用户名: 密码: 验证码:
纳米复合光学生物敏感材料的制备与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤传感技术是材料、信息、生命、化学、物理等多学科交叉的研究领域,其中光学敏感材料研究对于光纤传感技术的发展起着决定性的影响。高性能光纤生物传感材料的制备是研制高性能光纤生物传感器的关键技术之一,而光纤生物传感敏感材料必须具备对待测物质优异的敏感性能、高度的选择性、较快的响应速度和较长的使用寿命等特点。对葡萄糖的检测在临床诊断(特别是糖尿病)、基础医学研究及食品工业等领域中十分重要,目前采用的检测方法主要有仪器分析和电化学传感器,存在检测过程复杂、响应慢、成本高等缺点。光纤葡萄糖传感器具有检测精度高、响应快、操作简单、成本低等优点,是检测葡萄糖的有效手段,其研究具有重要的意义。
     本文制备了二氧化硅(Si02)纳米粒子并在其表面引入氨基,用来固定葡萄糖氧化酶,并将固定化酶与荧光指示剂复合,制备出同时具有催化及光敏特性的纳米复合生物传感材料。设计和构建了基于酶催化及荧光猝灭的光纤葡萄糖传感器,并初步研究了传感器性能。
     本论文的主要工作分为以下几个方面:
     (1)采用Stober水解法制备粒径均一大小为100nm左右的SiO2纳米粒子,并通过扫描电镜对其形貌进行表征。利用硅烷化试剂3-氨基丙基三已氧硅烷(APTES)及偶联剂戊二醛(GA)对SiO2纳米粒子表面进行改性,引入氨基,以固定葡萄糖氧化酶(GOD)。研究了硅烷化试剂APTES浓度、GA的浓度、最佳给酶量、酶固定化过程中的pH值等因素对固定化酶活性的影响。
     (2)研究和对比了固定化酶和游离酶的储存稳定性,热稳定性及操作稳定性。研究表明,固定化酶具有优良的储存稳定性,热稳定性及操作稳定性。
     (3)采用溶胶-凝胶法制备同时具有固定化酶及荧光指示剂钌(Ⅱ)-联吡啶(Ru(bpy)3Cl2)的复合敏感膜,并设计和构建了基于酶催化及荧光猝灭的光纤葡萄糖传感器,利用锁相放大检测技术,研究了传感器性能。研究表明,该传感器检测葡萄糖溶液的浓度范围为100mg/dL~500mg/dL,响应时间35s,同时具有较好的线性检测关系。
     (4)制备一种新型的同时含有GOD和荧光指示剂Ru(bpy)3Cl2的SiO2荧光纳米复合粒子,初步研究其性能。为研制新型纳米复合光学生物敏感材料打下基础。
The fiber optical sensing technology is multidisciplinary cross research fields including material science, information, life science, chemistry and physics. The preparation of fiber optic biosensing materials is one of the key technologies for the development of fiber optic biosensors with high performance. The fiber optic biosensing materials must have high sensitivity, high selectivity, fast response and long lifetime. The detection of glucose is very important in many fields including clinic diagnoses (especially for diabetes), basic medicine research and food industry. The current detection methods for glucose concentration are mainly instrument analysis and electrochemistry sensors, which have the disadvantages such as complex analysis process, low response and high cost. Fiber optic glucose sensor is an effective means for the glucose detection because of its advantages including high precision, fast response, simple operation process and low cost. Therefore, the study of fiber optic glucose sensor is of great importance.
     In this thesis, silica (SiO2) nanoparticles have been prepared. After the modification, the (SiO2) nanoparticles with amino groups on their surface have been obtained, which were used as the carriers for the immobilization of glucose oxidase (GOD). The optical complex biosensing material containing the immobilization GOD and fluorescent indicator was prepared, which has both the biological catalysis and optical sensitive properties. The fiber optic glucose sensor based on enzyme catalysis and fluorescence quenching was designed and fabricated and its properties have been studied.
