用户名: 密码: 验证码:
基于液晶自适应光学技术的视网膜微血管成像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人眼视网膜中的微血管是人体唯一可在体外进行无创观察的细小血管。任何血液性的病理破坏,确切地说任何脏器性、内分泌疾病都会引起血液成分改变,造成微细血管的病变,因此高分辨率的视网膜微细血管状态检查对重大疾病的病理学、早期诊断研究具有重要的意义。但由于人眼像差的影响,普通眼底检查设备的眼底成像分辨率只有15~20μm,无法满足早期疾病微小症状检查的要求。自适应光学技术的应用突破了人眼像差限制,将眼底成像设备的分辨率提高至接近衍射极限的水平。但是最常用的波前校正器,即变形镜,由于其空间分辨率低、校正量小、体积大、价格高,很难在眼底自适应光学成像领域实用推广。因此本文采用高分辨率的液晶波前校正器,研制了高分辨率视网膜微血管自适应光学成像系统。
     针对系统普适性不高的问题,分析了深度像差对波前探测精度的影响,使用补偿镜并微调照明光焦面的方法对人眼近视与散光的低阶像差进行了补偿,使照明光焦面可以准确聚焦在眼底,提高了波前探测光斑的信噪比;在调节焦面时,引入一个与波前探测器中光点形态相关的参数,辅助照明光焦面位置的判断;在此基础上通过减小照明光焦深的方法消除了神经纤维层反射杂光的干扰;另外,还使用探测器去噪算法抑制校正器中非调制杂光的影响,进一步提高了系统的普适性。
     对视网膜微血管的成像机制进行了模拟实验,并以人眼最稳定时的0D屈光为基准完成了光学系统设计;在补偿1D人眼色差的基础上,利用对人眼刺激很小的近红外光,对活体视网膜微血管进行连续对焦摄像,解决了视网膜微血管像面难以捕捉和定位的问题,获得了直径7μm的清晰微血管图像。
     在此基础上,研究了眼底出射光的能量利用率问题。通过对人眼偏振特性的探讨,将眼底照明光改造为线偏振光,使眼底出射光的能量利用率提高了20%;分析和测试了系统的成像分辨率约3.5μm,表明系统具备对最细小视网膜血管分辨的能力;对环形光阑的中心遮拦比进行了优化,将微血管的成像对比度从0.13提高到0.23;采用短曝光避免眼底抖动,并将多次曝光图像进行配准叠加,有效抑制了图像中的散粒噪声,提高了信噪比,使微血管图像对比度进一步上升到0.3。
The retinal capillaries are the only microvasculature which could be imaged invivo and non-invasively. Any blood pathological destruction, or rather any organs andendocrine diseases will change the blood components and lead to vasculopathy. So thehigh resolution retinal microvacular imaging is significant for pathology research anddiagnose of the critical disease. However, due to aberration of human eyes, theresolution of the common inspection equipment was only about15-20μm, which canminot meet the demand for early diagnosis. The application of adaptive optics couldresolve the limit of human eye aberration. With AO, the imaging resolution could beclose to the optical diffraction limit. Although deformable mirror was widely used inadaptive optics systems, but it is less practicality in the field of fundus imagingbecause of its low spatial resolution, small stroke,large size and costly. In this paper,the liquid crystal spatial light modulator has been used as a wavefront corrector andthe high resolution retinal microvasculature imaging system based on liquid crystaladaptive optics has been studied.
     In order to improve the universality of the system, the factors,which affect theaccuracy of wavefront sensor has been discussed comprehensively.The deep low orderaberrations of the human eye has been corrected by trial lens. And then, the focalplane of the illumination light source has been adjusted to the fundus to increase the signal to noise ratio of the wavefront sensor. The position of the focal plane of theillumination light source can be monitored by introducing a parameter, which isrelated to the morphological characteristics of the light spot in the wavefront sensor.On this basis, the modified centroid algorithm has been used and the depth of focus ofthe illumaination light has been shortened to further eliminate the influence of theunmodulated beam and the reflection of the multilayers in retina.
     The mechanism of the retinal microvasculature and the stability of the humaneyes has been analysed through experiments. The system has been designed based on0diopter. After compansation the chromatic aberrations of the eye, which scale isabout1Diopter, the image plane of the capillaries has been searched by theharmlessness near infrared light source at the same time of imaging. Living humaneye fundus image experiments were carried out and the clear images of the retinalcapillaries, which diameters are about7μm have been obtained.
     On the basis of the above analysis and testing, the polarization properties of thehuman eye has been discussed. By using the polarized light to illuminate the fundus,the energy utilization of the light reflected from fundus has been improved by20%.Further more, the actual resolution of the system has been discussed and the resultshows that the actual resolution of the system is about3.5micrometers. It indicatedthat the system has the ability to distinguish the smallest retinal capillaries. Because ofthe center obscuration ratio of the annular stop has been optimized, the contrast of theimage has been increased from0.13to0.23. In experiments, the fundus had beenexposured by short pulse, in order to avoid the image blur caused by eye movements.The signal to noise ratio has been improved by the superposition of fundus imagesand the contrast of the image after superposition has beed improved to0.3.
引文
[1]蔡航波.论官窍与五脏相关理论的临床指导——试论肝开窍于目[J].中国中医药现代远程教育,2007,5(9):2-4.
