious seasonal variations in the whole growth season. There are lower sap flow velocityatearlier and latter stages of growth season, and higher sap flow velocity at the middle stage.Enhance nitrogen supply appropriatecan increase sap flow velocity, but Excessive nitrogenapplication can result salt stresson plants and reduce the sap flow velocity of vine grape. Forinstance, in2011, the unit cross-sectional area stems sap flow accumulation of highnitrogen(HN), middle nitrogen(MN) and low nitrogen(LN) supply are20.30,30.94and34.70L/cm~2, respectively, and the values of middle nitrogen(MN) and low nitrogen(LN)supply are1.52and1.71times of high nitrogen.
     Soil moisture deficit will lead to the reduction of photosynthetic rate, but moderate waterdeficit will improve leaf water use efficiency of wine grape. In the fruit growth stage, waterdeficit reduced under high nitrogen condition limitedly the photosynthetic rate, but water useefficiency increased by1.7%, while in fruit growth medium stage, photosynthetic rate was notonly a slight increase with the soil moisture content at55%θf, but water use efficiency reachedat1.70μmol·CO2·(mmol·H2O)-1, higher than the other treatments. Based on the photosynthesisrate, stomatal conductance, transpiration rate and leaf water use efficiency of the curve ofresponse to light intensity can be seen, the nitrogen regulated transpiration rate by controllingthe degree of stomatal opening, and improved the physiological characteristics of plants toincrease the plant maximum net photosynthetic rate, apparent quantum efficiency and otherphotosynthetic indicators, so as to achieve the purpose to improve water use efficiency.
     MAESTRA model simulated transpiration rate and net assimilation rate of wine grapes inthe North west Arid Area of different nitrogen conditions then found that it would get differentmodel parameters of the wine grape parameterized under different nitrogen conditions, and theenhanced nitrogen changed the plant leaf area, photosynthetic and stomatal behavior. In thesimulation process of the model, considering the impact of nitrogen on the model couldimprove the accuracy of the model; using different physiological parameters during the wholegrowth period of the wine grape different times could also improve the model accuracy. Thenet photosynthetic rate of the whole growth period under different nitrogen conditions was notmuch difference at a nearly stage, while because of the impact of nitrogen on plantphysiological indicators and physical indicators, the net photosynthetic rate of HN was gradually higher than other treatments until the end of the growth period. Increasing nitrogensupply also affected the amount dry weight accumulation.
引文
安慧,上官周平.2009.光照强度和氮水平对白三叶幼苗生长与光合生理特性的影响.生态学报,(11):6017~6024
    鲍巨松,杨成书,薛吉全,郝引川.1991.不同生育时期水分胁迫对玉米生理特性的影响.作物学报,(4):21~26
    宝哲,吴文勇,刘洪禄,郝仲勇,牛勇.2012.设施滴灌条件下甜瓜茎流变化及其对环境因子的响应.中国农学通报,28(28):140~147
    曹翠玲,李生秀,苗芳.1998.氮素对植物某些生理生化过程影响的研究进展.两北农业大学学报,27(4):96~101
    陈锦强,李明启.1983.不同氮素营养对黄麻叶片的光合作用、光呼吸的影响及光呼吸与硝酸还原的关系.植物生理学报,(3):251~259
    陈琳,曾杰,徐大平,赵志刚,郭俊杰,林开勤,沙二.2010.氮素营养对西南桦幼苗生长及叶片养分状况的影响.林业科学,46(5):35~40
    樊金拴,陈原国,李凯荣,马创奇.2006.土壤水分状况对核桃生长和发育的影响.林业科学,(12):39~46
    范志强,王政权,吴楚,李红心.2004.不同供氮水平对水曲柳苗木生物量、氮分配及其季节变化的影响.应用生态学报,15(9):1497~1501
    房全孝,陈雨海,李全起,于舜章,罗毅,于强,欧阳竹.2006.土壤水分对冬小麦生长后期光能利用及水分利用效率的影响.作物学报,32(6):861~866
    冯嘉玥,邹志荣,陈修斌.2005.土壤水分对温室春黄瓜苗期生长与生理特性的影响.西北植物学报,(6):1242~1245
    高方胜,徐坤,徐立功,尚庆文.2005.土壤水分对番茄生长发育及产量品质的影响.西北农业学报,(4):69~72
    高阳,段爱旺,邱新强,张俊鹏,孙景生,王和洲.2010.应用热平衡法测定玉米/大豆间作群体内作物的蒸腾量.应用生态学报,21(5):1283~1288
    龚道枝,王金平,康绍忠,胡笑涛,张富仓,李志军.2001.不同水分状况下桃树根茎液流变化规律研究.农业工程学报,17(4):34~38
    关义新,林葆,凌碧莹.2000.光氮互作对玉米叶片光合色素及其荧光特性与能量转换的影响.植物营养与肥料学报,6(2):152~158
    郭安红,魏虹,李凤民,赵松岭.1999.土壤水分亏缺对春小麦根系干物质累积和分配的影响.生态学报,(2):37~42
    郭春芳,孙云,张木清.2008.土壤水分胁迫对茶树光合作用~光响应特性的影响.中国生态农业学报,16(6):1413~1418
    郭盛磊,阎秀峰,白冰,于爽.2005.供氮水平对落叶松幼苗光合作用的影响.生态学报,(6):1291~1298
    韩晓增,乔云发,张秋英,王守宇,宋春雨.2003.不同土壤水分条件对大豆产量的影响.大豆科学,(4):269~272
    胡雅杰,闫业庆,张旭昇,魏国孝.2010.应用热平衡法对黄土高原玉米茎流变化规律的研究.安徽农业科学,38(22):11893~11894,12258
    焦娟玉,尹春英,陈珂.2011.土壤水、氮供应对麻疯树幼苗光合特性的影响.植物生态学报,35(1):91~99
    金红喜,刘左军,王继和,徐先英,唐进年,张盹明.2004.热平衡茎流计在荒漠灌木植物耗水研究中的应用.防护林科技,6:9~13
    景茂,曹福亮,汪贵斌,潘静霞.2005.土壤水分含量对银杏生长及生物量分配的影响.南京林业大学学报(自然科学版),(3):5~8
    康才周,赵明,朱淑婕,谢全仁.2007.土壤水分胁迫下四翅滨藜的生长及生物量分配特性.安徽农业科学,(29):9162~9165,9167
    康绍忠.2007.农业水土工程概论.北京:中国农业出版社.