     The main work in this thesis includes:
     (1) Using Stober method, SiO2 nanoparticles with an average diameter of 100nm were prepared and characterized by SEM. The surface of SiO2 nanoparticle was modified using APTES and GA to produce amino groups, which were used for GOD immobilization. The influence factors on immobilized enzyme activity such as APTES concentration, GA concentration, optimal enzyme concentration, pH value were studied.
     (2) The stability of immobilized GOD were studied and compared with free enzyme, which indicate that the immobilized GOD is more stable than free enzyme.
     (3) Using sol-gel method, a new kind of complex optical biosensing membrane was prepared which contains both immobilized GOD and Ru(bpy)3Cl2 indicator. With this biosensing membrane, the fiber optic glucose sensor based on enzymatic catalysis and fluorescence quenching was designed and fabricated. The detection was performed with lock-in technology. The properties of the sensor were studied, showing a good performance with the response time of 35s, glucose concentration detecting range of 100-500mg/dl and good linear relationship between the glucose concentration and phase delay.
     (4) The complex fluorescent sinica nanoparticles containing both GOD and fluorescent indicator have been prepared and their performance was studied, which will be a contribution to the development of new nanoscale complex optical biosensing materials.
引文
[1]肖军,王颖.光纤传感技术的研究现状与展望.机械管理开发,2006(6):81~84
    [2]Angela Leung, P Mohana Shankar, Raj Mutharasan. A review of fiber-optic biosensors. Sensors and Actuators B,2007 (125):688~703
    [3]杨建良,郭照华.光纤材料的研究进展.材料导报,1997,11(3):6~7
    [4]D. I. Forsyth, T. Sun, and K. T. V. Grattan,et. al. Characteristics of doped optical fiber for fluorescence based fiber optic temperature systems. Review of Scientific Instruments, 2003,74(12):5212~5218
    [5]孙英志,余重秀,林金桐.基于色心模型掺杂硼锗光纤材料紫外光诱导光敏特性的实验分析.通信学报,2002,21(7):45~49
    [6]何伟,李剑芝等.掺锗石英光纤光致折射率变化的实验研究.无机材料学报,2005,20(1):210~214
    [7]Dai Heng, Huang Jun, Wang Lixin. Study on porous glass fiber-optic sensor for humidity measurement. Technical Digest of the Seventh International Meeting on Chemical Sensor, 1998:348~350
    [8]梁振斌,郑顺旋,郭斯淦.光纤传感用的TIO2/V2O5湿敏光学薄膜.仪表技术与传感器,1977(10):17~19
    [9]Shiquan Tao, Christopher B. Winstead, Rajeev Jindal, et. al. Optical-Fiber Sensor Using Tailored Porous Sol-Gel Fiber Core. IEEE Sensors Journal,2004,4(3):322~328
    [10]S. Sekimoto, H. Nakagawa, S. Okazaki, et. al. A fiber-optic evanescent-wave hydrogen gas sensor using palladium-supported tungsten oxide. Sensors and Actuators B,2000(66):142~145
    [11]万爱国,张晓东,郑顺镟.V2O5气敏光学薄膜的制备及其光学性能研究.激光杂志,1998,19(4):10~12
    [12]陈凯,吴文鹏,郑顺镟.ZnO/TiO2多层薄膜氨气敏光学特性研究.激光技术,2001,25(3):209~213
    [13]吴文鹏,郑顺镟,郭斯淦.固体电解质Zr02薄膜气敏光学特性的研究.光子学报,2001,30(6):744~748
