用户名: 密码: 验证码:
应用于THz源的光纤激光器及高性能光电探测器
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
THz波在成像技术、材料检测、生命科学以及高速通信等诸多领域都有着重要的应用,目前正成为研究的热点。基于双频激光器的光子混频法能在室温下产生可调谐的连续THz波,为THz产生的重要手段。光子混频THz源具有两个核心技术——稳定双频激光器和高速光电探测器。本文围绕这两个方面对光子混频THz源的核心技术进行了详细的理论和实验研究,另外,作为探测器研究的延伸,本文还对硅基高响应度探测器进行了设计和研究,具体内容如下:
     (1)研究了光纤激光器的滤波器件——光纤布拉格光栅;分析了相移均匀光栅的透射谱特性及其在双波长单纵模激光器中的适用性:设计和制作了新颖的双π相移啁啾光纤光栅,实现了波长间隔为8nm的双波长窄线宽滤波特性。
     (2)从理论上分析了THz拍频和双波长单纵模掺铒光纤激光器;讨论了THz拍频形成的原理和条件,推导了THz拍频的自相关迹;研究了双波长单纵模掺铒光纤激光器的实现机理,并重点分析了掺铒光纤激光器的频率烧孔对双波长产生的影响以及饱和吸收体的窄带滤波功能对单纵模实现的重要作用。
     (3)对双波长单纵模掺铒光纤激光器和THz拍频进行了实验研究;对光纤激光器分别进行了单纵模、多波长和双波长单纵模的实验;实现了稳定的频率相差1THz的双波长单纵模激射;利用自相关仪对THz拍频进行了观察,成功获得了1THz的拍频信号。
     (4)理论研究了两种高速光电探测器——超短载流子寿命光电导和单传输载流子探测器(UTC-PD);分析了半导体光电探测器的基本理论和计算模型;推导了一维半导体光电导的解析解;采用商用软件COMSOL对一维和二维光电导进行了数值模拟;设计和分析了一种超短载流子寿命UTC-PD,该器件结合了UTC-PD和超短载流子寿命光电导的优点,克服了光电导高暗电流和UTC-PD慢扩散过程的限制。
     (5)理论和实验研究了两种高响应度光电探测器——谐振腔增强型(RCE)探测器和纳米柱微弱光探测器;设计和分析了双腔RCE探测器,该探测器具有高量子效率和窄带的探测谱;设计了新颖的纳米柱微弱光探测器,该探测器不仅具有很高的内部增益,而且克服了雪崩二极管(APD)高偏置电压和热载流子串扰等缺点;采用商用软件DESSIS对纳米柱探测器进行了详细的理论分析和数值模拟;同时对其进行了制作设计和实验,研究了核心工艺,并完成了部分制作工艺。
THz-wave is receiving intensive research interest due to its broad applications inimaging technology, material analysis, biological science and ultra-high speedcommunications. Photomixing with dual-frequency lasers, which is able to generatetunable CW THz-wave, becomes an important method for THz generation. The keytechnologies of THz generation by photomixing are stable dual-frequency lasers and highspeed photodetectors, which are theoretically and experimentally investigated. In addition,silicon-based high responsivity photodetectors are also studied as an extension to highspeed photodetectors. The detailed content is as follows:
     (1) Fiber Bragg gratings (FBG) are studied as wavelength filters for fiber lasers.The transmission spectra of phase-shifted uniform FBGs are investigated, and thefeasibility of its applications in the dual-wavelength single-longitudinal-mode (SLM)lasers is discussed. A novel dual-π-phase-shifted chirped FBG, which has a dual-channelnarrow-linewidth transmission spectrum with 8nm wavelength spacing, is designed andfabricated.
     (2) THz optical beating and dual-wavelength SLM erbium doped fiber lasers(EDFL) are theoretically studied. The principles and conditions of THz beat-notegeneration are discussed, and the autocorrelation trace of THz beat-notes in anautocorrelator is theoretically deduced. The mechanism for dual-wavelength SLM EDFLis studied. The influence of the spectrum hole-burning of erbium-doped fiber lasers ondual-wavelength lasing is analyzed, and the influence of the narrow-band filtering of thesaturable absorber on SLM oscillation is also analyzed.
     (3) Dual-wavelength SLM EDFL and THz optical beating are experimentallystudied. SLM, multiwavelength, and dual-wavelength SLM performance of the EDFL isexperimented. Stable dual-wavelength SLM EDFL is achieved with the frequency spacingof 1 THz. 1 THz beat-note is also successively observed with the help of an autocorrelator.