    [2]张婵,陈永,杨梅,等.现代医学角度解释中医的“肝开窍于目”[J].时珍国医国药,2009,20(1):233-235.
    [3]颜玮,冯炎,谢启东.肝硬化患者视网膜中动脉的血流动力学变化[J].重庆医学,2006,35(1):52-53.
    [4]任玉梅.高血压眼底病变的临床观察[J].中国保健营养,2012(5):869.
    [5]田文真,李红梅.糖尿病眼底病变相关因素分析[J].宁夏医学杂志,2003,25(4):223-224.
    [6]孙则红,王志学,王虹霞.肾病眼底改变1例[J].实用医学杂志,2011,27(7):1144.
    [7]张惠蓉,刘宁朴.眼底病图谱[M].北京:中国卫生出版社,2007.22.
    [8]冈萨雷斯.眼科学总论[M].北京:电子工业出版社,2003.176-181.
    [9]Wild S, Roglic G, Green A, et al. Global prevalence of diabetes: estimates for theyear2000and projections for2030[J]. Diabetes Care,2004,27(5):1047-1053.
    [10]Chen M, Kao C, Chen C, et al. Prevalence and risk factors of diabetic retinopathyamong non-insulin-dependent diabetic subjects: A4-year follow up[J]. InternationalJournal of Epidemiology,1994,24(4):787-795.
    [11]Tso M, Jampol L. Pathophysiology of hypertensive retinopathy[J]. Opthalmology,1982,89(10):1132-1145.
    [12]Chapman N, Dell’omo G, Sartini M, et al. Peripheral vascular disease isassociated with abnormal arteriolar diameter relationships at bifurcations in thehuman retina[J]. Clinical Science,2002,103(2):111-116.
    [13]王肇圻,许妍.基于眼模型的数字眼底相机设计[J].光学精密工程,2008,16(9):1567-1571.
    [14]李灿,宋淑梅,李淳,等.手持式眼底相机光学系统设计[J].光学学报,2012,32(9):0922003-1-0.22003-7.
    [15]杨加强,程德文,王庆丰,等.新型大视场消杂光眼底相机光学系统的设计[J].光学学报,2012,32(11):1122002-1-1122002-7.
    [16]Webb R, Hughes G,Delori F. Confocal scanning laser ophthalmoscope[J].Applied optics,1987,26(8),1492-1499.
    [17]Bueno J, Campbell M. Confocal scanning laser ophthalmoscopy improvement byuse of Mueller-matrix polarimetry[J]. Optics Letters,2002,27(10):830-832.
    [18]冯绍鸿,徐丽,夏德昭.扫描激光检眼镜的基本原理及其临床应用[J].中国实用眼科杂志,1999,17(4):199-201.
    [19]史国华,丁志华,戴云,等.光纤型光学相干层析技术系统的眼科成像[J].中国激光,2008,35(9):1429-1431.
    [20]Nassif N, Cense B, Park B, et al. In vivo high-resolution video-ratespectral-domain optical coherence tomography of the hunman retina and opticnerve[J]. Optics Express,2004,12(3):367-376.
    [21]Leitgeb R, Hitzenberger C, Adolf Fercher. Performance of fourier domain vs.time domain optical coherence tomography[J]. Optics Express,2003,11(8):889-894.
    [22]Silverman R, Kong F, Chen Y, et al. High-resolution photoacoustic imaging ofocular tissues [J]. Ultrasound in Medicine and Biology,2010,36(5):733-742.
    [23]Hu S, Wang L. Photoacoustic imaging and characterization of themicrovaculature[J]. Journal of Biomedical Optics,2010,15(1):011101-1-011101-15.
    [24]徐晓辉,李晖.生物医学光声成像[J].物理,2008,37(2):111-119.
    [25]Norren D, Tiemeijer L. Spectral reflectance of the human eye[J]. Vision Research,1986,26(2):313-320.
    [26]Delori F, Pflibsen K. Spectral reflectance of the human ocular fundus[J]. AppliedOptics,1989,28(6):1061-1077.
    [27]Wu J, Seregard S, Algvere P. Photochemical Damage of the Retina[J]. Survey ofOphthalmology,2006,51(5):461-481.
    [28]Brinkmann R, Huttmann G, Rogener J, et al. Origin of retinal pigment epitheliumcell damage by pulsed laser irradiance in the nanosecond to microsecond timeregimen[J]. Lasers in Surgery and Medicine,2000(27):451-464.
    [29]Ahmed J, Braun R, Dunn R, et al. Oxygen distribution in the macaque retina[J].Investigative Ophthalmology and Visual Science,1993,34(3):516-521.
    [30]Avalle L, Wang Z, Dillon J, et al. Observation of A2E oxidation products inhuman retinal lipofuscin[J]. Experimental Eye Research,2004,78(4):895-898.
    [31]Kim S, Koji Nakanishi, Yasuhiro Itagaki, et al. Photooxidation of A2-PE, aphotoreceptor outer segment fluorophore, and protection by lutein and zeaxanthin[J].Experimental Eye Research,2006,82(5):828-839.
    [32]Lascaratos G, Dan J, John M, et al. Visible light affects mitochondrial functionand induces neuronal death in retinal cell cultures[J]. Vision Research,2007,47(9):1191-1201.
