用户名: 密码: 验证码:
稀土(Dy,Nd,Yb,Er)掺杂氧化铝发光特性和测温应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三价稀土离子有丰富的能级,其上转换发光在光学温度传感器、短波长激光器和白光模拟等领域展现了巨大的应用潜力。
     首先,溶胶凝胶法制备氧化铝,选取乙酰丙酮、异丙醇、异丙醇铝、高纯水等化学原料按照特定的比例发生鳌合、水解反应生成基质材料氧化铝溶胶。在此基础上按照实验设计加入稀土硝酸盐Er(NO_3)_3、Yb(NO_3)_3、Nd(NO_3)_3和Dy(NO_3)_3等。将得到的稀土掺杂氧化铝凝胶经过干燥,制备出不同掺杂参数的镱铒钕共掺、镱镝共掺氧化铝系列样品,给出优化的工艺参数,如退火时间、退火温度等。
     其次,用978nm半导体激光器作为泵浦源,常温下测量了Dy~(3+):Yb~(3+)共掺氧化铝样品在350-950nm区间的光致发光特性,讨论分析了主要发光峰的上转换机制。实验观测到6个较强的光致发光谱:378nm、408nm、527nm、544nm、663 nm和883nm。功率谱测量和上转换机制分析表明378nm和408nm上转换发光为三光子过程,而527nm是两光子和三光子共同作用过程, 544nm和663 nm主要为两光子过程。
     再次,讨论了Yb~(3+):Er~(3+):Nd~(3+)共掺氧化铝温度传感材料的原理,并对813nm和887nm发射光谱跃迁机制及对应的能级结构进行了分析。当温度由375K升高到887K,钕离子在813nm和887nm的发射光谱随温度升高而增强,并且813nm光谱强度增强的速度明显超过887nm光谱,两光谱分别对应着~4F_(5/2)+~2H_(9/2)→~4I_(9/2)和~4F_(3/2)→~4I_(9/2)能级的跃迁,整个钕离子发射光谱的布局数是铒离子二次敏化过程。利用荧光强度比法对不同温度时两光谱强度进行处理,得到Yb~(3+):Er~(3+):Nd~(3+)共掺氧化铝温度传感材料灵敏度最高精度达到0.0015K~(-1)。
     最后,对本论文工作进行了总结,并对掺杂稀土上转换发光材料的研究方向进行了展望。
The trivalent ions with abundant energy levels of rare earth elements exhibit considerable potential applications in optical temperature sensor, shortwave laser, biomedicine diagnostics and white-light illumination, etc, because of their up- conversion luminescence.
     Firstly, the acetylacetone (AcAcH) was mixed with the Al(OC3H7)3 and PriOH solution chelating and hydrolyzing to be Al_2O_3 sol. Then, Nd~(3+), Er~(3+) ,Yb~(3+)andYb~(3+) ions were imported by addition of Nd(NO_3)_3·5H_2O, Er(NO_3)_3·5H_2O ,Yb(NO_3)_3·5H_2O and Yb(NO_3)_3·5H_2O with a particular molar ratio. The xerogel was obtained after drying of the co-doped sol at 373K for 8h to remove the solvent. The Nd~(3+): Er~(3+):Yb~(3+) co-doped Al_2O_3 was obtained after the xerogel was dried and heated. Finally, the technics parametres such as heating time and cooling temperature were performed. Secondly, the photoluminescence spectra of Yb~(3+):Dy~(3+) co-doped Al_2O_3 powder was measured in the range from 350nm to 950nm at room temperature, using a 978nm laser diode as an excitation source. The dominate up-conversion mechanisms, including energy transfer, cross relaxation and excited state absorption were discussed. The emissions of Dy~(3+) ions at 378nm, 408nm, 527nm, 544nm, 663 nm and 883nm observed. Through the measurement of the power spectra and the analysis of transition progress we know that emissions of Dy~(3+) ions at 378nm and 408nm are two photons progress, the emission at 527nm is two and three mixed photons progress, 544nm and 663 nm are totally two photons progress.