     (4) High speed photodetectors including photoconductors with ultrashort carrierlifetime and uni-traveling-carrier photodiodes (UTC-PD) are theoretically studied. Thetheoretical basis and numerical models of semiconductor photodetectors are analyzed. Theanalytical expressions for 1D photoconductor are deduced, and both 1D and 2Dphotoconductors are numerically simulated by the commercial simulation tool COMSOL.A special UTC-PD based on materials of ultrashort carrier lifetime is designed and analyzed, which takes advantage of the merits of both UTC-PD and photoconductors withultrashort carrier lifetime, but solves the problems of large dark current ofphotoconductors and slow diffusion process of UTC-PDs.
     (5) High responsivity photodetectors with resonant cavity enhancement (RCE) andnano-pillar are theoretically and experimentally studied. A special double-cavity RCEdetector is designed and analyzed, which carries high quantum efficiency and narrow-banddetection spectrum. A novel nano-pillar detector is invented for weak light detection,which not only has very high internal gain, but also overcomes the shortcomings ofavalanche photodiodes (APD), such as high bias voltage, hot carrier crosstalking, etc. Thenano-pillar detector is theoretically analyzed and numerically simulated by the commercialsemiconductor simulation software DESSIS. The process flow is designed, the keyprocess technologies are studied, and parts of the process are finished.
引文
[1] Siegel, P. H. Terahertz technology. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 910-928
    [2] Xu, J. Z., Zhang, C. L., Zhang, X. C. Recent progress in terahertz science and technology. Progress in Natural Science, 2002, 12(10): 729-736
    [3] Zhang, X. C. Recent progress of terahertz imaging technology, in: Gal, M., editor. Conference on Optoelectronic and Microelectronic Materials and Devices (COMMAD). Sydney, Australia: 2002: 1-6
    [4] Menikh, A., MacColl, R., Mannella, C. A., Zhang, X. C. Terahertz biosensing technology: Frontiers and progress. Chemphyschem, 2002, 3(8): 655-658
    [5] Tani, M., Gu, P., Hyodo, M., Sakai, K., et al. Generation of coherent terahertz radiation by photomixing of dual-mode lasers. Optical and Quantum Electronics, 2000, 32(4-5): 503-520
    [6] Stone, M. R., Naftaly, M., Miles, R. E., Mayorga, I. C., et al. Generation of continuous-wave terahertz radiation using a two-mode titanium sapphire laser containing an intracavity Fabry-Perot etalon. Journal of Applied Physics, 2005, 97(10): 103108-1-4
    [7] Naftaly, M., Stone, M. R., Malcoci, A., Miles, R. E., et al. Generation of CW terahertz radiation using two-colour laser with Fabry-Perot etalon. Electronics Letters, 2005, 41(3): 128-129
    [8] Gu, P., Tani, M., Hyodo, M., Sakai, K., et al. Generation of cw-terahertz radiation using a two-longitudinal-mode laser diode. Japanese Journal of Applied Physics Part 2-Letters, 1998, 37(8B): L976-L978
    [9] 张显斌.基于LiNbO_3晶体耦合场量子的THz电磁波辐射源研究:[博士学位论文].西安:西安理工大学图书馆,2007
    [10] Crowe, T. W. Opening the Terahertz window, in: 1st IEEE Compound Semiconductor Integrated Circuit Symposium. Monterey, CA: 2004: 21-24
    [11] 贾婉丽.GaAs光电导开关产生太赫兹电磁波的实验及理论分析:[博士学位论文].西安:西安理工大学图书馆,2007
    [12] 张同军.基于太赫兹时域谱的生物分子检测技术:[博士学位论文].浙江:浙江大学图书馆,2007
    [13] 吕京涛.太赫兹量子级联激光器及其它半导体辐射源研究:[博士学位论文].上海:中国科学院上海微系统与信息技术研究所图书馆,2006
    [14] Zhong, H., Xu, J. Z., Xie, X., Yuan, T., et al. Nondestructive defect identification with terahertz time-of-flight tomography. IEEE Sensors Journal, 2005, 5(2): 203-208
    [15] Schall, M., Walther, M., Jepsen, P. U. Fundamental and second-order phonon processes in CdTe and ZnTe. Physical Review B, 2001, 64(9): 094301-1-8
    [16] Mickan, S. P., Shvartsman, R., Munch, J., Zhang, X. C., et al. Low noise laser-based T-ray spectroscopy of liquids using double-modulated differential time-domain spectroscopy, in: 1st International Symposium on Fluctuations and Noise. Santa Fe, Nm: 2003: S786-S795
