用户名: 密码: 验证码:
新颖光学Stark减速与囚禁分子方案的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原子冷却对于原子光学、超冷原子物理以及玻色-爱因斯坦凝聚等领域的研究是至关重要的,而玻色-爱因斯坦凝聚又为凝聚态物质以及量子信息物理的研究提供了实验基础。现在,人们又将注意力转向了如何产生并得到冷的或者超冷的分子样品,因为它们具有与原子不同的许多新的相互作用。化学稳定的冷分子为超高分辨的分子束光谱、超冷化学和碰撞、将来可能实现的分子玻色-爱因斯坦凝聚等研究提供了理想的实验平台。本文将围绕中性分子的光学Stark减速以及光学存储环开展了一系列新颖方案的理论研究与分析。
     本文首先提出了一种采用腔增强型光学晶格实现脉冲超声分子束的多级光学Stark减速的新方案,模拟研究了其对脉冲亚声速CH4分子束的减速效果,并给出了减速效果与部分减速器参数、入射分子束初始中心速度、以及部分共振腔参数之间的依赖关系。研究结果表明:该多级光学Stark减速器能将脉冲分子束从240m/s减速到约0m/s,并得到温度为亚mK-几μK的冷分子波包,相应的分子减速效率约为104-10-6。
     其次,为了探寻更为便捷、高效、可行的分子束减速方案,我们还相继提出了采用准连续的做匀速运动或匀减速运动的光学晶格实现脉冲亚声速分子束的多级光学Stark减速的两种新方案,详细研究了分子Stark减速的动力学过程及其减速效果。此外,我们将这两种光学晶格与准连续静止光晶格的减速效果进行了比较,并讨论了激光脉冲波形(即:上升与下降时间)对分子减速效果的影响,得到了一些重要的研究结果。
     接着,我们提出了一种由红失谐空心光束入射到环状凹面腔后形成全光型冷分子存储环的新方案,通过开腔自再现模式的数值计算得到了该光学存储环稳定的光强分布,并采用Monte-Carlo模拟方法研究了脉冲I2分子束在光学存储环中运动的动力学过程以及冷分子的装载效率。研究结果充分说明了该全光型存储环的可行性,并适用于所有种类的中性分子。
     最后,我们提出了一种由光学存储环和半高斯赝热光束构成的新颖多级光学Stark减速器的方案,并采用Monte-Carlo模拟方法研究了该新颖光学Stark减速器对脉冲12分子束的减速效果。我们研究了分子切向速度、每一级半高斯光场的打开时间ton和关闭时间toff与减速级数m之间的依赖关系,并讨论了半高斯光束的功率P0对被减速分子末速度的影响。研究结果表明:(1)分子的初始速度vo越小,将其减速到-1m/s所需的减速级数也越少,如当v0=1Om/s时,所需的m仅为320;(2)随着m的增大,ton和toff都会随之增大;(3)当分子的入射初速度为v0=20m/s,减速级数为m=260时,P0从100W增大到1000W时,分子的切向末速度将可从18.98m/s减小到1.59m/s。显然,这样的新颖多级光学Stark减速器不仅可用于实现脉冲冷分子束的有效减速,还可用于实现连续冷分子束的有效减速。
The cooling of atomic species has played a pivotal role in the fields of atom optics, ultracold physics and Bose-Einstein condensation, because it provides a unique and favorable a research platform for condensed matter and quantum information physics. Recently, considerable attention has turned to the creation of cold or ultra-cold molecules because they provide many new interactions, which are not available in cold atomic species. Cold stationary molecules offer an ideal testing ground for ultrahigh resolution molecular-beam spectroscopy, ultracold chemistry and collisions as well as the possibility of a molecular Bose-Einstein condensation. This thesis will focus our attentions on the theoretically study and analysis of the preparation and trap of cold or ultracold molecules by proposing a series of new optical Stark decelerator and storage ring schemes.