     Thirdly, Nd~(3+):Er~(3+):Yb~(3+)co-doped Al_2O_3 powder have been prepared by nonaqueous sol-gel method. The two-stage sensitization processes for energy transfer among Yb~(3+), Er~(3+) and Nd~(3+) were discussed. Under a 978nm semiconductor laser excitation, the photoluminescence intensities at 813 and 887nm corresponding to the ~4F_(5/2)+~2H_(9/2)→~4I_(9/2) and ~4F_(3/2)→~4I_(9/2) transitions of Nd~(3+) ions enhance monotonously with the increasing temperature, and the fluorescence intensity ratio of the near-infrared emissions can be fitted the exponential function R=3.12exp(-1150/T) in the temperature range of 375-889K. The maximum sensitivity is 0.0015K~(-1) at 574.3K.
     At last, the work of the thesis was summarized, and future research plans have been prospected for rare earth doped materials.
引文
[1] G. Tripathi, V.K. Rai, S.B. Rai . Upconversion and temperature sensing behavior of Er3+ doped Bi2O3–Li2O–BaO–PbO tertiary glass. Opt. Mater, 2006, 30(2) :201~206
    [2] I.I. Oprea, H. Hesse, Klaus Betzler. Luminescence of erbium-doped bismuth–borate glasses. Opt. Mater, 2006, 28(10) :1136~1142
    [3] L.F. Johnson, G.J. Guggenheim. Inrfared-Pumped Visible Laser. Appl. Phys. Lett., 1971, 19(2) :44~47
    [4] M.J.Weber, D.C.Ziegler ,C.A.Angell. Tailoring stimulated emission cross sections of Nd3+ laser glass: Observation of large cross sections for BiCl3 glasses. J. Appl. Phys, 1982, 53(6):4344
    [5] S.A. Pollack, D.B. Chang, N.L. Moise. Upconversion-pumped infrared erbium laser. J. Appl. Phys., 1986, 60(12) :4077~4085
    [6] Allin J Y, Monerie R, Poignant H. Tunable CW lasing around 0.82, 1.48, 1.88, 2.35μm in thulium- doped fluorozirconate fiber. Electron. Lett., 1989, 25(24): 1660~1662
    [7] Hutchison C A, Utterback S G, Martineau P M. Fluorescence and magnetic resonance spectra of Nd3+ and Er3+ ions in signal crystals of LaCl3. Phys. Rev. B, 1989, 39(7): 4051~4070
    [8] Eric Lallier, Rare-earth-doped glass and LiNbO3 waveguide lasers and optical amplifiers. Applied Optics, 1992, 31(25), 5276~5282
    [9] van den Hoven G N, Shin J H, Polman A, et al., Erbium in oxygen-doped silicon: Optical excitation. J.Appl.Phys, 1995, 78(4):2642~2650
    [10] Gruber J B, Morrison C L, Seltzer M D, Wright A O, Nadler M P, Allik T H, Hutchinson J A, Chai B H. Site-selective excitation and polarized absorption spectra of Nd3+ in Sr(Po4)3F and Ca(Po4)3F. J. Appl. Phys., 1996, 79(3): 1746~1758
    [11] Anderson A A, Bonner C L, Shepherd D P, Eason R W, Grivas C, Gill D S, Vainos N. Low loss (0.5dB/cm) Nd:Gd3Ga5O12 waveguide layers grown by pulsed laser deposition. Opt. Commun., 1997, 144: 183~186