    [17] Han, P. Y., Zhang, X. C. Time-domain spectroscopy targets the far-infrared. Laser Focus World, 2000, 36(10): 117-122
    [18] Faist, J., Capasso, F., Sivco, D. L., Sirtori, C., et al. Quantum Cascade Laser. Science, 1994, 264(5158): 553-556
    [19] Scalari, G., Amanti, M. I., Fischer, M., Terazzi, R., et al. Step well quantum cascade laser emitting at 3 THz. Applied Physics Letters, 2009, 94(4): 041114-1-3
    [20] Carr, G. L., Martin, M. C., McKinney, W. R., Jordan, K., et al. High-power terahertz radiation from relativistic electrons. Nature, 2002, 420(6912): 153-156
    [21] Smith, P. R., Auston, D. H., Nuss, M. C. Subpicosecond photoconducting dipole antennas. IEEE Journal of Quantum Electronics, 1988, 24(2): 255-260
    [22] Fermann, M. E., Hartl, I. Ultrafast Fiber Laser Technology. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(1): 191-206
    [23] Kiessling, J., Sowade, R., Breunig, I., Buse, K., et al. Cascaded optical parametric oscillations generating tunable terahertz waves in periodically poled lithium niobate crystals. Optics Express, 2009, 17(1): 87-91
    [24] Taccheo, S., Sorbello, G., Della Valle, G., Laporta, P., et al. Generation of micro-and THz-waves at 1.5 mm by dual-frequency Er: Yb laser. Electronics Letters, 2001, 37(24): 1463-1464
    [25] Alouini, M., Brunei, M., Bretenaker, F., Vallet, M., et al. Dual tunable wavelength Er : Yb : glass laser for terahertz beat frequency generation. IEEE Photonics Technology Letters, 1998,10(11): 1554-1556
    [26] Mangeney, J., Merigault, A., Zerounian, N., Crozat, P., et al. Continuous wave terahertz generation up to 2 THz by photomixing on ion-irradiated In_(0.53)Ga_(0.47)As at 1.55 mm wavelengths. Applied Physics Letters, 2007,91(24): 241102-1-3
    [27] Hidaka, T., Matsuura, S., Tani, M., Sakai, K. CW terahertz wave generation by photomixing using a two-longitudinal-mode laser diode. Electronics Letters, 1997, 33(24): 2039-2040
    [28] Gu, P., Chang, F., Tani, M., Sakai, K., et al. Generation of coherent cw-terahertz radiation using a tunable dual-wavelength external cavity laser diode. Japanese Journal of Applied Physics Part 2-Letters, 1999, 38(11A): L1246-L1248
    [29] Tani, M., Morikawa, O., Matsuura, S., Hangyo, M. Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers. Semiconductor Science and Technology, 2005, 20(7): S151-S163
    [30] Mikulics, M., Camara, I., Marso, M., van der Hart, A., et al. Generation of THz radiation by photomixing in low-temperature-grown MBE GaAs. in: Osvald, J. and Hascik, S., editors. 5th International Conference on Advanced Semiconductor Devices and Microsystems. Smolenice, SLOVAKIA: IEEE, 2004: 231-234
    [31] Sukhotin, M., Brown, E. R., Gossard, A. C, Driscoll, D., et al. Photomixing and photoconductor measurements on ErAs/InGaAs at 1.55 mm. Applied Physics Letters, 2003, 82(18): 3116-3118
    [32] Brown, E. R., Mclntosh, K. A., Nichols, K. B., Dennis, C. L. Photomixing up to 3.8 THz in low-temperature-grown GaAs. Applied Physics Letters, 1995, 66(3): 285-287
    [33] Mclntosh, K. A., Brown, E. R., Nichols, K. B., McMahon, O. B., et al. Terahertz photomixing with diode lasers in low-temperature-grown GaAs. Applied Physics Letters, 1995, 67(26): 3844-3846
    [34] Brown, E. R. THz generation by photomixing in ultrafast photoconductors. International Journal of High Speed Electronics and Systems, 2003, 13(2): 497-545
    [35] Matsuura, S., Tani, M., Sakai, K. Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas. Applied Physics Letters, 1997, 70(5): 559-561
    [36] Mikulics, M., Siebe, F., Fox, A., Marso, M., et al. Generation of 460 GHz radiation by photomixing in low-temperature-grown MBE GaAs. in: Breza, J. and Donoval, D., editors. 4th International Conference on Advanced Semiconductor Devices and Microsystems. Smolenice Castle, Slovakia: Ieee, 2002: 129-132