    [33]American National Standards Institute, American National Standard for the SafeUse of Lasers[S], ANSI Z136.1-2007(Laser Institute of America, Orlando, Fla.,2007)
    [34]Photobiological safety of lamps and lamp systems[S]. IEC INTERNATIONALSTANDARD. CIE S009:2002.
    [35]中华人民共和国国家标准——激光产品的安全:设备分类、要求和用户指南[S]. GB7247.1-2001.
    [36]Delori F, Webb R, Sliney D. Maximum permissible exposures for ocularsafety(ANSI2000), with emphasis on ophthalmic devices[J]. Journal of the OpticalSociety of America A,2007,24(5):1250-1265.
    [37]Gray D, Merigan W, Wolfing J, et al. In vivo fluorescence imaging of primateretinal ganglion cells and retinal pigment epithelial cells[J]. Optics Express,2006,14(16):7144-7158.
    [38]Biss D, Sunorok D, Burns S, et al. In vivo fluorescent imaging of the mouseretina using adaptive optics[J]. Optics Letters,2007,32(6):659-661.
    [39]Kim D, Fingler J, Werner J, et al. In vivo volumetric imaging of human retinalcirculation with phase-variance optical coherence tomography[J]. Biomedical OpticsExpress,2011,2(6):1504-1513.
    [40]Born M, Wolf E. Principles of optics[M]. Cambridge:7th (expanded) Edition.Cambridge University press,1999.487.
    [41]Neil M, Wilson T, Juskaitis R. Wavefront generator for complex pupil functionsynthesis and point spread function engineering[J]. Journal of Microscopy,2000,197(3):219-223.
    [42]Artal P, Navarro R. Monochromatic Modulation Transfer Function of the HumanEye for Different Pupil Diameters: An Analytical Expression[J]. Journal of the OpticalSociety of America A,1994,11(1):246-249.
    [43]全薇,宋贵才,王肇圻,等.人眼大视场波前像差特性研[J].光子学报,2007,36(6):1102-110.
    [44]Wang J, Silva D. Wave-front interpretation with Zernike polynomials[J]. AppliedOptics,1980,19(9):1510-1518.
    [45]Myrick D. A generalization of the radial polynomials of F Zernike[J]. SIAMJournal on Applied Mathematics,1966,14(3):476-489.
    [46]Conforti G. Zernike aberration coefficients from Seidel and higher-orderpower-series coefficients[J]. Optics Letters,1983,8(7):407-408.
    [47]Tyson K. Conversion of Zernike aberration coefficients to Seidel and higher-orderpower-series aberration coefficients[J]. Optics Letters,1982,7(6):262-264.
    [48]张强,姜文汉,许冰.利用Zernike多项式对湍流波前进行波前重构[J].光电工程,1998,25(6):15-19.
    [49]Noll R. Zernike polynomials and atmospheric turbulence[J]. Journal of theOptical Society of America,1976,66(3):207-211.
    [50]Liang J, Grimm B, Goelz S, et al. Objective Measurement of Wave Aberration ofthe Human eye with the Use of a Hartmann-Shack Wave-front Sensor[J]. Journal ofthe Optical Society of America A,1994,11(7):1949-1957.
    [51]Howland H, Howland B. A subjective method for the measurement ofmonochromatic aberrations of the eye[J]. Journal of the Optical Society of America,1977,67(11):1508–1518.
    [52]Walsh G, Charman W, Howland H. Objective technique for the determination ofmonochromatic aberrations of the human eye[J]. Journal of the Optical Society ofAmerica A,1984,1(9):987–992.
    [53]Guirao A, Artal P. Off-axis Monochromatic Aberrations Estimated fromDouble-Pass Measurements in the Human Eye[J]. Vision Research,1999,39(2):207-217.
    [54]Guirao A, Gonzalez C, Redondo M, et al. Average Optical Performance of theHuman Eye as a function of Age in a Normal Population[J]. InvestigativeOphthalmology and Visual Science,1999,40(1):203-213.
    [55]Williams D, Artal P, Navarro R, et al. Off-axis Optical Quality and RetinalSampling in the Human Eye[J]. Vision Research,1996,36(8):1103-1114.
    [56]Liang J, Williams D. Aberrations and retinal image quality of the normal humaneye[J]. Journal of the Optical Society of America A,1997,14(11):2873-2883.
    [57]He J, Burns S, Marcos S. Monochromatic Aberrations in the AccommodatedHuman eye[J]. Vision Research,2000,40(1):41-48.
    [58]Thibos L, X Hong, A Bradley, et al. Statistical variation of aberration structureand image quality in a normal population of healthy eyes[J]. Journal of the OpticalSociety of America A,2002,19(12):2329-2348.
    [59]Merkle F. Principles of adaptive optics[J]. SPIE,1992(1782):95-104.
    [60]Merkle F. Adaptive optics[J]. SPIE,1993(2088):37-43.
    [61]Babcock H. The possibility of compensating astronomical seeing[J]. Publicationsof the Astronomical Society of the Pacific,1953,65(386):229-236.
    [62]Hardy J, Lefebvre J, Koliopoulos C. Real–Time Atmospheric Compensation[J].Journal of the Optical Society of America,1977,67(3):360-369.
    [63]Voitsekhovich V, Cuevas S. Adaptive optics and the outer scale of turbulence[J].Journal of the Optical Society of America A,1995,12(11):2523-2531.
    [64]Van M, Mignant D, Macintosh B. Performance of the Keck Observatory AdaptiveOptics System[J]. Applied Optics,2004,43(29):5458-5467.