    康绍忠.2009.西北旱区流域尺度水资源转化规律及其节水调控模式——以甘肃石羊河流域为例.北京:中国水力水电出版社.
    孔东,晏云,段艳,陆文红,徐海洋.2008.不同水氮处理对冬小麦生长及产量影响的田间试验.农业工程学报,24(12):36~40
    劳秀荣.2002.果树施肥手册.北京:中国农业出版社:165~153
    雷廷武,肖娟,王建平,刘志忠.2003.微咸水滴灌对盐碱地西瓜产量品质及土壤盐渍度的影响.水利学报(4):85~89.
    李德军,莫江明,方运霆,蔡锡安,薛璟花,徐国良.2004.模拟氮沉降对三种南亚热带树苗生长和光合作用的影响.生态学报,24(5):876~882
    李付国,孟月华,贾小红,陈清,许雪峰,韩振海.2006.供氮水平对“八月脆”桃产量、品质和叶片养分含量的影响.植物营养与肥料学报,(6):918~921
    李会,刘钰,蔡甲冰,毛晓敏.2011.夏玉米茎流速率和茎直径变化规律及其影响因素.农业工程学报,27(10):187~191
    李洁,朱清科,郭小平.2007.不同土壤水分对幼龄梨树生理特性及生物量的影响.水土保持通报,(2):79~82
    栗娜娜,郭世荣,李娟,李军.2007.氮素营养对青花菜叶片光合特性的影响.内蒙古农业大学学报(自然科学版),28(3):140~144
    李生秀,李世清,高亚军,王喜庆,贺海香,杜建军.1994.施用氮肥对提高旱地作物利用土壤水分的作用机理和效果.干旱地区农业研究,12(1):38~46
    李生秀.1996.澄城低肥力田块葡萄的水肥耦合效应.见:汪德水(主编).旱地农田肥水关系原理与调控技术.北京:中国农业科技出版社:221~223
    李思恩,康绍忠,朱治林,杜太生,佟玲,李伏生.2008.应用涡度相关技术监测地表蒸发蒸腾量的研究进展.中国农业科学,41(9):2120~2726
    李天来,李淼.2009.短期昼间亚高温胁迫对番茄光合作用的影响.农业工程学报,25(9):220~225
    李天来,颜阿丹,罗新兰,仇家奇,李东,姚振坤.2010.日光温室番茄单叶净光合速率模型的温度修正.农业工程学报,26(9):274~279
    李文华,吴万兴,张忠良,鲁周民.2003.土壤水分对仁用杏水分和生长特征的影响.西北农林科技大学学报(自然科学版),(4):139~144
    李银坤,武雪萍,吴会军,武其甫,张彦才,李若楠,王丽英.2010.水氮条件对温室黄瓜光合日变化及产量的影响.农业工程学报,26(增刊1):122~129
    梁银丽,陈培元.1994.土壤水分和磷营养对小麦根系生长生理特性的影响.西北植物学报,(5):56~60
    梁银丽,张富仓,马清林,胡笑涛,康绍忠.1999.土壤水分和CO2浓度增加对小麦、玉米、棉花蒸散、光合及生长的影响.作物学报,(1):55~63
    廖嘉玲.1989.水分和氮素的互作对玉米衰老的影响Ⅰ.绿叶持续期、氮素分配和产量.国外农学~杂粮作物,(5):15~20
    刘安,刘旭,黄岚,文星,师玉玲,王忠义,王成,侯瑞锋.2010.基于热平衡法检测植物茎流传感器标定实验的研究.中国农业工程学会电气信息与自动化专委会、中国电机工程学会农村电气化分会科技与教育专委会2010年学术年会论文摘要:1~7
    刘安,刘旭,黄岚,文星,师玉玲,王忠义,王成,侯瑞锋.2010.基于热平衡法检测植物茎流传感器的标定.农业工程学报,26(S2):6~10
    刘安花,李英年,张法伟,薛晓娟.2008.高寒矮嵩草草甸植物生长季土壤水分动态变化规律.干旱区资源与环境,(10):125~130
    刘大会,郭兰萍,黄璐琦,金航,吴丽华,曾燕,张霁,杨雁.2011.土壤水分含量对丹参幼苗生长及有效成分的影响.中国中药杂志,(3):321~325
    刘浩,孙景生,段爱旺,刘祖贵,梁媛媛.2010.温室滴灌条件下番茄植株茎流变化规律试验.农业工程学报,26(10):77~82
    刘可群,陈正洪,夏智宏.2007.湖北省太阳能资源时空分布特征及区划研究.华中农业大学学报,26(6):888~893
    罗中岭,张建生.1996.小麦液流及蒸腾速率测定方法初探.中国农业气象,17(001):44~47
    马福生,康绍忠,胡笑涛,王密侠,李志军,龚道枝,申孝军.2006.不同阶段亏水处理对温室栽培梨枣树茎液流变化影响的研究.农业工程学报,22(4):6~14
    马玲,赵平,饶兴权,蔡锡安,曾小平.2005.乔木蒸腾作用的主要测定方法.生态学杂志,24(1):88~96
    马顺龙.2011-08-22.武威做大做强酿酒葡萄产业.甘肃日报,1
    梅婷婷,赵平,王权,蔡锡安,余孟好,朱丽薇,邹绿柳,曾小平.2010.基于液流格型特征值和标准化方法分析胸径和土壤水分对荷木液流的影响.应用生态学报,21(10):2457~2464
    裴步祥,安顺清.1985.冬小麦农田水分与产量关系试验的初步结果.科学通报,(20):1599~1600
    申卫军,彭少麟.2000.热脉冲(Heat pluse)法原理及其应用.资源生态环境网络研究动态.11(2):22~27
    苏君伟,王慧新,吴占鹏,蔡立夫,汪仁,王海新,陈尔冉,陆岩.2012.辽西半干旱区膜下滴灌条件下对花生田土壤微生物量碳、产量及WUE的影响.花生学报,(4):37~41
    孙慧珍,周晓峰,赵惠勋.2002.白桦树干液流的动态研究.生态学报,22(9):1387~1391
    孙慧珍,周晓峰,康绍忠.2004.应用热技术研究树干液流进展.应用生态学报,15(6):1074~1078
    孙景生,熊运章,康绍忠.1993.农田蒸发蒸腾的研究方法与进展.灌溉排水,13(4):36~38
    孙鹏森,马履一.2002.水源保护树种耗水特性研究与应用.北京:中国科技文献出版社.