     Firstly, we propose a robust and desirable scheme to realize the deceleration of a pulsed subsonic molecular beam by using a multistage optical Stark decelerator (i.e., a1D quasi-cw, cavity-enhanced optical lattice), which is composed of two nearly counter-propagating, time-varying, red-detuned, light fields with a intensity of~108Wcm-2in a folded ring resonator. The dependences of the molecular slowing effects on the synchronous phase angle, the deceleration stage number and cavity enhancement factor are investigated by3D Monte-Carlo method. Our study shows that the proposed decelerator cannot only be used to slow a pulsed subsonic beam from240m/s to standstill, but also to obtain a cold molecular packet with a temperature of a few μK due to the bunching effect of our multistage optical Stark decelerator, and the corresponding fraction of cold molecules is10-4-10-6, which strongly depends on the synchronous phase angle.
     Secondly, we propose two promising schemes to realize the deceleration of a pulsed subsonic molecular beam by using a multistage optical Stark decelerator, which is composed of two nearly counter-propagating, time-varying, red-detuned light fields with an intensity of~107Wcm-2and a fixed or a linearly-reduced frequency difference between them. We investigate their operating characteristics and slow effects for molecules by using3D Monte-Carlo simulations respectively. Our study show that both of these proposed decelerators can not only be used to slow a pulsed subsonic beam from240m/s to standstill, but also to obtain a cold molecular packet with a temperature of a few μK, and the corresponding fraction of cold molecules is10-6-10-7and10-5-10-7respectively.
     Afterwards, in order to form a multistage optical Stark decelerator by using a semi-Gaussian beam, we propose an all-optical storage ring (OSR) scheme composed of a focused, cavity-enhanced, red-detuned hollow beam, which will be formed by using an annular confocal cavity to focus a collimated red-detuned incident hollow beam. By using the numerical calculations of self-reproduction mode in an open cavity, we obtain the stable intensity distribution of the OSR and its optical potential for I2molecules. In order to demonstrate the feasibility of our OSR, we study the loading and guiding dynamics of cold12molecules in the OSR by using Monte-Carlo method, and obtain some important results.
     In final, we propose a novel multistage optical Stark decelerator by using the above OSR and a pseudo-thermal, semi-Gaussian light (SGB) field, and study its slowing effects for pulsed I2molecular beam by Monte-Carlo simulations. Also, we investigate the dependences of the tangential velocity of molecules, the opened time ton and closed time toff of SGB in each stage on the deceleration-stage number m, and the influence of power Po of SGB on the final tangential velocity of molecules. The results show that (1) the