    [14]B.D. Gupta, Sonu Sharma, A long-range fiber optic pH sensor prepared by dye doped sol-gel immobilization technique. Optics Communications,1998(154):282~284
    [15]S. Thomas Lee, B. Aneeshkumar, P. Radhakrishnan. A microbent fiber optic pH sensor. Optics Communications,2002(205):253~256
    [16]C. McDonsgh, B. D MacCralth, A. K. McEvoy. Tailoring of sol-gel films for optical sensing of oxygen in gas and aqueous phase. Anal. Chem.,1998(70):45~50
    [17]M.A. Chan, J.L. Lawless, S.K. Lam. Fiber optic oxygen sensor based on phosphorescence quenching of erythrosin B trapped in silica-gel glasses. Analytica Chimica Acta,2000(408):33~37
    [18]C, McDonagh, C. Kolle, A. K. McEvoy, et al. Ohase fluorometric dissolved oxygen sensor. Sensors and Actuators B,2001(74):124~130
    [19]Sheila A. Grant, Joe H. Satcher Jr, Kerry Bettencourt. Development of sol-gel-based fiber optic nitrogen dioxide gas sensors. Sensors and Actuators B.2000(69):132~137
    [20]黄俊,姜德生,王立新,等.基于荧光猝灭原理的光纤氧气传感器研究.传感技术学报,2001,14(2):96~99
    [21]Huang Jun, HanYun, Jiang Desheng, et al. Preparation and Properties of Modified Sol-Gel Sensing Membrane for Fiber Optic Oxygen Sensor. Wuhan Univ. Tech,2004.19(1):19~22
    [22]李军,王柯敏,肖丹,等.改进溶胶-凝胶固定酶结构剖析及在苯酚光化学传感器
    中的应用.高等学校化学学报,2000.21(7):1018~1022
    [23]Kadriye Ertekin, Mustafa Tepe, Berrin Yenigu. Fiber optic sodium and potassium sensing by using a newly synthesized squaraine dye in PVC matrix. Talanta,2002(58):719~727
    [24]仲敬荣,刘妙根,王柯敏,等.基于荧光内滤效应的锂离子荧光化学传感器.高等学校化学学报,2001.22(2):191~196
    [25]杨荣华,王柯敏,肖丹.基于环糊精卟啉包络物荧光猝灭的二氧化碳光学敏感膜的研究.高等学校化学学报,2001.22(1):38~42
    [26]肖丹,莫远尧,王柯敏,等.四苯基铂卟啉荧光猝灭氧传感器的研究.湖南大学学报,2004.31(2):24~27
    [27]龙立平,王柯敏,杨荣华,等.用于测定铁离子的光化学敏感膜.应用化学,2003.20(4):341~345
    [28]陈伟,李建中,章竹君.以聚丙烯酰胺凝胶为基质的光导纤维pH传感器.高等学校化学学报,1998.19(1):35~38
    [29]赵莉,鲁勖琳,袁红雁,等.四对溴苯基铂卟啉聚氯乙烯敏感膜溶解氧传感器的研究.分析化学,2004.32(6):715~718
    [30]Kerry. P. McNamara, Xueping Li, Angela D. Stull, et al. Fiber-optic oxygen sensor based on the fluorescence quenching of tris(5-acrylamido,1,10 phenanthroline) ruthenium chloride. Analytica Chimica Acta,1998(361):73~83
    [31]李伟,陈坚,相秉仁.基于荧光猝灭原理的光纤化学传感器定量分析模型的建立与应用.化学学报,2001.59(1):109~114
    [32]李兴林,陈文杰,江明.反应诱导相分离制备新型温度敏感光学材料.高分子学报,1998(2):244~247
    [33]Shinzo Muto, Osamu Suzuki, Takashi Amano, et al. A plastic optic fiber sensor for real-time humity monitoring, Weas. Sci. Technol.2003(14):746~750
    [34]Gerhard J. Mohr, Ingo Klimant, Ursula E. Spichiger-Keller, Fluoro Reactands and Dual Luminophore Referencing:A Technique to Optically Measure Amines. Anal. Chem., 2001(73):1053~1056
    [35]Carla C. Rosa, Helder J. Cruz l, et. al. Optical biosensor based on nitrite reductase immobilised in controlled pore glass. Biosensors & Bioelectronics,2002(17):45~52
    [36]L.C. Shriver-Lake, B.L. Donner, F.S. Ligler. On-site detection of TNT with a portable fiber optic biosensor. Environ. Sci. Technol,1997(31):837~841.