    孙志虎,王庆成.2004.土壤含水量对三种阔叶树苗气体交换及生物量分配的影响.应用与环境生物学报,(1):7~11
    唐元,王锦栋,肖俊彦.2009-11-16.关于加快甘肃河西走廊地区葡萄产业规模化发展的建议.甘肃日报,6
    王安志,裴铁璠.2001.森林蒸发蒸腾测算方法研究进展与展望.应用生态学报,12(6):933~937
    王锋,康绍忠,王振昌.2007.甘肃民勤荒漠绿洲区调亏灌溉对西瓜水分利用效率、产量与品质的影响.干旱地区农业研究,25(4):123~129
    王冀川,徐翠莲,韩秀锋,高山,徐雅丽.2011.不同土壤水分对滴灌春小麦生长、产量及水分利用效率的影响.农业现代化研究,(1):115~119
    王锐.2010.芹菜生长发育对UV~B辐射增强与土壤水分胁迫的响应.[硕士学位论文].兰州:甘肃农业大学.
    汪恕诚.2006.转变用水观念创新发展模式.中国水利.(6):12~14
    王文全,寇纪烈,张振江.1993.毛白杨光合作用与土壤水分间关系的研究.河北林学院学报,(3):185~189
    尉秋实,赵明,李昌龙,李爱德.2006.不同土壤水分胁迫下沙漠葳的生长及生物量的分配特征.生态学杂志,(1):7~12
    吴楚,王政权,范志强,孙海龙.2004.氮胁迫对水曲柳幼苗养分吸收、利用和生物量分配的影响.应用生态学报,15(11):2034~2038
    武维华.2008.植物生理学(第二版).北京:科学出版社.
    徐俊增,彭世彰,魏征,侯会静.2012.不同供氮水平及水分调控条件下水稻光合作用光响应特征.农业工程学报,28(2):72~76
    薛青武,陈培元.1990.土壤干旱条件下氮素营养对小麦水分状况和光合作用的影响.植物生理学报,(1):49~56
    杨建伟,梁宗锁,韩蕊莲.2004.不同土壤水分状况对刺槐的生长及水分利用特征的影响.林业科学,(5):93~98
    杨素苗,李保国,齐国辉,郭素萍,胡志伟.2010.根系分区交替灌溉对苹果根系活力、树干液流和果实的影响.农业工程学报,26(8):73~79
    杨文新,何新林,杨广,李俊峰,杜玉娇.2012.荒漠区柽柳液流特征及其与环境因子的关系研究.节水灌溉,(12):26~29,36
    尹丽,胡庭兴,刘永安,谢财永,冯毅,颜震,李银华,王永杰.2011.施氮量对麻疯树幼苗生长及叶片光合特性的影响.生态学报,(17):4977~4984
    于贵瑞,伏玉玲,孙晓敏,温学发,张雷明.2006.中国陆地生态系统通量观测研究网络(ChinaFLUX)的研究进展及其发展思路.中国科学(D辑:地球科学),36(A01):1~21
    于强,王天铎.1998.光合作用~蒸腾作用~气孔导度的耦合模型及C3植物叶片对环境因子的生理响应.植物学报(英文版),40(8):740~754
    岳广阳,赵哈林,张铜会,云建英,牛丽,何玉惠.2007.不同天气条件下小叶锦鸡儿茎流及耗水特性.应用生态学报,18(10):2173~2178
    曾希柏,谢德体,青长乐,侯光炯.1997.氮肥施用量对莴笋光合特性影响的研究.植物营养与肥料学报,3(4):323~327
    张大鹏.1989.葡萄植物木质部液流流量的简化热量平衡测定法.园艺学报,(1):23~28
    张大鹏,罗国光.1992.不同时期水分胁迫对葡萄果实生长发育的影响.园艺学报,(4):296~300
    张殿忠,汪沛宏.1988.水分胁迫与植物氮代谢的关系~水分胁迫时氮素对小麦叶片氮代谢的影响.西北农业大学学报,16(4):15~21
    张刚华,陈步峰,聂洁珠,林明献.2007.热带山地雨林尖峰栲边材液流及其与环境因子的关系.应用生态学报,18(4):742~748
    张和喜,迟道才,刘作新,尹光华,刘伟群.2006.作物需水耗水规律的研究进展.现代农业科技,(3):52~54
    张寄阳,段爱旺,孙景生,孟兆江,刘祖贵.2006.作物水分状况自动监测与诊断的研究进展.农业工程学报,22(1):174~178
    张利刚,曾凡江,刘镇,刘波,安桂香,袁娜.2013.极端干旱区3种植物液流特征及其对环境因子的响应.干旱区研究,(1):115~121
    张岁岐,山仑,薛青武.2000.氮磷营养对小麦水分关系的影响.植物营养与肥料学报,(2):147~151,165
    张文丽,张彤,吴冬秀,张岁岐,山仑.2006.土壤逐渐干旱下玉米幼苗光合速率与蒸腾速率变化的研究.中国生态农业学报,(2):72~75
    张西平,赵胜利,张旭东,刘宏权,杜光乾,蔡焕杰.2007.不同灌水处理对温室黄瓜形态及光合作用指标的影响.中国农学通报,23(6):622~625
    张宪法,于贤昌,张振贤.2002.土壤水分对温室黄瓜结果期生长与生理特性的影响.园艺学报,(4):343~347
    张小由,康尔泗,张智慧,周茂先,司建华.2006.沙枣树干液流的动态研究.中国沙漠,26(1):146~151
    张永忠,李宝庆.1991.用水量平衡法计算农田实际蒸发量.见:左大康,谢贤群.农田蒸发研究.北京:气象出版社,15~28
    张志山,李新荣,张景光,王新平,赵金龙,陈应武.用Minirhizotrons观测柠条根系生长动态.植物生态学报,2006,30(3):457~464
    张志山,张小由,谭会娟,何明珠,郑敬刚,李新荣.2007.热平衡技术与气孔计法测定沙生植物蒸腾.北京林业大学学报,29(1):60~66
    郑国生,邹琦.1993.不同天气条件下田间大豆光合作用日变化的研究.中国农业科学,26(1):44~50
    郑培龙.2006.黄土高原半干旱地区林木蒸腾过程及与环境因素关系的研究.[硕士学位论文].北京:北京林业大学
    朱清华,李宪利,高东升.2004.施氮对设施油桃叶片与果实发育的效应.山东农业大学学报:自然科学版,35(1):43~46
    朱艳艳,贺康宁,唐道锋,巩玉霞.2007.不同土壤水分条件下白榆的光响应研究.水土保持研究,14(2):92~94
    左大康.1991.我国农田蒸发测定方法和蒸发规律研究的近期进展.见:左大康,谢贤群.农田蒸发研究.北京:气象出版社,1~4
    Allen R G, Pereira L S, Raes D, Smith M.1998. Crop Evapotranspiration: Guidelines for Computing CropWater Requirements. Rome, Italy: United Nations Food and Agriculture Organization,Irrigation andDrainage Paper56
    Allen S J, Grime V L.1995. Measurements of transpiration from savannah shrubs using sap flow gauges.Agricultural and Forest Meteorology,75(1-3):23~41
    Amy K, Veronica C, Neal B, et al.2006. Ecophysiological responses of schizachyrium scoparium to waterand nitrogen manipulations. Great Plains Research,16(1):29~36
    Angus D E, Watts P J.1984. Evapotranspiration~how good is the Bowen ratio method. Agricultural WaterManagement,8(1):133~150