lower the initial molecular velocity vo is, the smaller the stage number m needed for molecules to be slowed to~1m/s will be;(2) with the rise of m, ton and toff will also be lengthened;(3) with the increase of Po from100W to1000W, the final tangential velocity of molecules will be lowered from18.98m/s to1.59m/s when v0=20m/s and m=260. Obviously, this novel multistage optical Stark decelerator can be used to realize the effective slowing of both pulsed and cw molecular beam.
引文
[1]Steven Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, Phys. Rev. Lett.,57 (1986) 314-317
    [2]A. Aspect, J. Dalibard, A. Heidmann, C. Salomon, and C. Cohen-Tannoudji Phys. Rev. Lett.,57 (1986) 1688-1691
    [3]Steven Chu, Carl Wieman, J. Opt. Soc. Am. B,6(11) (1989) 2020-2020
    [4]J. Lawall, F. Bardou, B. Saubamea, K. Shimizu, M. Leduc, A. Aspect, and C. Cohen-Tannoudji, Phys. Rev. Lett.,73 (1994) 1915-1918
    [5]William D. Phillips, Rev. Mod. Phys.,70 (1998) 721-741
    [6]Matthieu Viteau, Amodsen Chotia, Maria Allegrini, Nadia Bouloufa, Olivier Dulieu, Daniel Comparat and Pierre Pillet, Science,321 (2008) 232-234
    [7]Sofikitis D., Fioretti A., Weber S., Horchania R., Pichler M., Lia X., Allegrini M., Chatel B., Comparat D., Pillet P., Mol. Phys.,108 (2010) 795-810
    [8]H. R. Thorsheim, J. Weiner and P. S. Julienne, Phys. Rev. Lett.,58 (1987) 2420-2423
    [9]Band, Y. B.; Julienne, P. S. Phys. Rev. A,51 (1995) R4317-R4320
    [10]Kevin M. Jones, Eite Tiesinga, Paul D. Lett, and Paul S. Julienne, Rev. Mod. Phys.,78(2006)483-535
    [11]P. D. Lett, K. Helmerson, W. D. Phillips, L. P. Ratliff, S. L. Rolston, M. E. Wagshul, Phys. Rev. Lett.,71 (1993) 2200-2203
    [12]J. D.Miller, R. A. Cline, D. J. Heinzen, Phys. Rev. Lett.,71 (1993) 2204-2207
    [13]Jeremy M. Sage, Sunil Sainis, Thomas Bergeman, and David DeMille, Phys. Rev. Lett.,94 (2005) 203001-1-203001-4
    [14]A. P. Mosk, M. W. Reynolds, T. W. Hijmans, and J. T. M. Walraven, Phys. Rev. Lett.,82 (1999) 307-310
    [15]N. Herschbach, P. J. J. Tol, W. Vassen, W. Hogervorst, G. Woestenenk, J. W. Thomsen, P. van der Straten, and A. Niehaus, Phys. Rev. Lett.,84 (2000) 1874-1877
    [16]W. I. McAlexander, E. R. I. Abraham, N. W. M. Ritchie, C. J. Williams, H. T. C. Stoof, and R. G. Hulet, Phys. Rev. A,51 (1995) R871-R874
    [17]J. J. Blange, J. M. Zijlstra, A. Amelink, X. Urbain, H. Rudolph, P. van der Straten, H. C. W. Beijerinck, and H. G. M. Heideman, Phys. Rev. Lett.,78 (1997) 3089-3092
    [18]A. N. Nikolov, J. R. Ensher, E. E. Eyler, H. Wang, W. C. Stwalley, and P. L. Gould, Phys. Rev. Lett.,84 (2002) 246-249
    [19]Gotz Zinner, Tomas Binnewies, Fritz Riehle, and Eberhard Tiemann, Phys. Rev. Lett.,85 (2000)2292-2295
    [20]C. Gabbanini, A. Fioretti, A. Lucchesini, S. Gozzini, and M. Mazzoni, Phys. Rev. Lett.,84, (2000)2814-2817
    [21]A. Fioretti, D. Comparat, A. Crubellier, O. Dulieu, F. Masnou-Seeuws, and P. Pillet, Phys. Rev. Lett.,80 (1998) 4402-4405