    [37] Peytavit, E., Arscott, S., Lippens, D., Mouret, G, et al. Terahertz frequency difference from vertically integrated low-temperature-grown GaAs photodetector. Applied Physics Letters, 2002, 81(7): 1174-1176
    [38] Winnerl, S., Peter, R, Nitsche, S., Dreyhaupt, A., et al. Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(2): 449-457
    [39] Liu, X., Prasad, A., Chen, W. M., Kurpiewski, A., et al. Mechanism responsible for the semi-insulating properties of low-temperature-grown GaAs. Applied Physics Letters, 1994, 65(23): 3002-3004
    [40] Siegner, U., Fluck, R., Zhang, G, Keller, U. Ultrafast high-intensity nonlinear absorption dynamics in low-temperature grown gallium arsenide. Applied Physics Letters, 1996, 69(17): 2566-2568
    [41] Benjamin, S. D., Loka, H. S., Othonos, A., Smith, P. W. E. Ultrafast dynamics of nonlinear absorption in low-temperature-grown GaAs. Applied Physics Letters, 1996, 68(18): 2544-2546
    [42] Mayorga, I. C., Michael, E. A., Schmitz, A., van der Wal, P., et al. Terahertz photomixing in high energy oxygen- and nitrogen-ion-implanted GaAs. Applied Physics Letters, 2007, 91(3): 031107-1-3
    [43] Gregory, I. S., Baker, C., Tribe, W. R., Evans, M. J., et al. High resistivity annealed low-temperature GaAs with 100 fs lifetimes. Applied Physics Letters, 2003, 83(20): 4199-4201
    [44] Driscoll, D. C, Hanson, M. P., Gossard, A. C. Carrier compensation in semiconductors with buried metallic nanoparticles. Journal of Applied Physics, 2005, 97(1): 066102-1-3
    [45] Sukhotin, M., Brown, E. R., Driscoll, D., Hanson, M., et al. Picosecond photocarrier-lifetime in ErAs : InGaAs at 1.55 mm. Applied Physics Letters, 2003, 83(19): 3921-3923
    [46] Driscoll, D. C., Hanson, M. P., Gossard, A. C., Brown, E. R. Ultrafast photoresponse at 1.55 mm in InGaAs with embedded semimetallic ErAs nanoparticles. Applied Physics Letters, 2005, 86(5): 051908-1-3
    [47] Ospald, F., Maryenko, D., von Klitzing, K., Driscoll, D. C, et al, 1.55 mm ultrafast photoconductive switches based on ErAs : InGaAs. Applied Physics Letters, 2008, 92(13): 131117-1-3
    [48] Driscoll, D. C, Hanson, M. P., Muller, E., Gossard, A. C. Growth and microstructure of semi-metallic ErAs particles embedded in an In_(0.53)Ga_(0.47)As matrix, in: Proceedings of MBE-Ⅻ. San Francisco, CA, USA: IEEE, 2002. 307-308
    [49] Matsui, Y., Pelusi, M. D., Arahira, S., Ogawa, Y. Beat frequency generation up to 3.4THz from simultaneous two-mode lasing operation of sampled-grating DBR laser. Electronics Letters, 1999, 35(6): 472-474
    [50] Czarny, R., Alouini, M., Larat, C., Krakowski, M., et al. THz-dual-frequency Yb3+ : KGd(WO4)(2) laser for continuous wave THz generation through photomixing. Electronics Letters, 2004,40(15): 942-943
    [51] Wilier, U., Wilk, R., Schippers, W., Bottger, S., et al. A novel THz source based on a two-color Nd : LSB microchip-laser and a LT-GaAsSb photomixer. Applied Physics B-Lasers and Optics, 2007, 87(1): 13-16
    [52] Park, I., Sydlo, C., Fischer, I., Elsasser, W., et al. Generation and spectroscopic application of tunable continuous-wave terahertz radiation using a dual-mode semiconductor laser. Measurement Science & Technology, 2008, 19(6): 065305-1-9
    [53] Desurvire, E., Zyskind, J. L., Simpson, J. R. Spectral gain hole-burning at 1.53 mm in erbium-doped fiber amplifiers. IEEE Photonics Technology Letters, 1990, 2(4): 246-248
    [54] Park, N., Wysocki, P. F, 24-line multiwavelength operation of erbium-doped fiber-ring laser. IEEE Photonics Technology Letters, 1996, 8(11): 1459-1461
    [55] Kim, S. K., Chu, M. J., Lee, J. H. Wideband multiwavelength erbium-doped fiber ring laser with frequency shifted feedback. Optics Communications, 2001, 190(1-6): 291-302