    Arthur G, Kenneth M K.1992. Measurement of sap flow by the heat balance method numerical analysis andapplication to coniferous seedlings. Agricultural and Forest Meteorology,59(3-4):289~308
    Baldocchi D, Falge E, Gu L, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R,Fuentes J, Goldstein A, Katul G, Law B, Lee X, Malhi Y, Meyers T, Munger W, Oechel W, Paw K T,Pilegaard K, Schmid H P, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S.2001. Fluxnet: a newtool to study the temporal and spatial variability of ecosystem–scale carbon dioxide, water vapor, andenergy flux densities. Bulletin of the American Meteorological Society,82(11):2415~2434
    Battaglia M, Sands P, White D, Mummery D.2004. CABALA: a linked carbon, water and nitrogen modelof forest growth for silvicultural decision support. Forest Ecology and Management,193:251~282
    Berger, T W, Glatzel G.2001. Responses of Quercus petraea seedlings to nitrogen fertilization. For. Ecol.Manage,149(1-3):1~14
    Bergez J E, Dupraz C.1997. Transpiration rate of Prunus avium L. Seedlings inside an unventilatedtreeshelter. Forest Ecology and Management,97(3,9):255~264
    Bethenod O, Katerji N, Goujet R, Bertolini, J M, Rana G.2000, Determination and validation of corn croptranspiration by sap flow measurement under field conditions. Theor Appl Climatol,67(3-4):153~160
    Britto D T, Kronzucker H J.2002. NH4+toxicity in higher plants: a critical review. Journal of PlantPhysiology159(6):567~584
    Brück H, Jureit C, Hermann M, Schulz A, Sattelmacher B.2001. Effects of water and nitrogen supply onwater use efficiency and carbon isotope discrimination in edible canna. Plant boil,3(4):326~334
    Buckley T N, Mott K A.2002. Stomatal water relations and the control of hydraulic supply and demand.Progress in Botany,63:309~325
    Calum P L, Martin R M, Gethyn J A, Dale S, Alistair M H.1998. Abscisic acid nduced stomatal closuremediated by cyclic ADP ribose. Proc. Natl. Acad. Sci.95(26):15837~15842
    Caviglia O P, Sadras V O.2001. Effect of nitrogen supply on crop conductance, water~and radiation~useefficiency of wheat. Field Crops Research,69(3):259~266
    Cellier P, Brunet Y.1992. Flux-gradient relationships above tall plant canopies. Agricultural and ForestMeteorology,58(1-2):93~117
    Chabot R, Bouarfa S, Zimmer D, Chaumont C, Moreau S.2005. Evaluation of the sap flow determined withaheat balance method to measure the transpiration of asurgarcane canopy. Agricultural WaterManagement,75(1):10~24
    Chapin F S III, Matson P A, Mooney H A.2002. Principles of Terrestrial Ecosystem Ecology. New York:Springer-Verlag
    Claussen W.2002. Growth, water use efficiency, and proline content of hydroponically grown tomato plantsas affected by nitrogen source and nutrient concentration. Plant and Soil,247(2):199~209
    Cohen Y.1991. Determination of orchard water requirement by a combined trunk sap flow andmeteorological approach. Irrigation Science,12(2):93~98
    Coleman M D, Friend A. L, Kern C C.2004. Carbon allocation and nitrogen acquisition in a developingPopulus deltoides plantation. Tree Physiol,24(12),1347~1357
    Cowan I R.1978. Stomatal behaviour and environment. Advances in Botanical Research,4:117~228
    Curry R B.1971. Dynamic simulation of plant growth, I. Development of a model. A SAETrans,14(5):946~959