    [22]Y. Takasu, K. Komori, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Takahashi, Phys. Rev. Lett.,93 (2004) 123202-1-123202-4
    [23]S. B. Nagel, P. G. Mickelson, A. D. Saenz, Y. N. Martinez, Y. C. Chen, T. C. Killian, P. Pellegrini, and R. Cote, Phys. Rev. Lett.,94 (2005) 083004-1-083004-4
    [24]C. Haimberger, J. Kleinert, M. Bhattacharya, and N. P. Bigelow, Phys. Rev. A,70 (2004) 021402(R)-1-021402(R)-4
    [25]M. W. Mancini, G. D. Telles, A. R. L. Caires, V. S. Bagnato, and L. G. Marcassa, Phys. Rev. Lett.,92 (2004) 133203-1-133203-4
    [26]Andrew J. Kerman, Jeremy M. Sage, Sunil Sainis, Thomas Bergeman, and David DeMille, Phys. Rev. Lett.,92 (2004) 033004-1-033004-4
    [27]S. D. Kraft, P. Staanuml, J. Lange, L. Vogel, R. Wester, and M. Weidemuller, J. Phys. B:At. Mol. Opt. Phys.,39 (2006) S993-S1000
    [28]P. D. Drummond, K. V. Kheruntsyan, and H. He, Phys. Rev. Lett.,81 (1998) 3055-3058
    [29]R. Wynar, R. S. Freeland, D. J. Han, C. Ryu, and D. J. Heinzen, Science,287 (2000)1016-1019
    [30]P. Zabawa, A. Wakim, A. Neukirch, C. Haimberger, N. P. Bigelow, A. V. Stolyarov, E. A. Pazyuk, M. Tamanis, and R. Ferber, Phys. Rev. A,82 (2010) 040501 (R)-1-040501 (R)-4
    [31]K. Aikawa, D. Akamatsu, M. Hayashi, K. Oasa, J. Kobayashi, P. Naidon, T. Kishimoto, M. Ueda, and S. Inouye, Phys. Rev. Lett.,105 (2010) 203001-1-203001-4
    [32]Leonid Rybak, Saieswari Amaran, Liat Levin, Michal Tomza, Robert Moszynski, Ronnie Kosloff, Christiane P. Koch, and Zohar Amitay, Phys. Rev. Lett.,107 (2011) 273001-1-273001-5
    [33]Matt Mackie, Pierre Phou, Heather Boyce, Mannix Shinn, and Lev Katz, Phys. Rev. A,84 (2011) 043614-1-043614-8
    [34]Thorsten Kohler, Krzysztof Goral, and Paul S. Julienne, Rev. Mod. Phys.,78 (2006) 1311-1361
    [35]Cheng Chin, Rudolf Grimm, Paul Julienne, and Eite Tiesinga, Rev. Mod. Phys., 82 (2010)1225-1286
    [36]Ph. Courteille, R. S. Freeland, D. J. Heinzen, F. A. van Abeelen, and B. J. Verhaar, Phys. Rev. Lett.,81 (1998) 69-72
    [37]A. J. Moerdijk, B. J. Verhaar, and A. Axelsson, Phys. Rev. A,51 (1995) 4852-4861
    [38]F. A. van Abeelen and B. J. Verhaar, Phys. Rev. Lett.,83 (1999) 1550-1553
    [39]F. H. Mies, E. Tiesinga, and P. S. Julienne, Phys. Rev. A,61 (2000) 022721-1-022721-17
    [40]C. McKenzie, J. Hecker Denschlag, H. Haffner, A. Browaeys, Luis E. E. de Araujo, F. K. Fatemi, K. M. Jones, J. E. Simsarian, D. Cho, A. Simoni, E. Tiesinga, P. S. Julienne, K. Helmerson, P. D. Lett, S. L. Rolston, and W. D. Phillips, Phys. Rev. Lett.,88 (2001) 120403-1-120403-4
    [41]Elizabeth A. Donley, Neil R. Claussen, Sarah T. Thompson, Carl E. Wieman, Nature,417 (2002) 529-533
    [42]Cindy A. Regal, Christopher Ticknor, John L. Bohn, and Deborah S. Jin, Nature, 424 (2003) 47-50
    [43]Markus Greiner, Cindy A. Regal, and Deborah S. Jin, Nature,426 (2003) 537-540