    [12] Shooshtrai A, Touam T, Najafi S I, et al., Yb3+ sensitized Er3+-doped waveguide amplifiers:a theoretical approach. Optical and Quantum Electronics, 1998, 30: 249~264
    [13] Giorgia Franzò, Fabio Iacona, Vincenzo Vinciguerra, et al.,Enhanced rare earth luminescencein silicon nanocrystals. Materials Science and Engineering B,2000, 69: 335~339
    [14] da Silva C J, de Araujo M T, Gouveia E A, Gouveia N A S. Thermal effect on multiphonon-assisted anti-Stokes excited upconversion fluorescence emission in Yb3+-sensitized Er3+-doped optical fiber. Appl. Phys. B, 2000, 70(2): 185~188
    [15] Fujiwara Y, Koide T, Jinde S, Isogai Y, Takeda Y. Luminescence properties of Dy-doped GaAs grown by organometallic vapor phase epitaxy. Physcal B, 2001, 308(12): 796~799
    [16] da Silva J E C, de SáG F, Santa-Cruz P A. J. Red, green and blue light generation in fluoride glasses controlled by double excitation. J. Alloys Compd., 2001, 324-324: 336~339
    [17] de Sousa D F, Batalioto F, Bell M J V, Oliveira S L, Nunes L A O. Spectroscopy of Nd3+ and Yb3+ codoped fluoroindogallate glasses. J. Appl. Phys., 2001, 90(7): 3308~3313
    [18] F. Vetrone, J.C. Boyer, John A. Capobianco . 980 nm excited upconversion in an Er-doped ZnO–TeO2 glass. Appl. Phys. Lett., 2002, 80(10) :1752~1754
    [20] Paez G, Strojnik M. Erbium-doped optical fiber fluorescence temperature sensor with enhanced sensitivity, a high signal-to-noise ratio, and a power ratio in the 520-530 and 550-560nm bands. Appl. Opt., 2003, 42(16): 3251~3258
    [21] Bednarkiewicz A, Hreniak D, DereńP, Strek W. Hot emission in Nd3+/Yb3+:YAG nanocrystalline ceramics. J. Lumin., 2003, 102-103: 438~444
    [22] Jhe J H, Shin J H, Kim K J, Moon D W. The characteristic carrier-Er interaction distance in Er-doped a-Si/SiO2 superlattices formed by ion sputtering. Appl. Phys, Lett., 2003, 82(25): 4489~4490
    [23] A.Monteil, S. Chaussedent, G. Alombert-Goget, et al., Clustering of rare earth in glasses, aluminum effect: experiments and modeling. Journal of Non-Crystalline Solids,2004, 348:(15), 44~50
    [24] Aizawa H, Takei K, Katsumata T, Komuro S, Morikawa T, Ogawa S, Toba E. Temperature measurement using Er doped SiO2 glass. SICE, 2004, 3(4-6): 2494~2497
    [25] Polman A, Min B, Kalkman J, Kippenberg T J, Vahala K J. Ultralow-threshold erbium-inplanted toroidal microlaser on silicon. Appl. Phys. Lett., 2004, 84(7): 1037~1039
    [26] Katsumata, T. Kawaguchi, N. Fujimaki, Y. Kiyokawa, Sensor Photonics Res.2004,3: (3)2512- 2515
    [27] Danping Chen,Hiroshi Miyoshi, Tomoko Akai, Colorless transparent fluorescence material:Sintered porous glass containing rare-earth and transition-metal ions. Appl. Phys. Lett. 2005,86:231908