    [37]Irina B. Bakaltcheva, Lisa C. Shriver-Lake, Frances S. Ligler. A fiber optic biosensor for multianalyte detection: importance of preventing fluorophore aggregation. Sensors and Actuators B,1998(51):46~51
    [38]R. Slavy'k J. Homola, E. Brynda. A miniature fiber optic surface plasmon resonance sensor for fast detection of staphylococcal enterotoxin B. Biosensors and Bioelectronics,2002(17): 591~595
    [39]A. Kishen, M.S. John, C.S. Lim. A fiber optic biosensor (FOBS) to monitor mutans streptococci in human saliva. Biosensors and Bioelectronics,2003(18):1371~1378
    [40]M.D. Marazuela, M.C. Moreno-Bondi. Determination of choline-containing phospholipids in serum with a fiber-optic biosensor. Analytica Chimica Acta,1998(374):19~29
    [41]Desheng Jiang, Er Liu, Xin Chen. Design and properties study of fiber optic glucose biosensor. CHINESE OPTICS LETTERS,2003.1(2):108~110
    [42]Wan-Li Xing, Li-Ren Ma, Zhong-Hua Jiang. Portable fiber-optic immunosensor for detection of methsulfuron methyl. Talanta,2000(52):879~883
    [43]CAI Jin, MENG Wen-fang, JI Xin-song. Fiber optic biosensor of immobilized firefly luciferase. Journal of Zhejiang University SCIENCE,2002,3(5):563~566
    [44]Harbans S. Dhadwal, Paul Kemp, Josephine Aller, et al. Capillary waveguide nucleic acid based biosensor. Analytica Chimica Acta ,2004(501):205~217
    [45]Ignacio R. Matias, Ignacio del Villar, Richard O. Claus, et al. Molecules assembly towards fiber optical nanosensors development. Proceedings of SPIE,2004(5502):512~515
    [46]姜德生,陈兴,黄俊.用热聚法固定指示剂的光纤氧气传感器研究.化学学报,2003,61(8):1281~1286
    [47]姜德生,龙胜亚,黄俊,等.漆酶在磁性壳聚糖微球上的固定及其酶学性质研究.微 生物学报,2005(4):630~633
    [48]黄俊,周菊英,肖海燕,等.CuTAPc-Fe3O4纳米复合粒子及其漆酶固定化研究.化学学报,2005,63(14):1343~1347
    [49]Silvia Casado Terrones, Cesar Elosua Aguado, Antonio Segura Carretero. etc. Volatile-organic-compound optic fiber sensor using a gold-silver vapochromic complex. Optical Engineering,2006,4(5):044401
    [50]Min-Hsien Wu, Junbo Wang, Taha Taha, Zhanfeng Cui etc. Study of on-line monitoring of lactate based on optical fibre sensor and in-channel mixing mechanism. Biomedical Microdevices, 2007,4(9):167174
    [51]Julia Cordek, Xinwen Wang, and Weihong Tan. Direct Immobilization of Glutamate Dehydrogenase on Optical Fiber Probes for Ultrasensitive Glutamate Detection. Anal. Chem,1999, 71 (8):1529~1533
    [52]Liu W, Wang Y, Tang J, Shen G, Yu R. Optical fiber sensor for tetracycline antibiotics based on fluorescence quenching of covalently immobilized anthracene. Analyst,1998,123(2):365-369
    [53]Chris M. Maragos, Vicki S. Thompson. Fiber-optic immunosensor for mycotoxins. Natura; Toxins,2000,7 (6):371~376
    [54]Patricia J. Scully, J S. Young, O Podrazky, G Kuncova, J Bolyo, V Matejec, K Rose etc. Enzyme Immobilised Coatings for Glucose Optical Fibre Sensors. Optical Fiber Sensors(OFS), Cancun, Mexico.2006
    [55]Xie X, Shakhsher Z, Suleiman AA, Guilbault GG, Yang Z, Sun ZA. A fiber optic biosensor for sulfite analysis in food. PubMed,1994,2(41):317-21
    [56]Mehrab Mehrvar, Chris Bis, Murray Moo and John H. Fiber-Optic Biosensors-Trends and Advances. Analytical Sciences,2000,16(7):677
    [57]Navneet Singh Aulakh, Rajinder Singh Kaler. Fiber optic interrogator based on colorimetry technique for in-situ nitrate detection in groundwater. Optica Applicata,2008,38(4):727~735
    [58]C Fitzpatrick, C O'Donoghue, J Schobel, B Bastiaens, P van der Slot. A large core polymer optical fibre sensor for x-ray dosimetry based on luminescence occurring in the cladding. Measurement Science and Technology,2004,15(8):1586~1590
    [59]Wang, W, Reimers, C.E, Wainright, S.C, Shahriari. M.R, Morris, M.J. Applying Fiber-Optic Sensors for Monitoring Dissolved Oxygen. Sea Technology,1999,3(40):69~74.