    [44]S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, C. Chin, J. Hecker Denschlag, and R. Grimm, Phys. Rev. Lett.,91 (2003) 240402-1-240402-4
    [45]M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, S. Gupta, Z. Hadzibabic, and W. Ketterle, Phys. Rev. Lett.,91 (2003) 250401-1-250401-4
    [46]C. A. Stan, M. W. Zwierlein, C. H. Schunck, S. M. F. Raupach, and W. Ketterle, Phys. Rev. Lett.,93 (2004) 143001-1-143001-4
    [47]S. Inouye, J. Goldwin, M. L. Olsen, C. Ticknor, J. L. Bohn, and D. S. Jin, Phys. Rev. Lett.,93 (2004) 183201-1-183201-4
    [48]Daniel A. Brue and Jeremy M. Hutson, Phys. Rev. Lett.,108 (2012) 043201-1-043201-5
    [49]Cheng-Hsun Wu, Jee Woo Park, Peyman Ahmadi, Sebastian Will, and Martin W. Zwierlein, Phys. Rev. Lett.,109 (2012) 085301-1-085301-5
    [50]Jonathan D. Weinstein, Robert deCarvalho, Thierry Guillet, Bretislav Friedrich, and John M. Doyle, Nature,395 (1998) 148-150
    [51]S. Charles Doret, Colin B. Connolly, Wolfgang Ketterle, and John M. Doyle, Phys. Rev. Lett.,103 (2009) 103005-1-103005-4
    [52]S. E. Maxwell, N. Brahms, R. deCarvalho, D. R. Glenn, J. S. Helton,S. V. Nguyen, D. Patterson, J. Petricka, D. DeMille, and J. M. Doyle, Phys. Rev. Lett., 95(2005)173201-1-173201-4
    [53]Benjamin L. Lev, Andras Vukics, Eric R. Hudson, Brian C. Sawyer, Peter Domokos, Helmut Ritsch, and Jun Ye, Phys. Rev. A,77 (2008) 023402-1-023402-13
    [54]Giovanna Morigi, Pepijn W. H. Pinkse, Markus Kowalewski, and Regina de Vivie-Riedle, Phys. Rev. Lett.,99 (2007) 073001-1-073001-4
    [55]A. N. Nikolov, E. E. Eyler, X. T. Wang, J. Li, H. Wang, W. C. Stwalley, and P. L. Gould, Phys. Rev. Lett.,82 (1999) 703-706
    [56]C. M. Dion, C. Drag, O. Dulieu, B. Laburthe Tolra, F. Masnou-Seeuws, and P. Pillet, Phys. Rev. Lett.,86 (2001) 2253-2256
    [57]Hendrick L. Bethlem, Giel Berden, and Gerard Meijer, Phys. Rev. Lett.,83 (1999) 1558-1561
    [58]Jason A. Maddi, Timothy P. Dinneen, and Harvey Gould, Phys. Rev. A,60 (1999) 3882-3891
    [59]Hendrick L. Bethlem, Giel Berden, Floris M. H. Crompvoets, Rienk T. Jongma, Andre J. A. van Roij, and Gerard Meijer, Nature,406 (2000) 491-494
    [60]B. Ghaffari, J. M. Gerton, W. I. McAlexander, K. E. Strecker, D. M. Homan, and R. G. Hulet, Phys. Rev. A,60 (1999) 3878-3881
    [61]S. A. Rangwala, T. Junglen, T. Rieger, P. W. H. Pinkse, and G. Rempe, Phys. Rev. A,67 (2003) 043406-1-043406-4
    [62]T. Junglen, T. Rieger, S.A. Rangwala, P.W.H. Pinksea, and G. Rempe, Eur. Phys. J. D,31 (2004) 365-373
    [63]L. D. van Buuren, C. Sommer, M. Motsch, S. Pohle, M. Schenk, J. Bayerl, P. W. H. Pinkse, and G. Rempe, Phys. Rev. Lett.,102 (2009) 033001-1-033001-4
    [64]Sebastiaan Y. T. van de Meerakker, Paul H. M. Smeets, Nicolas Vanhaecke, Rienk T. Jongma, and Gerard Meijer, Phys. Rev. Lett.,94 (2005) 023004-1-023004-4
    [65]J. R. Bochinski, Eric R. Hudson, H. J. Lewandowski, Gerard Meijer, and Jun Ye, Phys. Rev. Lett.,91 (2003) 243001-1-243001-4