    [28] Lahoz F, Martin I R, Quintero J M C. Ultraviolet and white photon avalanche upconversion in Ho3+-doped nanophase glass ceramics. Appl. Phys. Lett., 2005, 86(31): 051106
    [29] Yoo S, Soh D B S, Kim J, Jung Y, Nilsson J, Sahu J K, Lee J W, Oh K. Analysis of W-type waveguide for Nd-doped fiber laser operating near 940nm. Opt. Commun., 2005, 247: 153~162
    [30] Hai Lin, Edwin Yue Bun Pun, Xiaojun Wang, Intense visible fluorescence and energy transfer in Dy3+, Tb3+, Sm3+ and Eu3+ doped rare-earth borate glasses. Journal of Alloys and Compounds,2005, 390:(1),197~201
    [31] Shihong Zhou, Zuoling Fu, Jingjun, Spectral properties of rare-earth ions in nanocrystalline YAG:Re (Re=Ce3+, Pr3+, Tb3+). Journal of Luminescence, 2006,118:(2),179~185
    [32] Watekar P R, Ju S, Han W T. 800-nm upconversion emission in Yb-sensitized Tm-doped optical fiber. IEEE. Photon. Techno. Lett., 2006, 18(15) 1609~1611
    [33] Lahoz F, Hassan M A. Upconversion rate in Nd-doped Ta2O5waveguide and influence on the cw laser performance. Chem. Phys. Lett., 2006, 426: 135~140
    [34] J. Zhang, S.W. Wang, L.Q. An, et al., Infrared to visible upconversion luminescence in Er3+:Y2O3 transparent ceramics. Journal of Luminescence, 2007, 122–123 :8~10
    [35] H.G. Yang, Z.W. Dai, Z.W. Sun . Upconversion luminescence and kinetics in Er3+:YAlO3 under 652.2nm excitation. Journal of Luminescence, 2007, 124(2) :207~212
    [36] H. Ryu, B.K. Singh, and K.S. Bartwal, Effect of Sr substitution on photoluminescent properties of BaAl2O4:Eu2+, Dy3+.Physics of Condensed Matter 2008 403(1) 126~130
    [37] J.P. Zhong, H.B. Liang, B. Han, et al., Intensive emission of Dy3+ in NaGd(PO3)4 for Hg-free lamps application. Optics Express 2008 16 (10) 7508~7515
    [38] D.P. Chen, J.A. Xia, M.Y. Peng et al., Fluorescence properties and laser demonstrations of Nd-doped high silica glasses prepared by sintering nanoporous glass. Journal of Non-Crystalline 2008 354(12) 1226~1229
    [39] A.H. Li, Q.Lu, Z.R.Zheng, et al., Enhanced green upconversion emission of Er3+ through energy transfer by Dy3+ under 800 nm femtosecond-laser excitation. Optics Letters 2008 33(7) 693~695
    [40] Václav ?tengl, Snejana Bakardjieva and Nataliya Murafa Preparation and photocatalytic activity of rare earth doped TiO2 nanoparticles. Materials Chemistry and Physics 2009 114(1) 217~226
    [41] I.S. Cho, G.K. Choi, J.S. An, et al., Sintering microstructure and microwave dielectric properties of rare earth orthophosphates, RePO4 (Re = La, Ce, Nd, Sm, Tb, Dy, Y, Yb). Materials Research Bulletin 2009 44 (1):173~178