    Damesin C, Rambal S, Joffre R.1997. Between~tree variations in leaf δ13C of Quercus pubescens andQuercus ilex among Mediterranean habitats with different water availability. Oecologia,111(1):26~35
    De Wit.1978. Simulation of assimilation, respiration and transpiration of crops. Centre for AgriculturalPublishing and Documentation. Netherlands
    Desikan R, Griffiths R, Hancock J, Neill S,2002. A new role for an old enzyme: Nitrate reductase mediatednitric oxide generation is required for abscisic acid~induced stomatal closure in Arabidopsis thaliana.Plant Bio,99(25):16324~16318
    Ding L, Wang K J, Jiang G M, Biswas D K, Xu H, Li L F, Li Y H.2005. Effects of nitrogen deficiency onphotosynthetic traits of maize hybrids released in different years. Annals of Botany,96(5):925~930
    Dugas W A, Fritschen L J, Gay L W, Held A A, Matthias A D, Reicosky D C, Steduto P, Steiner J L.1991.Bowen ratio, eddy correlation, and portable chamber measurements of sensible and latent heat fluxover irrigated spring wheat. Agricultural and Forest Meteorology,56(1-2):1~20
    Dugas, W A.1994. Sap flow measurements of transpiratron from cotton grown under ambient and enrichedCO2concentrations. Agrc. For. Meteorol,70(1-4):231~245
    Zhao D, Reddy K R, Kakani V G, Reddy V R.2005. Nitrogen deficiency effects on plant growth, leafphotosynthesis, and hyperspectral reflectance properties of sorghum. European Journal of Agronomy,22(4):391~403
    Edwards D, Hamson M.1990. Guide to Mathematical Modeling. Boca Raton, Florida, U S: CRC Press,Inc.,2
    Edwards W R N, Becker P, èermák J.1996. A unified nomenclature for sap flow measurements. TreePhysiology,17(1):65~67
    Evens J R.1982. Nitrogen and photosynthesis in flag leaf of wheat. Plant Physiol.,72(2):297~302
    Ewers, B E, Oren R., Phillips N, Str mgren M, Linder S.2001. Mean canopy stomatal conductanceresponses towater and nutrient availabilities in Picea abies and Pinus taeda. Tree Physiol,21(12-13),841–850
    Fallahi E, Colt W M, Baird C R.2001. Influence of nitrogen and bagging on fruit quality and mineralconcentrations of‘BC~2Fuji’apple. Hort Technology,11(3):462~4661
    Farquhar G D, von Caemmerer S, Berry J A.1980. A biochemical model of photosynthetic CO2assimilation in leaves of C3species. Planta,149(1):78~90
    Fernández J E, Green S R, Caspari H W, Diaz-Espejo A, Cuevas M V.2007. The use of sap flowmeasurements for scheduling irrigation in olive, apple and Asian pear trees and in grapevines. PlantSoil,305(1-2):91~104
    Friend A D.1995. PGEN:an intergrated model of leaf photosynthesis, transpiration, and conductance.Ecological Modelling,77(2-3):233~255
    Frink C R, Waggoner P E, Ausubel J H.1999. Nitrogen fertilizer:retrospect and prospect. Proceedings of theNational Academy of Sciences of the United States of America,96(4),1175~1180
    Gartner K, Nadezhdina N, Englisch M, ermak J, Leitgeb E.2009. Sap flow of birch and Norway spruceduring the European heat and drought in summer2003. Forest Ecology and Management,258(5):590~599
    George, E, Seith, B, Schaeffer, C, Marschner, H.1997. Responses of Picea, Pinus and Pseudotsuga roots toheterogeneous nutrient distribution in soil. Tree Physiol,17(1):39~45
    Granier A.1985a. A new method of sap flow measurement in tree stems. Annales des Sciences Forestieres,42:192~200
    Granier A.1987b. Evaluation of transpiration in a Douglas first and by means of sap flow measurements.Tree Physiology,3(4):309~320.