    [66]M. R. Tarbutt, H. L. Bethlem, J. J. Hudson, V. L. Ryabov, V. A. Ryzhov, B. E. Sauer, G. Meijer, and E. A. Hinds, Phys. Rev. Lett.,92 (2004) 173002-1-173002-4
    [67]Eric R. Hudson, Christopher Ticknor, Brian C. Sawyer, Craig A. Taatjes, H. J. Lewandowski, J. R. Bochinski, J. L. Bohn, and Jun Ye, Phys. Rev. A,73 (2006) 063404-1-063404-6
    [68]Sebastian Jung, Eberhard Tiemann, and Christian Lisdat, Phys.Rev. A,74 (2006) 040701 (R)-1-040701 (R)-4
    [69]Sebastiaan Y T van de Meerakker, Irena Labazan, Steven Hoekstra, Jochen Kupper, and Gerard Meijer, J. Phys. B:At. Mol. Opt. Phys.,39 (2006) S1077-S1084
    [70]Samuel A Meek, Horst Conrad, and Gerard Meijer, New J. Phys.,11 (2009) 055024-1-055024-16
    [71]A. Mariana, H. Haak, P. Geng, and G. Meijer, Eur. Phys. J. D,59 (2010) 179-181
    [72]R. Fulton, A. I. Bishop, and P. F. Barker, Phys. Rev. Lett.,93 (2004) 243004-1-243004-4
    [73]S. R. Procter, Y. Yamakita, F. Merkt, and T. P. Softley, Chem. Phys. Lett.,374 (2003) 667-675
    [74]E. Vliegen and F. Merkt, J. Phys. B:At. Mol. Opt. Phys.,39 (2006) L241-L247
    [75]Nicolas Vanhaecke, Daniel Comparat, Duncan A. Tate, and Pierre Pillet, Phys. Rev. A,71 (2006) 013406-1-013406-4
    [76]Alex W. Wiederkehr, Michael Motsch, Stephen D. Hogan, Markus Andrist, Hansjurg Schmutz, Bruno Lambillotte, Josef A. Agner, and Frederic Merkt, J. Chem. Phys.,135 (2011) 214202-1-214202-14
    [77]R.W. Boyd, Nonlinear Optics, Academic Press, Boston (1992)
    [78]P. F. Barker and M. N. Shneider, Phys. Rev. A,64 (2001) 033408-1-033408-9
    [79]P. F. Barker and M. N. Shneider, Phys. Rev. A,66 (2002) 065402-1-065402-4
    [80]R. Fulton, A. I. Bishop, M. N. Shneider, and P. F. Barker, Nature,2 (2006) 465-468
    [81]Yaling Yin, Qi Zhou, Lianzhong Deng, Yong Xia, and Jianping Yin, Opt. Express, 17(2009)10706-10717
    [82]A. I. Bishop, L. Wang, and P. F. Barker, New Journal of Physics,12 (2010) 073028-1-073028-10
    [83]Sebastiaan Y. T. van de Meerakker, Hendrick L. Bethlem, Nicolas Vanhaecke, Gerard Meijer, Chem. Rev.,112 (2012) 4828-4878
    [84]T. Bergeman, Gidon Erez, and Harold J. Metcalf, Phys. Rev. A,35 (1987) 1535-1546
    [85]N. E. Shafer-Ray, K. A. Milton, B. R. Furneaux, E. R. I. Abraham, and G. R. Kalbfleisch, Phys. Rev. A,67 (2003) 045401-1-045401-4
    [86]William H. Wing, Phys. Rev. Lett.,45 (1980) 631-634
    [87]Jacqueline van Veldhoven, Hendrick L. Bethlem, Melanie Schnell, and Gerard Meijer, Phys. Rev. A,73 (2006) 063408-1-063408-7
    [88]J. Kleinert, C. Haimberger, P. J. Zabawa, and N. P. Bigelow, Phys. Rev. Lett.,99 (2007) 143002-1-143002-4
    [89]T. Rieger, T. Junglen, S. A. Rangwala, P. W. H. Pinkse, and G. Rempe, Phys. Rev. Lett.,95 (2005) 173002-1-173002-4
    [90]John L. Bohn, Phys. Rev. A,63 (2001) 052714-1-052714-5
    [91]Hendrick L. Bethlem, Jacqueline van Veldhoven, Melanie Schnell, and Gerard Meijer, Phys. Rev. A,74 (2006) 063403-1-063403-15