    [60]WHO. Diabetes Action Now: An Initiative of the World Health Organization and International Diabetes Federation. Geneva, Switzerland.2004
    [61]易卫军,卢广文,林意群,等.便携式胰岛素泵的研制.医疗设备信息.2003(2):4~6
    [62]崔大付,陈翔.生物传感器的研究与发展.电子产品世界.2003:55~57
    [63]R. Roy. Science,1987,238(18):1664~1669
    [64]徐国财,张立德.纳米复合材料.北京:化学工业出版社,2002
    [65]吉尔鲍特.酶法分析手册.北京:科学出版社,93~119
    [66]Hou XH, Liu BL, Deng XB. Covalent immobilization of glucose oxidase onto poly (styrene-co-glycidyl methacrylate) monodisperse fluorescent microspheres synthesized by dispersion polymerization. Analytical Biochemistry,2007(368):100~110
    [67]Zhao, R. Dong, P. Liang. W.2 J. J. Univ. Petroleum,1995(5):89
    [68]Khoa N. Pham, Damian Fullston, Kwesi Sagoe-Crentsil. Surface modification for stability of nano-sized silica colloids. Journal of Colloid and Interface Science,2007(315):123~127
    [69]Atta Ahmad, Md. Sohail Akhtar, Vinod Bhakuni. Monovalent Cation-Induced Conformational Change in Glucose Oxidase Leading to Stabilization of the Enzyme. Biochemistry 2000(40):1945~1955
    [70]Faeiza Hussaina, David J.S. Birchb. Pickupa. Glucose sensing based on the intrinsic fluorescence of sol-gel immobilized yeast hexokinase. Analytical Biochemistry, 2005(339):137~143.
    [71]B. D. MacCraith, C. M. McDonagh, G. O'Keeffe. Sol-gel coatings for optical chemical sensors and biosensors. Sensors and Actuators B,1995(29):51~57
    [72]陈国珍,黄贤智.荧光分析法.北京:科学出版社,1990:10
    [73]Radislav A, Potyrailo. Oxygen detection by fluorescence quenching of tetraphenylporpyrin immobilized in the original cladding of an optical fiber. Analytical Chimica Acta,1998(370):1~8
    [74]刘尔.基于荧光猝灭效应的光纤葡萄糖生物传感器的研究:[硕士学位论文].武汉:武汉理工大学,2004
    [75]WANG Zheng-Lie, SONG Shi-Mo. Physical Chemistr Chapt.6. Beijing:High Education Press,1992:330
    [76]郭晓明,吴霞琴,等.溶胶-凝胶固定葡萄糖氧化酶方法的改进.应用化学,2002(8):789~791
    [77]Hooisweng OW, Daniel R. Larson. Mainta S. Bright and Stable Core-Shell Fluorescent Silica Nanoparticles. Nano Lett,2005,5(1):113~117
    [78]H. Du, R. A. Fuh, J. Li, A. Corkan, J. S. Lindsey. PhotochemCAD: A computer-aided design and research tool in photochemistry. Photochemistry and Photobiology,1998(68):141-142

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700