    [56] Kejiang, Z., Dongyun, Z., Fengzhong, D., Nam Quoc, N. Room-temperature multiwavelength erbium-doped fiber ring laser employing sinusoidal phase-modulation feedback. Optics Letters, 2003, 28(11): 893-895
    [57] Wang, D. N., Tong, F. W., Fang, X. H., Jin, W., et al. Multiwavelength erbium-doped fiber ring laser source with a hybrid gain medium. Optics Communications, 2003,228(4-6): 295-301
    [58] Yang, X., Lu, F., Dong. X., et al. Four-wave-mixing-assisted room-temperature four-wavelength erbium-doped fiber lasers. Optical Engineering, 2006, 45(6): 64202-1-4
    [59] Feng, X. H., Tarn, H. Y., Wai, P. K. A. Switchable multiwavelength erbium-doped fiber laser with a multimode fiber Bragg grating and photonic crystal fiber. IEEE Photonics Technology Letters, 2006, 18(9-12): 1088-1090
    [60] Liu, X. M., Zhou, X. Q., Lu, C. Four-wave mixing assisted stability enhancement: theory, experiment, and application. Optics Letters, 2005, 30(17): 2257-2259
    [61] Pan, S. L., Lou, C. Y. Stable multiwavelength dispersion-tuned actively mode-locked erbium-doped fiber ring laser using nonlinear polarization rotation. IEEE Photonics Technology Letters, 2006, 18(13-16): 1451-1453
    [62] Feng, X. H., Tarn, H. Y., Wai, P. K. A. Stable and uniform multiwavelength erbium-doped fiber laser using nonlinear polarization rotation. Optics Express, 2006, 14(18): 8205-8210
    [63] Sun, J. Q., Qiu, J. L., Huang, D. X. Multiwavelength erbium-doped fiber lasers exploiting polarization hole burning. Optics Communications, 2000, 182(1-3): 193-197
    [64] Graydon, O., Loh, W. H., Laming, R. I., Dong, L. Triple-frequency operation of an Er-doped twincore fiber loop laser. IEEE Photonics Technology Letters, 1996, 8(1): 63-65
    [65] Liu, Y, Dong, X., Shum, P., Yuan, S., et al. Stable room-temperature multi-wavelength lasing realization in ordinary erbium-doped fiber loop lasers. Optics Express, 2006, 14(20): 9293-9298
    [66] Erdogan, T. Fiber crating spectra. Journal of Lightwave Technology, 1997, 15(8): 1277-1294
    [67] Cheng, Y., Kringlebotn, J. T., Loh, W. H., Laming, R. I., et al. Stable single-frequency traveling-wave fiber loop laser with integral saturable-absorber-based tracking narrow-band filter. Optics Letters, 1995, 20(8): 875-877
    [68] Frisken, S. J. Transient Bragg reflection gratings in erbium-doped fiber amplifiers. Optics Letters, 1992,17(24): 1776-1778
    [69] Horowitz, M., Daisy, R., Fischer, B., Zyskind, J. L. Linewidth-narrowing mechanism in lasers by nonlinear wave mixing. Optics Letters, 1994, 19(18): 1406-1408
    [70] Chien-Chung, L., Yung-Kuang, C, Shien-Kuei, L. Single-longitudinal-mode fiber laser with a passive multiple-ring cavity and its application for video transmission. Optics Letters, 1998,23(5): 358-360
    [71] Liu, J., Yao, J. P., Yao, J., Yeap, T. H. Single-longitudinal-mode multiwavelength fiber ring laser. IEEE Photonics Technology Letters, 2004, 16(4): 1020-1022
    [72] Chen, X. F., Yao, J. P., Deng, Z. C. Ultranarrow dual-transmission-band fiber Bragg grating filter and its application in a dual-wavelength single-longitudinal-mode fiber ring laser. Optics Letters, 2005, 30(16): 2068-2070
    [73] Yao, Y, Chen, X. F., Dai, Y. T., Xie, S. Z. Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation. IEEE Photonics Technology Letters, 2006,18(1-4): 187-189
    [74] Chen, G. J., Huang, D. X., Zhang, X. L., Cao, H. Photonic generation of a microwave signal by incorporating a delay interferometer and a saturable absorber. Optics Letters, 2008, 33(6): 554-556
    [75] Sun, J. Q., Yuan, X. H., Y, Zhang, X. L., Huang, D. X. Single-longitudinal-mode dual-wavelength fiber ring laser by incorporating variable saturable absorbers and feedback fiber loops. Optics Communications, 2007,273(1): 231-237
    [76] Neamen, D. A. Semiconductor Physics and Devices: Basic Principles. New York: MaGraw-Hill, 2003: 103-226