    [42] P.F. Smet, N.Avci, D.Poelman, Red Persistent Luminescence in Ca2SiS4:Eu,Nd. J. Electrochem. Soc 2009 156(4) 243~248
    [43]张思远,任金生.钕激光晶体结构、组成和光谱特性研究.中国稀土学报, 1990, 8(4): 316~319
    [44]华一敏,李枸,陈英礼,陈益新.掺Er~(3+)石英光纤中的共振增强受激四光子混频.光学学报, 1992, 12(4): 382~384
    [45]王劼,陈一竑,于福熹.氟锆酸盐玻璃(ZBLAN)中Nd~(3+)和Er~(3+)的紫外上转换发光.发光学报, 1995, 16(3) :192~198
    [46]雷红兵,杨沁清,王启明,周必忠,肖方方,吴名枋.离子注入掺铒硅发光中心的光致发光研究.半导体学报, 1998, 19(5): 332~336
    [47]谢大韬,吴瑾光,徐端夫,胡天斗,周维金,徐光宪.掺Er凝胶玻璃中Er离子发光性质的研究.光谱学与光谱分析, 1998, 18(2): 177~181
    [48]雷红兵,杨沁清,朱家廉,等.掺铒富硅氧化硅薄膜的光致发光.半导体学报, 1999, 20(1):67~71
    [49]卢耀华,李野,姜德龙,孙秀平,端木庆铎.多相基质中Cr~(3+)→Nd~(3+)的能量传递.发光学报, 2001, 22(1): 88~91
    [50]蒙红云,袁树忠,董新永,武志刚,周广,高伟清,董孝义.掺铥光纤放大器及其进展,飞通光电子技术. 2001, 1(3): 167~171
    [51]刘晃清,秦伟平,赵贵军.稀土氟化物Y0.97Er0.03F3纳米材料的制备及上转换发光.发光学报, 2002, 23(4) :261~263
    [52]张德宝,戴能利,祁长鸿等.掺铒铝硅酸盐玻璃光谱和上转换荧光性质研究.光学学报, 2003, 23(4) 505~508
    [53]陈晓波,宋增福. Ho(0.5)Yb(5)氟氧化物玻璃的直接上转换增敏发光.光谱学与光谱分析, 2003, 23(3): 426~430
    [54]谭浩,宋峰,苏静. Er~(3+):Tm~(3+)共掺的NaY(WO4)2晶体的光谱分析和上转换发光.物理学报, 2004, 53(2) :631~635
    [55]段忠超,张军杰,何冬兵等. 970 nm抽运下Tm /Yb共掺氧氟玻璃的频率上转换发光.光学学报, 2005,25(12):1659~1664
    [56]陆晓军,肖志义,崔启征等. Eu, Dy共掺铝硼酸盐长余辉玻璃陶瓷的研究.长春理工大学学报, 2005,28(3):0100~0103
    [57] Xu S Q, Ma H P, Fang D W, Zhang Z X, Jiang Z H. Tm~(3+):Er~(3+):Yb~(3+)-codoped oxyhalide tellurite glasses as materials for three-dimensional display. Mater. Lett., 2005, 59: 3066~3068
    [58]李成仁,李淑风,宋琦,等.镱铒共掺Al2O3光波导放大器的净增益特性.光子学报, 2006, 35(5):650~654
    [59]李成仁,宋昌烈,李淑凤等.阶跃掺杂Er:Al2O3光波导放大器增益特性数值模拟.光子学报, 2006, 35(2):192~196
    [60]丁栋舟,陆晟,张卫东等.钇掺杂量对LuxY1 - x AlO3:Ce晶体结构和发光性能的影响.中国稀土学报2007,25 (4): 0490~0494
    [61]刘建才,廉世勋,朱爱玲等.铕掺杂类水滑石的发光性质及其选择性红外吸收.发光学报, 2007,28(1): 0067~0074
    [62] B. Dong, P.D. Liu, C.R. Li, et al.,“Optical thermometry through infrared excited green upconversion emissions in Er~(3+)-Yb~(3+) codoped Al2O3,”Appl. Phys. Lett. 90, 181117 (2008).
    [63]孔丽,甘树才,洪广言等. YAG :Ce体系中稀土离子掺杂对Ce~(3+)的光谱性能的影响.高等学校化学学报, 2008,29: 673~676
    [64]康明,尹光福,廖晓明等. CaO: Eu~(3+),Li+红色荧光粉的制备.四川大学学报,2009,41(1): 0118~0123
    [65]周立亚,黄君丽,易灵红等.白光LED用荧光材料Ba3Gd (BO3) 3:Eu~(3+)的发光性能研究.中国稀土学报, 2009,27(1):31~36
    [66]王鹏,魏长平,任晓明.掺杂金属离子对( Eu, Tb)稀土配合物发光性质的影响.发光学报,2009,30(2): 0097~0111
    [67]车如心,高宏,赵宏宾等.溶胶凝胶技术的发展历史及现状.云南大学学报,2005,27(3):378~383
    [68]董斌,稀土掺杂氧化铝粉末上转换发光特性研究.大连理工大学博士学位论文
    [69] Pollnau M, Galemlin D R, Lüthi S R, Güdel H U, Hehlen M P. Power dependence ofupconversion luminescence in lanthanide and transition-metal-ion systems. Phys. Rev. B,2000, 61(5): 3337~3346
    [70]戴井民,辐射测温的发展现状与展望.自动化技术与应用,2004, 3(7): 0001~0007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700