    Grebet P, Cuenca R H.1991. History of lysimeter design and effects of environmental disturbances. NewYork: American Society of Civil Engineers,10~18
    Grechi I, Vivin P, Hilbert G, Milin S, Robert T, Gaudillère J P.2007. Effect of light and nitrogen supply oninternal C:N balance and control of root to shoot biomass allocation in grapevine. Environmental andExperimental Botany,59(2):139~149
    Guerin V, Huche-Thelier L, Charpentier S.2007. Mobilisation of nutrients and transport via the xylem sapin a shrub (ligustrum ovalifolium) during spring growth N and C compounds and interactions. Journalof Plant Physiology,164(5):562~573
    Guo F Q, Young J, Crawford N M..2003. The nitrate transporter AtNRT1-1(CHL1) functions in stomatalopening and contributes to drought susceptibility in arabidopsis. The Plant Cell,15(1):107~117
    Guo S, Bruck H, Sattelmacher B.2002. Effects of supplied nitrogen from on growth and water uptake ofFrench bean (Phaseolus vulgaris L.) plants. Plant and Soil,239(2):267~275
    Hall R L, Allen S J, Rosier P T W, Hopkins R.1998. Transpiration from coppiced poplar and willowmeasuredusing sap flow methods. Agricultural and Forest Meteorology,90(4):275~290
    Ham J M, Heilman J L.1990. Measurement of mass flow rate of sap in Lingustrum japonicum. Hortscience,25(4):465~467
    Hamerlynck E P, Huxman T E, McAuliffe J R, Smith S D.2004. Carbon isotope discrimination and foliarnutrient status of Larrea tridentata (creosote bush) in contrasting Mojave Desert soils. Oecologia,138(2):210~215
    Harley P C, Thomas R B, Reynolds J F, et al.1992. Modelling photosynthesis of cotton grown in elevatedCO2. Plant, Cell&Environment,15(3):271~282
    Heitholt J J.1989. Water use efficiency and dry matter distribution in nitrogen and water~stressed winterwheat. Agron J,81(3):464~469
    Hetherington A M, Woodward F I.2003. The role of stomata in sensing and driving environmental change.Nature,424:901~908
    Hunt E R, James J R, Weber A, David M G.1985. Effects of nitrate application on amaranthus powelliiwats:Ⅲ. Optimal allocation of nitrogen for photosynthesis and stomatal conductance. Plant Physiol,79(3):619~624
    Ibanez M, Castellvi F.2000. Simplifying daily evapotranspiration estimates over short full~canopy crops.Agronomy Journal,92(4):628~632
    Irvine J, Perks M P, Magnani F, Grace J.1998. The response of pinus sylvestris to drought: stomatal controlof transpiration and hydraulic conductance. Tree Physiol,18(6):393~402
    Ishihara K, Iida O, Hirasawa T, Ogura T.1979. Relationship between nitrogen content and photosyntheticrate of rice plants with reference to stomatal aperture and conduntance. Crop Science,48:543~550
    Jarvis P G, Wang Y P, Borralho N M G, Pereira J S.1986. Simulation of the role of stress on radiationabsorption, assimilation, transpiration and water use efficiency of stands of Eucalyptus globulus.Biomass Production by Fast Growing Trees,166:169~179
    Jose S, Merritt S, Ramsey C L.2003. Growth, nutrition, photosynthesis and transpiration responses oflongleaf pine seedlings to light, water and nitrogen. Forest Ecology and Management,180(1-3):335~344
    Kaakinen, S, Jolkkonen, A, Iivonen, S, Vapaavuori, E.2004. Growth, allocation and tissue chemistry ofPicea abies seedlings affected by nutrient supply during the second growing season. Tree Physiol.24(6),707~719
    Karam F, Kabalan R, Breidi J, Rouphael Y, Oweis T.2009. Yield and waterproduction functions of twodurum wheat cultivars grown under different irrigation and nitrogen regimes. Agricultural WaterManagement,96:603~615.
    Katul G G, Ellsworth D S, Lai C T.2000. Modelling assimilation and intercellular CO2from measuredconductance: a synthesis of approaches. Plant, Cell&Environment,23(12):1313~1328
    Kelm M, Brück H, Hermann M, Sattelmacher B.2002. The effect of low nitrogen supply on yield and wateruse efficiency of sweet potato (Ipomoea batatas L.). Developments in Plant and Soil Sciences,92(6):402~403
    Takagi K, Harazono Y, Noguchi S, Miyata A, Mano M, Komine M.2006. Evaluation of the transpirationrate of lotus using the stem heat-balance method[J]. Aquatic botany,85(2):129-136.