    [77] Liu, J. M. Photonic Devices. Cambridge: Cambridge University Press, 2005: 926-986
    [78] Chimot, N., Mangeney, J., Crozat, P., Lourtioz, J. M., et al. Photomixing at 1.55 mm in ion-irradiated In_(0.53)Ga_(0.47)As on InP. Optics Express, 2006, 14(5): 1856-1861
    [79] Ishibashi, T., Ito, H. Uni-traveling-carrier photodiodes. Oyo Buturi, 2001, 70(11): 1304-1307
    [80] Ishibashi, T., Furuta, T., Fushimi, H., Ito, H. Photoresponse characteristics of uni-traveling-carrier photodiodes. in: Arakawa, Y., Blood, P. and Osinski, M., editors. Conference on Physics and Simulation of Optoelectronic DevicesⅨ. San Jose, Ca: Spie-Int Soc Optical Engineering, 2001: 469-479
    [81] Ito, H., Nagatsuma, T., Ishibashi, T. Recent development on uni-traveling-carrier photodiodes and their applications. in: LEOS 2001, 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society. San Diego, CA, USA: IEEE, 2001, 381: 386-387
    [82] Kuo, F. M., Wu, Y. S., Shi, J. W. High-power near-ballistic uni-traveling-carrier photodiode based photonic millimeter-wave (W-band) generator with internal up-conversion gain. in: LEOS 2008 - 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS 2008). Acapulco, Mexico: IEEE, 2008: 350-351
    [83] Lasaosa, D., Shi, J. W., Pasquariello, D., Gan, K. G, et al. Traveling-wave photodetectors with high power-bandwidth and gain-bandwidth product performance. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10(4): 728-741
    [84] Rangel-Sharp, G., Miles, R. E., Iezekiel, S. Traveling-wave photodetectors: a review. Radio Science Bulletin, 2004(311): 55-64
    [85] Giboney, K. S., Rodwell, M. J. W., Bowers, J. E. Traveling-wave photodetector theory. IEEE Transactions on Microwave Theory and Techniques, 1997, 45(8): 1310-1319
    [86] Lochtefeld, A. J., Melloch, M. R., Chang, J. C. P., Harmon, E. S. The role of point defects and arsenic precipitates in carrier trapping and recombination in low-temperature grown GaAs. Applied Physics Letters, 1996, 69(10): 1465-1467
    [87] Giboney, K., Bowers, J., Rodwell, M. Travelling-wave photodetectors. in: Kirby, L., editor. Proceedings of 1995 IEEE MTT-S International Microwave Symposium. Orlando, FL, USA: IEEE, 1995, 151: 159-162
    [88] Kishino, K., Unlu, M. S., Chyi, J. I., Reed, J., et al. Resonant cavity-enhanced (RCE) photodetectors. IEEE Journal of Quantum Electronics, 1991, 27(8): 2025-2034
    [89] Butun, B., Biyikli, N., Kimukin, I., Aytur, O., et al. High-speed 1.55 mm operation of low-temperature-grown GaAs-based resonant-cavity-enhanced p-i-n photodiodes. Applied Physics Letters, 2004, 84(21): 4185-4187
    [90] Peres, G., Ripoche, G. Silicon photodetectors in avalanche conditions. L'Onde Electrique, 1969,49(504): 318-327
    [91] Kang, Y. M., Liu, H. D., Morse, M., Paniccia, M. J., et al. Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product. Nature Photonics, 2009, 3(1): 59-63
    [92] Dosunmu, O. I., Cannon, D. D., Emsley, M. K., Ghyselen, B., et al. Resonant cavity enhanced Ge photodetectors for 1550 nm operation on reflecting Si substrates. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10(4): 694-701
    [93] Sun, X., Davidson, F. M. Photon counting with silicon avalanche photodiodes. Journal of Lightwave Technology, 1992, 10(8): 1023-1032
    [94] Jalali, B., Fathpour, S. Silicon photonics. Journal of Lightwave Technology, 2006, 24(12): 4600-4615
    [95] Basak, J., Liao, L., Liu, A., Nguyen, H., et al. High Speed Photonics on an SOI platform, in: IEEE International SOI Conference. New Platz, NY: Ieee, 2008. 85-86
    [96] Li, W., Lit, J. W. Y. Phase-shifted Bragg grating filters with symmetrical structures. Journal of Lightwave Technology, 1997, 15(8): 1405-1410