    [92]Melanie Schnell, Peter Lutzow, Jacqueline van Veldhoven, Hendrick L. Bethlem, Jochen Kiipper, Bretislav Friedrich, Monika Schleier-Smith, Henrik Haak, and Gerard Meijer,J.Phys. Chem. A,111 (2007) 7411-7419
    [93]E. Peik, Eur. Phys. J. D,6 (1999) 179-183
    [94]Jacqueline van Veldhoven, Hendrick L. Bethlem, and Gerard Meijer, Phys. Rev. Lett.,94 (2005) 083001-1-083001-4
    [95]V. V. Vladimirski, Sov. Phys. JETP,12 (1961) 740
    [96]Alan L. Migdall, John V. Prodan, William D. Phillips, Thomas H. Bergeman, and Harold J. Metcalf, Phys. Rev. Lett.,54 (1985) 2596-2599
    [97]Nicolas Vanhaecke, Wilson de Souza Melo, Bruno Laburthe Tolra, Daniel Comparat, and Pierre Pillet, Phys. Rev. Lett.,89 (2002) 063001-1-063001-4
    [98]S. D. Hogan, A. W. Wiederkehr, H. Schmutz, and F. Merkt, Phys. Rev. Lett.,101 (2008) 143001-1-143001-4
    [99]Brian C. Sawyer, Benjamin L. Lev, Eric R. Hudson, Benjamin K. Stuhl, Manuel Lara, John L. Bohn, and Jun Ye, Phys. Rev. Lett.,98 (2007) 253002-1-253002-4
    [100]Markus Metsala, Joop J Gilijamse, Steven Hoekstra, Sebastiaan Y T van de Meerakker, and Gerard Meijer, New J. Phys.,10 (2008) 053018-1-053018-10
    [101]Samuel A. Meek, Horst Conrad, and Gerard Meijer, Science,324 (2009) 1699-1702
    [102]Samuel A. Meek, Hendrick L. Bethlem, Horst Conrad, and Gerard Meijer, Phys. Rev. Lett.,100 (2008) 153003-1-153003-4
    [103]Floris M.H. Crompvoets, Hendrick L. Bethlem, Rienk T. Jongma, and Gerard Meijer, Nature,411 (2001) 174-176
    [104]Cynthia E. Heiner, David Carty, Gerard Meijer, and Hendrick L. Bethlem, Nat. Phys.,3 (2007) 115-118
    [105]Peter C. Zieger, Sebastiaan Y. T. van de Meerakker, Cynthia E. Heiner, Hendrick L. Bethlem, Andre J. A. van Roij, and Gerard Meijer, Phys. Rev. Lett., 105(2010)173001-1-173001-4
    [106]J. J. Hudson, B. E. Sauer, M. R. Tarbutt, and E. A. Hinds, Phys. Rev. Lett.,89 (2002) 023003-1-023003-4
    [107]D. DeMille, F. Bay, S. Bickman, D. Kawall, D. Krause, Jr., S. E. Maxwell, and L. R. Hunter, Phys. Rev. A,61 (2000) 052507-1-052507-8
    [108]N. Balakrishnan and A. Dalgarno, Chem. Phys. Lett.,341 (2001) 652-656
    [109]D. DeMille, Phys. Rev. Lett.,88 (2002) 067901-1-067901-4
    [110]Nicolas Vanhaecke, Urban Meier, Markus Andrist, Beat H. Meier, and Frederic Merkt, Phys. Rev. A,75 (2007) 031402(R)-1-031402(R)-4
    [111]Yang Liu, Min Yun, Yong Xia, Lianzhong Deng, and Jianping Yin, Phys. Chem. Chem. Phys.,12 (2010) 745-752
    [112]Runqin Liu, Qi Zhou, Yaling Yin, and Jianping Yin, J. Opt. Soc. Am. B,26 (2009) 1076-1083
    [113]E. S. Shuman, J. F. Barry, and D. DeMille, Nature,467 (2010) 820-823
    [114]J. Ramirez-Serrano, K. E. Strecker, and D. W. Chandler, Phys. Chem. Chem. Phys.,8 (2006) 2985-2989
    [115]Susumu Kuma and Takamasa Momose, New J. Phys.,11 (2009) 055023-1-055023-16
    [116]R. Fulton, A. I. Bishop, M. N. Shneider, and P. F. Barker, J. Phys. B:At. Mol. Opt. Phys.,39 (2006) S1097-S1109
    [117]J. L. McHale, "Molecular Spectroscopy", Prentice-Hall, Englewood Cliffs, NJ, 1999