    [65]Max C, Canalizo G, Macintosh B, et al. The Core of NGC6240from KeckAdaptive Optics and Hubble Space Telescope NICMOS Observations[J]. TheAstrophysics Journal,2005,621(2):738-749.
    [66]Liang J, Williams D, Miller D. Supernormal vision and high-resolution retinalimaging through adaptive optics[J]. Journal of the Optical Society of America A,1997,14(11):2884-2892.
    [67]Hofer H, Chen L, Yoon G, et al. Improvement in retinal Image Quality withDynamic Correction of the Eye’s Aberrations[J]. Optics Express,2001,8(11):631-643.
    [68]Fernandez E, Iglesias I, Artal R. Closed-Loop Adaptice Optics in the HumanEye[J]. Optics Letters,2001,26(10):746-748.
    [69]Yoon G, Williams D. Visual Performance after Correcting the Monochromaticand chromatic Aberrations of the Eye[J]. Journal of the Optical Society of America A,2002,19(2):266-275.
    [70]Hammer D, Ferguson R, Iftimia N, et al. Tracking Adaptive optics ScanningLaser Ophthalmoscope(TAOSLO)[J]. Investigative Ophthalmology and VisualScience,2005,46: e-abstract3550.
    [71]Zawadzki R, Laut S, Zhao M, et al. Retinal Imaging with Adaptice Optics HighSpeed and High Resolution Optical Coherence Tomography[J]. InvestigativeOphthalmology and Visual Science,2005,46: e-abstract1053.
    [72]Dreher A, Bille J, Weinreb R. Active optical depth resolution improvement of thelaser tomographic scanner[J], Applied Optics,28(4),804-808.
    [73]Zhang Y, Cense B, Rha J, et al. High-speed volumetric imaging of conephotoreceptors with adaptive optics spectral-domain optical coherence tomography[J].Optics Express,2006,14(10),4380–4394.
    [74]Rha J, Jonnal S, Karen E, et al. Adaptive optics flood-illumination camera forhigh speed retinal imaging[J]. Optics Express,2006,14,4552-4569.
    [75]凌宁,张雨东,饶学军,等.用于活体人眼视网膜观察的自适应光学成像系统[J].光学学报,2004,24(9):1153-1158.
    [76]Roorda A, Williams D. The arrangement of the three cone classes in the livinghuman eye[J]. Nature,1999,397(6719):520-522.
    [77]Jonnal R, Besecker J, Derby J, Et al. Imaging outer segment renewal in livinghuman cone photoreceptors[J]. Optics Express,2010,18(5):5257-5270.
    [78]Xue B, Choi S, Doble N, et al. Photoreceptor counting and montaging of en-faceretinal images from an adaptive optics fundus camera[J]. Journal of the OpticalSociety of America A,2007,24(5):1364-1372.
    [79]Chui T, Song H, Burns S. Adaptive-optics imaging of human cone photoreceptordistribution[J]. Journal of the Optical Society of America A,2008,25(12):3021-3029.
    [80]Vohnsen B. Photoreceptor waveguides and effective retinal image quality[J].Journal of the Optical Society of America A,2007,24(3):597-607.
    [81]Choi W, Baumann B, Liu J, et al. Measurement of pulsatile total blood flow in thehuman and rat retina with ultrahigh speed spectral/Fourier domain OCT[J].Biomedical Optics Express,2012,3(5):1047-1061.
    [82]Phan A, Elsner A, Chui T, et al. In vivo microvascular changes in diabeticpatients without clinically severe diabetic retinopathy[C]. Retina late-breaking papers.Floridian.
    [83]Chui T, VanNasdale D, Burns S. The use of forward scatter to improve retinalvascular imaging with an adaptive optics scanning laser ophthalmoscope[J].Biomedical Optics Express,2012,3(10):2537-2549.
    [84]Vilupure A, Rangaswamy N, Frishman L, et al. Adaptive optics scanning laserophthalmoscopy for in vivo imaging of lamina cribrosa[J]. Journal of the OpticalSociety of America A,2007,24(5):1417-1425.
    [85]Nakashima K, Benchaboune M, Ullern M, et al. Adaptive optics imaging inage-related macular degeneration[C]. European Association for Vision and EyeResearch Conference. Crete.2011,89:248.
    [86]孔祥梅,孙兴怀,郭文毅,等.自适应光学系统在青光眼视网膜毛细血管中的观察[J].中国眼科耳鼻喉科杂志.2008,8(4):226-227.
    [87]杨华锋,饶长辉,张雨东等.一种提高波前空间校正能力的组合变形镜自适应光学系统[J].光学学报,2009,29(3):587~593.
    [88]Shi G, DaiY, Wang L, et al. Adaptive optics optical coherence tomography forretina imaging[J]. Chinese Optics Letters,2008,6(6):424-425.
    [89]Hammer D, Ferguson R, Bigelow C, et al. Adaptive optics scanning laserophthalmoscope for stabilized retinal imaging[J]. Optics Express,2006,14(8):3354-3367.
    [90]Dubra A, Sulai Y. Reflective afocal broadband adaptive optics scanningophthalmoscope[J]. Biomedical Optics Express,2011,2(6):1757-1768.
    [91]Geng Y, Dubra A, Yin L, et al. Adaptive optics retinal imaging in the living mouseeye[J]. Biomedical Optics Express,2012,3(4):715-734.