    [97] Xia, L., Shum, P., Cheng, T. The design and fabrication of multitransmission-band optical FBG filter with ultranarrow wavelength spacing. Microwave and Optical Technology Letters, 2007, 49(5): 1122-1125
    [98] Nasu, Y, Yamashita, S. Multiple phase-shift superstructure fibre Bragg grating for DWDM systems. Electronics Letters, 2001, 37(24): 1471-1472
    [99] Agrawal, G P., Radic, S. Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing. IEEE Photonics Technology Letters, 1994,6(8): 995-997
    [100] Sipe, J. E., Poladian, L., de Sterke, C. M. Propagation through nonuniform grating structures. Journal of the Optical Society of America A (Optics and Image Science), 1994,11(4): 1307-1320
    [101] Ibsen, M., Durkin, M. K., Cole, M. J., Laming, R. I. Sinc-sampled fiber Bragg grating for identical multiwavelength operation, in: OFC '98 Optical Fiber Communication Conference and Exhibit. Technical Digest Conference Edition 1998 OSA Technical Digest Series. Vol.2. San Jose, CA, USA: Opt. Soc. America, 1998:5-6
    [102] Liu, X. M., Sun, G., Moon, D. S., Hwang, D., et al. Ultra-narrow dual-channel filter based on sampled fiber Bragg gratings, in: Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference. San Jose, CA: Ieee, 2008: 2607-2608
    [103] Zou, X., Wang, F., Pan, W. Flat-top and ultranarrow bandpass filter designed by sampled fiber Bragg grating with multiple equivalent phase shifts. Appl Opt, 2009, 48(4): 691-694
    [104] Pereira, S., Larochelle, S. Field profiles and spectral properties of chirped Bragg grating Fabry-Perot interferometers. Optics Express, 2005, 13(6): 1906-1915
    [105] Xueming, L. A novel dual-wavelength DFB fiber laser based on symmetrical FBG structure. IEEE Photonics Technology Letters, 2007, 19(9): 632-634
    [106] Diels, J. C., Fontaine, J. J., McMichael, I. C., Simoni, F. Control and measurement of ultrashort pulse shapes(in amplitude and phase) with femtosecond accuracy. Appl Opt, 1985, 24(9): 1270-1282
    [107] 周炳琨,高以智,陈倜嵘等.激光原理.第四版.北京:国防工业出版社,2000:131-141
    [108] 聂秋华.光纤激光器和放大器技术.第一版.北京:电子工业出版社,1997:85-91
    [109] Sulhoff, J. W., Srivastava, A. K., Wolf, C., Sun, Y., et al. Spectral-hole burning in erbium-doped silica and fluoride fibers. IEEE Photonics Technology Letters, 1997, 9(12): 1578-1579
    [110] Aizawa, T., Sakai, T., Wada, A., Yamauchi, R. Effect of spectral-hole buming on multi-channel EDFA gain profile, in: OFC/IOOC'99. Optical Fiber Communication Conference and the International Conference on Integrated Optics and Optical Fiber Communications. San Diego, CA, USA: IEEE, 1999, 102: 102-104
    [111] Srivastava, A. K., Zyskind, J. L., Sulhoff, J. W., Evankow, J. D., Jr., et al. Room temperature spectral hole-burning in erbium-doped fiber amplifiers, in: OFC '96- Conference on Optical Fiber Communication. San Jose, CA, USA: Opt. Soc. America, 1996: 33-34
    [112] Fischer, B., Zyskind, J. I., Sulhoff, J. W., DiGiovanni, D. J. Nonlinear wave mixing and induced gratings in erbium-doped fiber amplifiers. Optics Letters, 1993, 18(24): 2108-2110
    [113] Agrawal, G. P., Lax, M. Effects of interference on gain saturation in laser resonators. Journal of the Optical Society of America, 1979, 69(12): 1717-1719
    [114] Agrawal, G. P., Lax, M. Analytic evaluation of interference effects on laser output in a Fabry-Perot resonator. Journal of the Optical Society of America, 1981, 71(5): 515-519
    [115] Jaskorzynska, B., Vanin, E., Helmfrid, S. Gain-saturation gratings with an arbitrary diffusion rate of excited states. Journal of the Optical Society of America B-Optical Physics, 1998, 15(3): 945-950
    [116] COMSOL 3.4使用手册,2007
    [117] 孙金海.数学物理方程与特殊函数.背景:高等教育出版社,2001:24-56
    [118] Iverson, A. E., Smith, D. L. Mathematical modeling of photoconductor transient response. IEEE Transactions on Electron Devices, 1987, ED-34(10): 2098-2107