    Kjelgaard J F, Stockle C O, Black R A, Campbell G S.1997. Measuring sap flow with the heat balanceapproach using constant and variable heat inputs. Agricultural and Forest Meteorology,85(3-4),239~250
    Liu C, Du T, Li F, Kang S, Li S, Tong L.2012. Trunk sap flow characteristics during two growth stages ofapple tree and its relationships with affecting factors in an arid region of northwest China. AgriculturalWater Management,104:193~202
    Liu F, Stützel H.2004. Biomass partitioning, specific leaf area, and water use efficiency of vegetableamaranth (Amaranthus spp.) in response to drought stress. Scientia Horticulturae,102(1,15):15~27
    Lu Y X, Li C J, Zhang F S.2005. Transpiration, potassium uptake and flow in tobacco as affected bynitrogen forms and nutrient levels. Annals of Botany,95(6):991~998
    Ludlow M M.1989. Strategies of response to water stress. Kreeb K H, Richter H, Hinckley T M. Structuraland functional responses to environmental stresses. The Hague: SPB Academic publishing,69~81
    Medlyn B E,2004. A MAESTRO retrospective. In: Mencuccini, M., Grace, J. C., Moncrieff, J.,McNaughton, K.(Eds.), Forests at the Land–Atmosphere Interface. CAB International, pp.105~121
    Medlyn B E, Pepper DA, O’Grady AP, Keith H.2007. Linking leaf and tree water use with anindividual~tree model. Tree Physiol,27(12):1687~1699
    McDonald E P, Erickson E J, Kruger E L.2002. Can decreased transpiration limit plant nitrogen acquisitionin elevated CO2. Funct. Plant Biol.29(9):1115~1120
    McDonald G K, Paulsen G M.1997. High temperature effects on photosynthesis and water relations ofgrain legumes. Plant Soil.196(1):47~58
    Montieth J L.1996. The quest for balance in modeling. A gronomy Journal,88(5):695~697
    Nakaji T, Fukami M, Dokiya Y, Lzuta T.2001. Effects of high nitrogen load on growth, photosynthesis andnutrient status of Cryptomeria japonica and Pinus densiflora seedlings. Trees,15(8):453~461
    Nathawat N S, Kuhad M S, Goswami C.2005. Nitrogen Metabolizing Enzymes: Effect of Nitrogen Sourcesand Saline Irrigation. J Plant Nutri,28(6):1089~1101
    Neill S, Desikan R, Hancock J.2003. Nitric oxide as a mediator of ABA signaling in stomatal guard cells.Plant Physiol,159(1):124~132
    Nicodemus M A, Salifu F K, Jacobs D F.2008. Growth, nutrition, and photosynthetic response of blackwalnut to varying nitrogen sources and rates. Journal of Plant Nutrition,31(11):1917~1936
    Nicolas E, Torrecillas A, Ortuno M F, et al. Evaluation of transpiranion in adult apricot trees from sap flowmeasurements. Agricultural Water Management,2005,72(2):131~145
    Niu J, Chen F, Mi G, Li C, Zhang F.2007. Transpiration, and Nitrogen Uptake and Flow in Two Maize(Zea mays L.) Inbred Lines as Affected by Nitrogen Supply. Annals of Botany.99(1):153~160
    Norman J M, Jarvis P G.1974. Photosynthesis in Sitka spruce (Picea sitchensis (Bong.) Carr.) III.Measurements of canopy structure and interception of radiation. J. Appl. Ecol,11(1):375~398
    Norman J M, Jarvis P G,1975. Photosynthesis in Sitka spruce (Picea sitchensis (Bong.) Carr.) V.Radiation penetration theory and a test case. J. Appl. Ecol,12(3):839~878
    Nova′k V, Hurtalova T, Matejka F.2005. Predicting the effects of soil water content and soil water potentialon transpiration of maize. Agricultural Water Management,76:211~223
    Papastylianou I.1995. Yield components in relation to grain yield losses of barley fertilized with nitrogen[J].European Journal of Agronomy,4(1):55~63
    Peramaki M, Vesala T, Nikinmaa E.2001. Analysing the applicability of the heat balance method forestimating sap flow in boreal forest conditions. Boreal Environment Research,6(1):29~44
    Radin J W, Ackerson R C.1981. Water relation of cotton plants under nitrogen deficiency: III. Stomatalconductance, photosynthesis and ABA accumulation during drought. Plant Physiol,67(1):115~119
    Rana G, Katerji N.1996. Evapotranspiration measurement for tall plant canopies: The sweet sorghum case.Theoretical and Applied Climatology,54(3):187~200
    Rana G, Katerji N.2000. Measurement and estimation of actual evapotranspiration in the field underMediterranean climate: a review. European Journal of Agronomy,13(2-3):125~153
    Reddy C R, Reddy S R.1993. Scheduling irrigation for peanuts with variable amounts of available water.Agricultural Water Management,23(1):1~9
    Rock C D, Ng P P F.1999. Dominant Wilty mutants of Zea mays (Poaceae) are not impaired in abscisicacid perception or metabolism. American Journal of Botany,86(12):1796~1800
    Senock R S, Ham J M.1993. Heat balance sap flow gauge for small diameter stems. Plant,Cell&Environment,16(5):593~601
    Senock R S, Ham J M.1995. Measurements of water use by prairie grasses with heat balance sap flowgauges,48(2):150~158
    Schultz H R.1995. Grape canopy structure, light microclimate and photosynthesis, I: A two~dimensionalmodel of the spatial distribution of surface area densities and leaf ages in two canopy systems. Vitis,34(4):211~215
    Schultz H R.1996. Leaf absorptance of visible radiation in Vitis vinifera L.: estimates of age and shadeeffects with a simple field method. Scientia Horticulturae,66(1-2):93~102
    Scrase F J. Some characteristics of eddy motion in the atmosphere. HM Stationery off,1930
    Sharkey T D.1985. Photosynthesis in intact leaves of C3plants: physics, physiology and rate limitations.The Botanical Review,51(1):53~105
    Sharkey T D, Bernacchi C J, Farquhar G D, et al.2007. Fitting photosynthetic carbon dioxide responsecurves for C3leaves. Plant, Cell&Environment,30(9):1035~1040
    Sinclair T R, Seligman N G.1996. Crop modeling: from infancy to maturity. A gronomy Journal,88(5):698~704
    Smith D M, Allen S J. Measurement of sap flow in plant stems.1996. Journal of Experimental Botany,47(12):1833~1844
    Steppe K, Lemeur R, Samson R.2001. Sap flow dynamics of a beech tree during the solar eclipse of11August1999. Agricultural and Forest Meteorology,112(3-4):139~149
    Stewart J B.1988. Modelling surface conductance of pine forest. Agricultural and Forest Meteorology,43(1):19~35
    Steinberg S, van Bavel C H, McFarland, M J.1989, A gauge to measure mass flow rate of sap in stems andtrunks of woody plants[J].Journal of the American society for Horticultural science,114(3):466~472
    Swinbank W. C. Eddy Transports in the Lower Atmosphere. Melbourne, Australia: Tech. Paper No.2.Division of Meteorological Physics, Commonwealth Scientific and Industrial Research Organization,1955,414
    Tesha A. J, Kumar D. Effect of fertilizer nitrogen on drought resistance in Coffea arabica L.1978. TheJournal of Agricultural Science.90:625~631.