    [92]James G, Love G, Birch P, et al. A real-time closed liquid crystal adaptive opticssystem: first results[J]. Optics Communications,1997,137(1-3):17-21.
    [93]Mu Q, Cao Z, Hu L, et al. Adaptive optics imaging system based on ahigh-resolution liquid crystal on silicon device[J]. Optics Express,2006,14(18):8013-8018.
    [94]Shirai T. Liquid-crystal adaptive optics based on feedback interferometry forhigh-resolution retinal imaging[J]. Applied Optics,2002,41(19):4013-4023.
    [95]Manzanera S, Prieto P, Ayala D, et al. Liquid crystal Adaptive Optics VisualSimulator: Application to testing and design of ophthalmic optical elements[J]. OpticsExpress,2007,15(24):16177-16188.
    [96]蔡东梅,姚军,姜文汉.液晶空间光调制器用于波前校正的性能[J].光学学报,2009,29(2):285~291.
    [97]Bartsch D, Zhu L, Sun P, et al. Retinal imaging with a low-cost micromachinedmembrane deformable mirror[J]. Journal of Biomedical Optics,2002,7(3):451~456.
    [98]李邦明,廖文和,沈建新等.微机械薄膜变形镜在人眼像差校正中的波前控制算法研究[J].光学学报,2010,30(4):917~921
    [99]Love G. Wave-front correction and production of Zernike modes with aliquid-crystal spatial light modulator[J]. Applied Optics,1997,36(7):1517-1524.
    [100]Prieto P, Ferndez E, Manzanera S, et al. Adaptive optics with a programmablephase modulator: applications in the human eye[J]. Optics Express,2004,12(17):4059-4071.
    [101]Dai H, Xu K, Liu Y, et al. Characteristics of LCoS Phase-only spatial lightmodulator and its applications[J]. Optics Communication,2004,238(4-6):269-276.
    [102]Wu S. Phase retardation dependent optical response time of parallel-alignedliquid crystals[J]. Journal of Applied Physics,1986,60(5):1836-1838.
    [103]Restaino S, Dayton D, Browne S, et al. On the use of dual frequency nematicmaterial for adaptive optics systems: first results of a closed–loop experiment[J].Optics Express,2000,6(1):2-6.
    [104]Dou R, Giles M. Closed-loop adaptive-optics system with a liquid-cristaltelevision as a phase retarder[J]. Optics Letters,1995,20(14):1583-1585
    [105]Birch P, Gourlay J, Love G, et al. Real-time optical aberration correction with aferroelectric liquid-crystal spatial light modulator[J]. Applied. Optics,37(11):1998,2164-2169.
    [106]Collings N, Davey T, Christmas J, et al. The applications and technology ofphase-only liquid crystal on silicon devices[J]. Journal of Display Technology,2011,7(3):112-119.
    [107]Cao Z. Effects of the space-bandwidth product on the liquid-crystal kinoform[J].Optics Express,2005,13(14):5186-5191.
    [108]Joaquín O, Pierre A, Millán M, et al. Multipoint phase calibration for improvedcompensation of inherent wavefront distortion in parallel aligned liquid crystal onsilicon displays[J]. Applied Optics,2007,46(23):5667–5679.
    [109]Hu L, Xuan L, Liu Y, et al. Phase-only liquid crystal spatial light modulator forwavefront correction with high precision[J]. Optics Express,2004,12(26):6403-6409.
    [110]Thibos L, Bradley A. Use of liquid-crystal adaptive-optics to alter the refractivestate of the eye[J]. Optometry and Vision Science,1997,74(7):581-587.
    [111]Liu Y, Hu L, Cao Z, et al. Correction for large aberration with phase-only LCwavefront corrector[J]. Optical Engineering,2006,45(12):128001-1-128001-5.
    [112]Reinitzer F. Beitr ge zur Kenntniss des Cholesterins[J]. Monatshefte für Chemie,1888(9):421–441.
    [113]Vasil’ev A, Zhinduils A, Kompanets I, et al. Optically controlled transparency inthe form of a ferroelectric ceramic-photoconductor structure[J]. Soviet Journal ofQuantum Electronics,1979,9(6):757–761.
    [114]Vasil’ev A, Kompanets I, Parfenov A. Progress in the development andapplications of optically controlled liquid crystal spatial light modulators (review).Soviet Journal of Quantum Electronics,1983,13(6):689–695.
    [115]Vasil’ev A, Naumov A, Schmal’gauzen V. Wavefront correction by liquid crystal;devices[J]. Soviet Journal of Quantum Electronics,1986,16(4):471–474.
    [116]Dou R, Giles M. Closed-loop adaptive-optics system with a liquid-cristaltelevision as a phase retarder[J]. Optics Letters,1995,20(14):1583-1585
    [117]Neil A, Booth M, Wilson T. Closed-loop aberration correction by use of a modalZernike wave-front sensor[J]. Optics Letters,2000,25(15):1083-1085.
    [118]Kohei T, Tomohiro S. Chromatic aberration free liquid crystal adaptive opticsfor flood illuminated retinal camera[J]. Optics Communications,2012,285(12):2967-2971.
    [119]Ooto S, Hangai M, Takayama K, et al. High resolution imaging of thephotoreceptor layer in epiretinal membrane using adaptive optics scanning laserophthalmoscopy[J]. Ophthalmology,2011,118(5):873-881.