    [118]Tamar Seideman, J. Chem. Phys., 111 (1999) 4397-4405
    [119]Ma Longsheng and J. L. Hall, IEEE J. Quantum Electron.,26 (1990) 2006-2012
    [120]Joseph Thomas Verdeyen, "Laser Electronics", Englewood Cliffs, N. J.: Prentice-Hall, (1981)444
    [121]Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, IEEE J. Sel. Top. Quantum Electron.,13 (2007) 546-551
    [122]D. C. Clary, J. Chem. Phys.,84 (1986) 4288-4298
    [123]Jianping Yin, Physics Reports,430 (2006) 1-116
    [124]U. Schloter, C. Silber, and C. Zimmermann, Appl. Phys. B,73 (2001) 801-805
    [125]T. Takekoshi, J. R. Yeh, and R. J. Knize, Opt. Commum.,114 (1995) 421-424
    [126]M. N. Shneider, P. F. Barker, and S. F. Gimelshein, Appl. Phys. A,89 (2007) 337-350
    [127]S. D. Hogan, D. Sprecher, M. Andrist, N. Vanhaecke, and F. Merkt, Phys. Rev. A,76 (2007) 023412-1-023412-11
    [128]Edvardas Narevicius, Adam Libson, Christian G. Parthey, Isaac Chavez, Julia Narevicius, Uzi Even, and Mark G. Raizen, Phys. Rev. Lett.,100 (2008) 093003-1-093003-4
    [129]Xiang Ji, Qi Zhou, Zhenxing Gu, and Jianping Yin, Opt. Express,20 (2012) 7792-7803
    [130]Yaling Yin, Yong Xia, and Jianping Yin, Chin. Phys. B.,17 (2008) 3672-3677
    [131]Yaling Yin, Yong Xia, and Jianping Yin, Opt. Commun.,281 (2008) 5511-5514
    [132]周炳琨,高以智,陈家骅,陈倜嵘《激光原理》,国防工业出版社,1984
    [133]Qian Yong, Zhang Yu, Wei Rong, and Wang Yu-Zhu, Chin.Phys.Lett.,21 (2004) 1041-1043
    [134]Noboru Uehara, Ryousuke Okuda, and Toshitaka Shidara, Technical Digest, (2004) WA5.1-WA5.3
    [135]John Weiner, Vanderlei S. Bagnato, Sergio Zilio, and Paul S. Julienne, Rev. Mod. Phys.,11 (1999) 1-85
    [136]T. B. Martin and T. P. Softley, Mol. Phys.,107 (2009) 99-132
    [137]Lincoln D Carr, David DeMille, Roman V Krems, and Jun Ye, New. J. Phys., 11 (2009) 055049-1-055049-87
    [138]Krems R V, B Friedrich W and Stwalley C, "Cold Molecules:Theory, Experiment, Applications"', Florida:CRC Press (2009)
    [139]Manish Gupta and Dudley Herschbach,J. Phys. Chem. A,105 (2001) 1626-1637
    [140]Y. Kawamura, Y. Itagaki, K. Toyoda, and S. Namba, Opt. Commun.,48 (1983) 44-46
    [141]D. M. Dagenais, J. A. Woodroffe, I. Itzkan, Appl. Opt.,24 (1985) 671-675
    [142]W. L. Power, L. Allen, M. Babiker, V. E. Lembessis, Phys. Rev. A,52 (1995) 479-488
    [143]Baida Lii, Jianzhou Zheng, Bangwei Cai, Bin Zhang, Opt. Commun.,149 (1998) 19-26
    [144]Victor Torres-Company, Gladys Minguez-Vega, Jesus Lancis, and Ari T. Friberg, Opt. Lett.,32 (2007) 1608-1610
    [145]J. C. Li, J. Merlin, and J. Perez, Rev. Phys. Appl.,21 (1986) 425-434
    [146]Zheng Ping, Gao Wei-Jian, and Yin Jian-Ping, Chin. Phys. Lett.,20 (2003) 379-382
    [147]Xie Chun-Xia, Wang Zhengling, and Yin Jian-Ping, Chin. Phys. Lett.,23 (2006) 822-825
    [148]Xia Yong, Yin Ya-Ling, Ji Xiang, and Yin Jian-Ping, Chin. Phys. Lett.,29 (2012) 053701-1-053701-3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700