    Tomonori K, Hideki T, NatsukoY, Katsunori T, Chatchai T, Nobuaki T, Masakazu S.2007. Impact of soildrought on sap flow and water status of evergreentrees in a tropical monsoon forest in northernThailand. Forest Ecology and Management,238(1-3):220~230
    Trambouze W, Voltz M.2001. Measurement and modeling of the transpiration of a Mediterranean vineyard.Agricultural and Forest Meteorology,197(2):153~166
    Trapeznikov V K, Ivanov I I, Kudoyarova, G. R.2003. Effect of heterogeneous distribution of nutrients onroot growth, ABA content and drought resistance of wheat plants. Plant Soil,252(2):207–214
    Veihmeyer F J, Hendrickson A H.1949. Methods of measuring field capacity and permanent wiltingpercentage of soils. Soil Science,68(1):75~76
    Veihrneyer F J.1972. The availability of soil moisture to plantar results of empirical experiments with fruittrees. Soil Science,111:268~294
    Vitousek P M, Howarth R W.1991. Nitrogen limitation on land and in the sea: How can it occur?Biogeochemistry,13(2),87–115
    Wang J, Yu Q, Li J, Li L, Li X, Yu G, Sun X.2006. Simulation of diurnal variations of CO2, water and heatfluxes over winter wheat with a model coupled photosynthesis and transpiration. Agruicultural andForest Meteorology,137(3-4):194~219
    Wang S, Yang Y, Trishchenko AP, et al.2002. Modeling the response of canopy of a biochemically basedmodel of photosynthesis. I. Seasonal changes in mature maritime pine(Pinus pinaster Ait.). Plant, Cell&Environment,25(9):1155~1165
    Wang S, Yang Y, Trishchenko AP, et al.2009. Modeling the response of canopy stomatal conductance tohumidity. Journal of Hydrometeorology,10(2):521-532
    Wang Y P, Jarvis P G.1990. Description and validation of an array model~MAESTRO. Agricultural andForest Meteorology,51(3-4):257~280
    Warren C R, Adams M A, Chen Z L.2000. Is photosynthesis related to concentration of nitrogen andRubiseo in leaves of Australian native Plants. Aust J Plant Physiol,27(5):407~416
    Warren C R, Livingston N J, Turpin D H.2004. Photosynthetic responses and N allocation in Douglasfirneedles following a brief pulse of nutrients. Tree Physiol.24(6):601~608
    Wei L, Huang Y, Li X, Mo L, Yuan W.2009. Effects of soil water on photosynthetic characteristics and leaftraits of Cyclobalanopsis glauca seedlings growing under nutrient rich and poor soil. Acta EcologicaSinica,29(3):160~165
    Wermelinger B, Baumgartner J, Gutierrez A P,1991. A demographic model of assimilation and allocationof carbon and nitrogen in grapevines. Ecological Modelling,53:1~26
    Wilson K, Goldstein A, Falge E, Aubinet M, Baldocchi D, Berbigier P, Bernhofer C, Ceulemans R, DolmanH, Field C, Grelle A, Ibrom A, Law B E, Kowalski A, Meyers T, Moncrieff J, Monson R, Oechel W,Tenhunen J, Valentini R, Verma S.2002. Energy balance closure at FLUXNET sites. Agricultural andForest Meteorology,113(1-4):223~243
    Wolf A, Saliendra N, Akshalov K, Johnson D A, Laca E.2008. Effects of different eddy covariancecorrection schemes on energy balance closure and comparisons with the modified Bowen ratio system.Agricultural and Forest Meteorology,148(6-7):942~952
    Wolleweber B, Porter J R, Schellberg J.2003. Lack of interaction between extreme high temperature eventsat vegetative and reproductive stages in wheat. J Agr Crop Sci,189(3):142~150
    World Meteorological Organization.1981. Commission for Instruments and Methods of Observation:Abridged Final Report of the Eighth Session, Mexico City
    Erdem Y, Nedim Yuksel A.2003. Yield response of watermelon to irrigation shortage. ScientiaHorticulturae,98(4):365-383.
    Yin C, Pang X, Chen K,2009. The effects of water nutrient availability and their interaction on the growth,morphology and physiology of two poplar species. Environmental and Experimental Botany,67(1):196~203
    Yin C, Pang X, Chen K, Gong R, Xu G, Wang X.2012. The water adaptability of Jatropha curcas ismodulated by soil nitrogen availability. Biomass and Bioenergy,47:71~81
    Yu G, Zhuang J, Yu Z.2001. An attempt to establish a synthetic model of photosynthesis transpirationbased on stomatal behavior for maize and soybean plants grown in field. J. Plant Physiol,158(7):861~874
    Yu G, Wang Q, Zhuang J.2004. Modeling the water use efficiency of soybean and maize plants underenvironmental stresses: Application of a synthetic model of photosynthesis~transpiration based onstomatal behavior. Journal of Plant Physiology,161(3):303~318
    Zhang Y, Kang S, Eric J W, Ding R, Zhang X, Zheng R.2011. Evapotranspiration components determined bysap flow and micro lysimetry techniques of a vineyard in northwest China: Dynamic sand in fluentialfactors. Agricultural Water Management,98(8):1207~1214

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700