    [120]Yamaguchi T, Nakazawa N, Bessho K. adaptive optics fundus camera using aliquid crystal phase modulator[J]. Optical Review,2008,15(3):173-180.
    [121]Huang H, Inoue T, Tanaka H, Stabilized high accuracy correction of ocularaberrations with liquid crystal on silicon spatial light modulator in adaptive opticsretinal imaging system[J]. Optics Express,2011,19(16):15026-15040.
    [122]Williams D. Adaptive optics for the human eye[M]. in Frontiers in Optics, OSATechnical Digest (CD)(Optical Society of America,2003), paper MM1.
    [123]Fernández E, Iglesias I, Artal P, Closed-loop adaptive optics in the human eye[J].Optics Letters,2001,26(10),746-748.
    [124]Eng S, Reinholz F, Chai D, et al. Twisted-nematic liquid-crystal-on-siliconadaptive optics aberrometer and wavefront corrector[J]. Journal of Biomedical Optics,2009,14(4):044014-1-044014-7.
    [125]蔡冬梅,Eng S,凌宁,等.反射型LCOS显示板用于人眼波前像差校正的研究[J].光电子激光,2008,19(7):992-995.
    [126]全薇,王肇圻,宋贵才,等.用SVGA1薄膜晶体管液晶显示器矫正人眼波前像差[J].光子学报,2004,33(12):1445-1448.
    [127]Mu Q, Cao Z, Li C, et al. Accommodation-based liquid crystal adaptive opticssystem for large ocular aberration correction[J]. Optics Letters,2008,33(24),2898-2900.
    [128]Li C, Xia M, Li D, et al. High-precision open-loop adaptive optics system basedon LC-SLM[J]. Optics Express,2009,17(13):10774-10781.
    [129]Li C, Xia M, Li D, et al. High-resolution retinal imaging through open-loopadaptive optics[J]. Journal of Biomedical Optics,2010,15(4):046009-1-046009-6.
    [130]Prieto P, Martín F, James S, et al. Effect of the polarization on ocular waveaberration measurements[J]. Journal of the Optical Society of America A,2002,19(4):809-814.
    [131]李抄,姜宝光,夏明亮,等.用于人眼视网膜成像照明的激光消散斑技术研究[J].光学学报,2009,29(2):285-291.
    [132]程少园,曹召良,胡丽发,等.消除角膜前表面反射杂光方法的比较[J].中国光学与应用光学,2010,3(03):257-262.
    [133]Lane R, Tallon M. Wave-front reconstruction using a Shack-Hartmann sensor[J].Applied Optics,1992,31(32):6902-6908.
    [134]Palima D, Daria V. Effect of spurious diffraction orders in arbitray multifocipatterns produced via phase-only holograms[J]. Applied Optics,2006,45(26):6689-6693.
    [135]Putten E, Vellekoop I, Mosk A. Spatial amplitude and phase modulation usingcommercial twisted nematic LCDs[J]. Applied Optics,2008,47(12):2076-2081.
    [136]Cao Z, Mu Q, Dovillaires G. Effect of the twisted alignment on the liquid crystalwave-front corrector[J]. Liquid Crystal,2008,34(10):1227-1232.
    [137]Zhang H, Xie J, Liu J. Elimination of a zero-order beam induced by a pixelatedspatial light modulator for holographic projection[J]. Applied Optics,2009,48(30)5834-5841.
    [138]Jahns J, Walker S. Two-dimensional array of diffractive microlenses fabricatedby thin film deposition[J]. Applied Optical,1990,29(7):931-936.
    [139]Neil M, Booth M, Wilson T. Dynamic wave-front generation for thecharacterization and testing of optical systems[J]. Optics Letters,1998,23(23):1849-1851.
    [140]Leroux C, Dainty C. A simple and robust method to extend the dynamic range ofan aberrometer[J]. Opitcs Express,2009,17(21):19055-19061.
    [141]Baker K. Iteratively weighted centroiding for Shack-Hartmann wave-frontsensors[J]. Optics Express,2007,15(8):5147-5159.
    [142]Baik S, Park S, Kim C, et al. A center detection algorithm for Shack-Hartmannwavefront sensor[J]. Optics and Laser Technology,2007,39(2):262-267.
    [143]Li H, Song H, Rao C, et al. Accuracy analysis of centroid calculated by amodified center detection algorithm for Shack-Hartmann wavefront sensor[J]. OpticsCommunications,2008,281(4):750-755.
    [144]Pique J, Farinotti S. Efficient modeless laser for a mesospheric sodium laserguide star[J]. Journal of the Optical Society of America B,2003,20(10):2093-2101.
    [145]Platt B, Shack R. History and principles of Shack-Hartmann wavefrontsensing[J]. Journal of Refractive Surgery,2001,17(5):573-577.
    [146]Biss D, Sumorok D, Burns S, et al. In vivo fluorescent imaging of the mouseretina using adaptive optics[J]. Optics Letters,2007,32(6):659-661.
    [147]Bass M. Handbook of Optics. Volume Ⅲ, Vision and Vision Optics[M].3rdedition. USA. McGraw Hill.2009.42-45.
    [148]Zhou X, Phillip B, Andrew M. Limitations to adaptive optics image quality inrodent eyes[J]. Biomedical Optics Express,2012,3(8):1811-1824.