    [119] Harmon, E. S., Melloch, M. R., Woodall, J. M., Nolte, D. D., et al. Carrier lifetime versus anneal in low temperature growth GaAs. Applied Physics Letters, 1993, 63(16): 2248-2250
    [120] Prabhu, S. S., Ralph, S. E., Melloch, M. R., Harmon, E. S. Carrier dynamics of low-temperature-grown GaAs observed via THz spectroscopy. Applied Physics Letters, 1997, 70(18): 2419-2421
    [121] Emsley, M. K., Dosunmu, O., Unlu, M. S. Silicon substrates with buried distributed Bragg reflectors for resonant cavity-enhanced optoelectronics. IEEE Journal of Selected Topics in Quantum Electronics, 2002, 8(4): 948-955
    [122] Brugler, J. S. Low-light-level properties of the phototransistor charge-storage mode. IEEE Journal of Solid-State Circuits, 1969, SC-4(3): 136-144
    [123] Koike, S., Iwasa, H., Totani, A. Silicon planar phototransistors. National Technical Report, 1972, 18(3): 270-278
    [124] Nordstrom, R. A., Meindl, J. D. The field-effect modified transistor: a high-responsivity photosensor. IEEE Journal of Solid-State Circuits, 1972, SC-7(5): 411-417
    [125] Chandrasekhar, S., Hoppe, M. K., Dentai, A. G., Joyner, C. H., et al. Demonstration of enhanced performance of an InP/InGaAs heterojunction phototransistor with a base terminal. IEEE Electron Device Letters, 1991, 12(10): 550-552
    [126] Unlu, M. S., Kishino, K., Liaw, H. J., Morkoc, H. A theoretical study of resonant cavity-enhanced photodetectors with Ge and Si active regions. Journal of Applied Physics, 1992, 71(8): 4049-4058
    [127] 梁铨廷.物理光学.北京:机械工业出版社, 1980:123-150
    [128] Li-Qiang, L., Davis, L. M. Single photon avalanche diode for single molecule detection. Review of Scientific Instruments, 1993, 64(6): 1524-1529
    [129] Cova, S., Ghioni, M, Rech, I. Photon counting and timing detector modules for single-molecule spectroscopy and DNA analysis. in: 2004 IEEE LEOS Annual Meeting Conference Proceedings. Rio Grande, Puerto Rico: IEEE, 2004, 171: 70-71
    [130] Siegmund, O. H. W. High-performance microchannel plate detectors for UV/visible astronomy. in: International Conference on Imaging Techniques in Subatomic Physics, Astrophysics, Medicine, Biology and Industry. Stockholm, SWEDEN: Elsevier Science Bv, 2003, 12-16
    [131] Hergert, E., Lares, M. Geiger-mode APD arrays detect low light. Laser Focus World, 2008, 44(8): 119-121
    [132] Campbell, J. C. Recent advances in avalanche photodiodes. in: LEOS 2008 - 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS 2008). Acapulco, Mexico: Ieee, 2008: 573-574
    [133] Carroll, M. S., Childs, K., Jarecki, R., Bauer, T, et al. Ge-Si separate absorption and multiplication avalanche photodiode for Geiger mode single photon detection. Applied Physics Letters, 2008, 93(18): 183511-1-3
    [134] Zhang, X. J., Wan, J., Yan, C. J., Y., Dong, F. The development and application of single-photon detectors. Proceedings of the SPIE - The International Society for Optical Engineering, 2008, 7055: 70550V
    [135] Lacaita, A. L., Zappa, F., Bigliardi, S., Manfredi, M. On the bremsstrahlung origin of hot-carrier-induced photons in silicon devices. IEEE Transactions on Electron Devices, 1993,40(3): 577-582
    [136] ISE TCAD Dessis reference manual, release 10.0
    [137] Goltsman, G N. Ultrafast nanowire superconducting single-photon detector with photon number resolving capability. Proceedings of the SPIE - The International Society for Optical Engineering, 2009, 7236: 72360D
    [138] Marsili, R, Bitauld, D., Divochiy, A., Gaggero, A., et al. Superconducting Nanowire Photon Number Resolving Detector at Telecom Wavelength. in: Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference. San Jose, CA: Ieee, 2008: 3227-3228
    [139] Lee, J. Y. Molecular Beam Epitaxy for Ge Nanoheteroepitaxial Growth and High Mobility Device Applications: [PhD thesis]. Los Angeles: University of California at Los Angeles Library, 2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700