    [149]Kazuhiro S, Kazuhiro K, Shuichi M, et al. Extended depth of focus adaptiveoptics spectral domain optical coherence tomography[J]. Biomedical Optics Express,2012,3(10):2353-2370.
    [150]Navarro R,Santamaria J,Beseos J. Aceommodation-dependent model of thehuman eye asphericss[J]. Journal of the Optical Society of America A,1985,2(8):1273-1281.
    [151]Blaker J, Toward an adaptive model of the human eye[J]. Journal of the OpticalSociety of America,1980,70(2):220-223.
    [152]李抄.液晶自适应光学眼底成像仪的实用化研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所.2011.
    [153]Manny R, Hussein M, Scheiman M, et al. Tropicamide (1%): An EffectiveCycloplegic Agent for Myopic Children[J]. Investigative Ophthalmology and VisualScience,2001,42(8):1728-1735.
    [154]夏明亮.高精度人眼像差哈特曼探测器的研制[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所.2011.
    [155]Porter J, Guirao A, Williams D, et al. Monochromatic aberrtions of the humaneye in a large population[J]. Journal of the Optical Society of America A,2001,18(8):1793-1803.
    [156]Hofer H, Artal P, Singer B, et al. Dynamics of the eye’s wave aberration[J].Journal of the Optical Society of America A,2001,18(3):497-506.
    [157]Hampson K, Munro I, Paterson C, et al. Weak correlation between the aberrationdynamics of the human eye and the cardiopulmonary system[J]. Journal of the OpticalSociety of America A2005,22(7):1241-1250.
    [158]Nirmaier T, Pudasaini G, Bille J et al. Very fast wave-front measurements at thehuman eye with a custom CMOS-based Hartmann-Shack sensor[J]. Optics Express,2003,11(21):2704-2716.
    [159]Higgins G, Stultz K. Frequency and Amplitude of Ocular Tremor[J]. Journal ofthe Optical Society of America,1953,43(12):1136-1140.
    [160]Riggs L, Armington J, Ratliff T, et al. Motions of the Retinal Image duringFixation[J], Journal of the Optical Society of America,1954,44(4):315-321.
    [161]Vogel C, Arathorn D, Roorda A, et al. Retinal motion estimation in adaptiveoptics scanning laser ophthalmoscopy[J]. Optics Express,2006,14(2):487-497.
    [162]Hammer D, Ferguson R, Magill J, et al. Image stabilization for scanning laserophthalmoscopy[J]. Optics Express,2002,10(26):1542-1549.
    [163]Artal P, Berrio E, Guirao A, et al. Contribution of the cornea and internalsurfaces to the change of ocular aberrations with age[J]. Journal of the Optical Societyof America A,2002,19(1):137-143.
    [164]Mclellan J, Marcos S, Burns S. Age-related changes in monochromatic waveaberrations of the human eye[J]. Investigative Ophthalmology and Visual Science,2001,42(6):1390-1395.
    [165]张鹰.基于液体透镜的变焦光学系统研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2012.
    [166]鲍华,饶长辉,张雨东,等.一种可用于人眼像差哈特曼-夏克测量仪的自动离焦补偿方法[J].光学学报,2010,30(11):3082-3089.
    [167]程少园,曹召良,胡立发等.用夏克-哈特曼探测器测量人眼波前像差[J].光学精密工程,2010,18(5):1060-1067.
    [168]Geng Y, Schery A, Sharman R, et al. Optical properties of the mouse eye[J].Biomedical Optics Express,2011,2(4):717-738.
    [169]Loduca A, Zhang C, Ruth Z, et al. Thickness Mapping of Retinal Layers bySpectral-Domain Optical Coherence Tomography[J]. American Journal ofOphthalmology,2010,150(6):849-855.
    [170]Pokorny J, Smith V, Lutze M. Aging of the human lens[J]. Applied Optics,1987,26(8):1437-1440.
    [172]Wyatt H, Fisher R. A simple view of age-related changes in the shape of the lensof the human eye[J]. Eye,1995,9(6):772-775.
    [173]Thibos L, Ye M, Zhang X, et al. The chromatic eye: a new reduced-eye model ofocular chromatic aberration in humans[J]. Applied Optics,1992,31(19):3594-3600.
    [176]Sivak J, Mandelman T. Chromatic dispersion of the ocular media[J]. VisionResearch,1982,22(8),997-1003.
    [174]Wang J, Candy T, Teel D, et al. Longitudinal chromatic aberration of the humaninfant eye[J]. Journal of the Optical Society of America A,2008,25(9):2263-2270.
    [175]刘肇楠,李抄,夏明亮,等.LCOS液晶波前校正器的色散研究[J].光子学报,2010,39(6):1014-1020.
    [176]Cao Z, Mu Q, Hu L, et al. An achromatic system for twisted alignment liquidcrystal wavefront corrector[J]. Applied Optics,2008,47(8):1020-1024.
    [177]Atchison D, Smith G, et al. Chromatic dispersions of the ocular media of humaneyes[J]. Journal of the Optical Society of America A,2005,22(1):29-37.
    [178]Rose A. The Sensitivity Performance of the Human Eye on an Absolute Scale[J].Journal of the Optical Society of America,1948,38(2):196-208.
    [179]Bowmaker J. Spectral sensitivity and visual pigment absorbance[J]. VisionResearch,1973,13(4):783-792.
    [180]Fernandez E, Unterhuber A, Povazay B, et al. Chromatic aberration correction ofthe human eye for retinal imaging in the near infrared[J]. Optics Express,2006,14(13):6213-6225.
    [181]魏永毅,李海峰,刘旭.液晶投影机自动Gamma校正系统[J].浙江大学学报(工学版),2005,39(11):1727-1729.
    [182]彭国福,林正浩.LCD Gamma校正的硬件实现[J].桂林电子工业学院学报,2006,26(1):45-49.
    [183]孔宁宁,李抄,夏明亮,等.Mask相位法校准液晶空间逛调制器的位相调制特性[J].光学学报,2011,31(3):0305002-1-0305002-8.
    [184]Goldstein D. Polarized light[M],2ndedition: Florida, Marcel Dekker Inc,2003:51-53.
    [185]Giudicotti L, Brombin M. Data analysis for a rotating quarter-wave, far-infraredStokes polarimeter[J]. Applied Optics,2007,46(14):2638-2648.
    [186]Bueno J. Depolarization effects in the human eye[J]. Vision Research,2001,41(21):2687-2696.
    [187]Bueno J, Vargas F. Measurements of the corneal birefringence with aliquid-crystal imaging polariscope[J]. Applied Optics,2002,41(1):116-124.
    [188]Papaev A, Simonenko G, Tuchin V. A simple model for calculating thetransmission spectrum of polarized light for a sample of biological tissue[J]. Journalof Optical Technology,2004,71(5):267-270.
    [189]Liu Y, Kim Y, Backman V. Development of a bioengineered tissue model andits application in the investigation of the depth selectivity of polarization gating[J].Applied Optics,2005,44(12):2288-2299.
    [190]Lin J, Zheng W, Wang H, et al. Effects of scatterers’ sizes on near-field coherentanti-Stokes Raman scattering under tightly focused radially and linearly polarizedlight excitation[J]. Optics Express,2010,18(10):10888-10895.
    [191]Hielscher A, Mourant J, Bigio I. Influence of particle size and concentration onthe diffuse backscattering of polarized light from tissue phantoms and biological cellsuspensions[J]. Applied Optics,1997,36(1):125-135.
    [192]Antonelli M, Pierangelo A, Novikova T, et al. Mueller matrix imaging of humancolon tissue for cancer diagnostics: how Monte Carlo modeling can help in theinterpretation of experimental data[J]. Optics Express,2010,18(10):10200-10208.
    [193]Jonnal R, Rha J, Zhang Y, et al. In vivo functional imaging of human conephotoreceptors[J]. Optics Express,2007,15(24):16141-16160.
    [194]Song H, Zhao Y, Qi X, et al. Stokes vector analysis of adaptive optics images ofthe retina[J]. Optics Letters,2008,33(2):137-139.
    [195]Zawadzki R, Jones S, Pilli S, et al. Integrated adaptive optics optical coherencetomography and adaptive optics scanning laser ophthalmoscope system forsimultaneous cellular resolution in vivo retinal imaging[J]. Biomedical Optics Express,2011,2(6):1647-1686.
    [196]Dubra A, Sulai Y, Reflective afocal broadband adaptive optics scanningophthalmoscope[J]. Biomedical Optics Express,2011,2(6):1757-1768.
    [197]Cao Z, Mu Q, Hu L, et al. Diffractive characteristics of the liquid crystal spatiallight modulator[J]. Chinese Physics,2007,16(6):1665–1671.
    [198]Lizana A, Marquez A, Moreno I, et al. Wavelength dependence of polarimetricand phase-shift characterization of a liquid crystal on silicon display[J]. Journal of theEuropean Optical Society,2008(3):08012-1-08012-6.
    [199]Lizana A, Moreno I, Iemmi C, et al. Time-resolved Mueller matrix analysis of aliquid crystal on silicon display[J]. Applied Optics,2008,47(23):4267-4274.
    [200]Lizana A, Moreno I, Marquez A, et al. Time fluctuations of the phase modulationin a liquid crystal on silicon display: characterization and effects in diffractiveoptics[J]. Optics Express,2008,16(21):16711-16722.
    [201]Rha J, Jonnal R, Thorn K, et al. Adaptive optics flood-illumination camera forhigh speed retinal imaging[J]. Optics Express,2006,14(10):4552-4569.
    [202]李大禹,胡立发,穆全全,等.基于GPU的液晶自适应光学波前重构计算[J].光子学报,2008,37(8):1643-1647.
    [203]李大禹,胡立发,穆全全,等.CUDA架构下的液晶自适应波面数值解析[J].光学精密工程,2010,18(4):848-854.
    [204]Peng Z, Liu Y, Yao L, et al. Improvement of the switching frequency of aliquid-crystal spatial light modulator with optimal cell gap[J]. Optics Letters,2011,36(18):3608-3610.
    [205]Peng Z, Liu Y, Cao Z, et al. Fast response property of low viscositydifluorooxymethylene bridged liquid crystals[J]. Liquid Crystal,2013,40(1):91-96.
    [206]Blanco L, Mugnier L, et al. Marginal blind deconvolution of adaptive opticsretinal images[J]. Optics Express,2011,19(23):23227-23239.
    [207]王庆友主编.图像传感器应用技术[M]:第2版.北京:电子工业出版社,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700